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Abstract—The envisioned robotic aerial base station (RABS)
concept is expected to bring further flexibility to integrated
sensing and communication (ISAC) systems. In this letter, charac-
terizing the spatial traffic distribution on a grid-based model, the
RABS-assisted ISAC system is formulated as a robust optimiza-
tion problem to maximize the minimum satisfaction rate (SR)
under a cardinality constrained uncertainty set. The problem
is reformulated as a mixed-integer linear programming (MILP)
and solved approximately by the iterative linear programming
rounding algorithm. Numerical investigations show that the
minimum SR can be improved by 28.61% on average compared
to fixed small cells.

Index Terms—6G, small cells, UAVs, integrated sensing and
communication, network optimization, robotic manipulators

I. INTRODUCTION

In the upcoming 6G era, reliable wireless coverage and
accurate remote sensing capability are crucial for emerging
applications such as intelligent transport systems and smart
manufacturing. This has led to the recent surge in the de-
velopment of integrated sensing and communication (ISAC)
techniques. To enhance the flexibility and adjustability of
ISAC systems, in this paper, we employ robotic aerial base
stations (RABS) that can attach autonomously to lampposts
or other tall urban landforms via energy neutral grasping, and
fly to another grasping point via controllable maneuverability
to perform the sensing and communication functions.

A number of works are devoted to perform ISAC tasks to
improve spectrum efficiency and reduce the expenditure cost.
In [1], the sensing and communication performances, evalu-
ated by mutual information (MI) and data rate respectively, are
maximized jointly under the limitation of transmission power.
The work [2] extends this approach by incorporating channel
uncertainty, while in [3], the transmission power is minimized
while ensuring predefined thresholds for both MI and data rate.
The subcarrier assignment problem is considered in [4], [5]
to optimize the transmission power and satisfaction utility, re-
spectively. Besides the conventional terrestrial cells, unmanned
aerial vehicle (UAV) is expected to improve the flexibility of
next generation cellular networks [6]. The work [7] employs
UAVs to perform ISAC tasks to improve the security and
reliability of networks. The communication throughput and
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energy efficiency are optimized in the UAV-assisted ISAC
systems in [8], [9], respectively. However, to overcome the
issue that the serving endurance of UAVs is severely confined
by the on-board battery capacity, the work [10] proposes the
prototype of RABS carried by an UAV and mounted with a
mechanical grasper so that it can attach on lampposts when
providing wireless coverage and agilely relocate to another
hot-spot to adapt to the traffic dynamic. The service time is
significantly increased due to the lower grasping power (tens
of Watts) compared to the hovering/flying power of UAV base
stations (hundreds of Watts) [10].

In this letter, we employ the RABS to perform ISAC
tasks in a flexible and energy-efficient manner. Moreover,
instead of assuming that the users’ locations are fixed and
known as [1]–[9], this work is based on the spatial traffic
distribution in which the traffic demand in a certain area can
be predicted and seen as fixed during a certain period, even
though the users keep moving and have dynamic demand.
The performance metric of satisfaction rate (SR), introduced
by [11], is employed to evaluate the degree of satisfaction
for sensing and communication demand. However, rather than
treating the user/terminal as a point with specific coordinates,
this grid-based model considers the traffic demand generated
from a defined area encompassing a range of coordinates. To
address the limitations of the point-to-point communication
model within this innovative context, we introduce robust
optimization tools to maximize the minimum SR and employ
the cardinality constrained uncertainty set to control the ro-
bustness. To the best of our knowledge, this is the first work
that introduce the robust optimization tools to the grid-based
traffic model. The problem is then reformulated as a mixed
integer linear programming (MILP) via duality theory and
we propose an iterative linear programming (LP) rounding
algorithm to solve it in polynomial time. Numerical results
show that RABS can improve the system performance by
28.61% on average compared to fixed small cells.

II. APPLICATION SCENARIO AND SYSTEM MODEL

The grid-based model is a widely used model to characterize
the spatial traffic distribution [12], and was first introduced to
aerial networks in [13]. To employ the grid-based model in
this letter, an urban geographical area is divided into multiple
grids, assuming that the traffic demand generated from each
grid remains unchanged and known within a certain time
interval, e.g., half an hour or an hour. Our research focuses on
a specific time period and aims to determine the deployment
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(a) OFDM waveform for ISAC, radar and
communication (Inspired by Fig.1 in [2]).
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(b) The longest and shortest dis-
tance between a grid and RABS.

Fig. 1. Illustration of the system model.

and resource allocation of RABS during this epoch. It is worth
noting that the inherent flying function of RABS allows them
to relocate to other lampposts in response to changes in traffic
patterns in subsequent epochs. Besides, the RABS works
with a ominidirectional antenna to transmit ISAC signals and
receive the scattered echoes reflected by targets [9].

In addition to conventional communication functions, or-
thogonal frequency division multiplexing (OFDM) waveform
is adopted for radar sensing applications because of its high
spectrum efficiency, modulation flexibility and strong tolerance
for inter-symbol interference. Unlike OFDM communication
waveform which is continuous and consists of communication
information and guard interval, OFDM sensing waveform is in
the form of pulse signals without any embedded information
or guard interval. To further improve the spectrum efficiency,
OFDM-based ISAC applies a pulse OFDM waveform consist-
ing of communication information to perform ISAC functions
[1]–[3]. The comparison of these three kinds of waveform is
shown in Fig. 1(a). Specifically, suppose there are K available
OFDM subcarriers, denoted by K = {1, 2, ...,K}, are utilized
to perform ISAC. Therefore, the sensing signal performed
on the subcarrier k with M consecutive integrated OFDM
symbols can be described as [1], [2],

sk(t)=ej2πf
c
kt

Ns−1∑
n=0

akckne
j2πk∆f(t−nTs) ·rect[ t−nTs

Ts
], (1)

where t is the continuous-time independent variable, f c
k and

∆f are the frequency and bandwidth of subcarrier k, ak and
ckn denotes the amplitude and and phase code, respectively,
Ts is the duration of each completed OFDM symbol including
both the guard intervals and elementary symbol, and rect[x] is
the rectangle function that is equal to one when x∈ [0, 1], and
zero, otherwise. Accordingly, supposing the impulse response
of a sensing target on subcarrier k, including path loss and
radar cross section, is characterized by hk(t), the received
signals can be written as uk(t) = hk(t) ∗ sk(t) + n(t). We
consider a RABS that can be deployed in a certain area, which
is divided into I grids denoted by the set I = {1, 2, ..., I}.
There are a group of candidate locations distributed in that ge-
ographical area which can be chosen by RABSs for grasping;
this set is denoted by J = {1, 2, ..., J}. Besides, we should
notice that one grid can be provisioned by one or multiple
subcarriers while one subcarrier can only be assigned to at
most one grid to avoid intra-cell interference.

Different performance metrics are employed to evaluate the
sensing performance in aerial networks, such as Cramér–Rao
lower bound and range resolution. In order to investigate the
impact of RABS deployment and bandwidth allocation on the

performance of ISAC systems, we utilize the conditional MI
metric to assess the radar performance, similar to [1]–[5]. The
conditional MI enables the characterization of the information-
theoretic boundaries of the target information conveyed by
the reflected sensing signal, which is commonly referred as
sensing rate. Derived from (1), when the sensing demand
generated from grid i is served by a RABS deployed at
candidate location j and operating on the subcarrier k, the
lower bound value of MI will be achieved if there is a user,
distributed in grid i, having the worst channel gain [1],

M lb
ijk =

1

2
∆fTsNs log2(1 + |ak|2T 2

sNsH
sen,lb
ijk /σ2), (2)

where |ak|2 calculates the transmission power of the subcarrier
k, and Hsen,lb

ijk represents the lower bound of the path loss
value of the surveillance channel calculated by [3],

Hsen,lb
ijk = Gs

tG
s
rηλ

2
k/
(
(4π)3Dlb

ij

4)
, (3)

where Gs
t and Gs

r is the transmitting and receiving antenna
gain, respectively, η denotes the mean of radar cross-section
of the targets distributed in the grid, λk is the wavelength
in the subcarrier k that could be calculated by λk = c/f c

k

where c is the speed of light, Dlb
ij denotes the longest dis-

tance between the grid i and candidate location j. Similarly,
introducing the shortest distance Dub

ij into (2) and (3), we
can calculate the upper bound value of channel gain and
MI in the best case, denoted by Hsen,ub

ijk and Mub
ijk. An

illustration of the lower and upper bounds of the distance is
shown in Fig. 1(b). For notational convenience, we calculate
the average MI as M ijk = (Mub

ijk + M lb
ijk)/2 and bias

as M̂ijk = (Mub
ijk − M lb

ijk)/2. Consequently, for any user
distributed in the grid i, the MI should take value from the
range [M ijk − M̂ijk,M ijk + M̂ijk].

Moreover, the data rate is applied as the metric to evaluate
the communication performance. The lower bound of the
achievable rate can be calculated by,

Rlb
ijk = ∆f log2(1 + |ak|2Hcom,lb

ijk /σ2), (4)

where Hcom,lb
ijk indicates the lower bound of the communica-

tion channel gain calculated as follows [3], [4],

Hcom,lb
ijk = Gc

tG
c
rλ

2
k/
(
(4π)2Dlb

ij

2)
, (5)

where Gc
t and Gc

r is the transmitting and receiving antenna
gain.1 It is worth pointing out that the concept of the worst
channel gain is investigated in [14] for reliable communi-
cations. The upper bound of communication channel gain
and data rate, denoted by Hcom,ub

ijk and Rub
ijk, can be then

obtained by introducing the shortest distance Dub
ij into (4) and

(5). The average rate and bias can be calculated as Rijk =
(Rub

ijk + Rlb
ijk)/2 and R̂ijk = (Rub

ijk − Rlb
ijk)/2, respectively.

Accordingly, the data rate for any user distributed in the grid
i would be within the range [Rijk − R̂ijk, Rijk + R̂ijk].

Three sets of binary variables are utilized to formulate the
subcarrier allocation, grid association and RABS deployment.
Specifically, xijk ∈ {0, 1} indicates whether a RABS located

1Similar as [3], [4], we employ the free-space channel model for simplicity.
Other models can be employed in the proposed formulation straightforwardly.
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M̃i ≜
1

Mi

( ∑
j∈J

∑
k∈K

M ijkxijk︸ ︷︷ ︸
The total satisfied MI when

all grids have the average MI.

− max
{Ji×Ki∪(ji,ki) | Ji⊆J ,Ki⊆K,

|Ji×Ki|≤⌊Γi⌋,(ji,ki)∈J×K−Ji×Ki}

{ ∑
j∈Ji

∑
k∈Ki

M̂ijkxijk + (Γi − ⌊Γi⌋)M̂ijiki
xijiki

})
︸ ︷︷ ︸

Robust bias of the total satisfied MI which means up to ⌊Γi⌋ of these coefficients are allowed to change to the
worst MI, and one coefficient changes by at most (Γi − ⌊Γi⌋)M̂ijiki

. Defined as the protection function in (8).

,

R̃i ≜
1

Ri

(∑
j∈J

∑
k∈K

Rijkyijk − max
{Ji×Ki∪(ji,ki) | Ji⊆J ,Ki⊆K,

|Ji×Ki|≤⌊Λi⌋,(ji,ki)∈J×K−Ji×Ki}

{ ∑
j∈Ji

∑
k∈Ki

R̂ijkyijk + (Λi − ⌊Λi⌋)R̂ijiki
yijiki

})
,

(6a)

(6b)

at location j performs sensing operations to the user i by
the subcarrier k or not; yijk ∈ {0, 1} denotes whether a
RABS located at location j communicate with the user i
on the subcarrier k or not; zj ∈ {0, 1} indicates whether
the RABS would be deployed at location j. Because our
objective is to satisfy these demands as much as possible
under resource constraints, we employ the satisfaction rate
(SR) to evaluate the degree of satisfaction for sensing and
communication demand [11]. Accordingly, the SR for sensing
demand in grid i is defined by (6a) shown on the top of this
page. A parameter Γi, normally called the protection level for
the ith constraint, is introduced to control the conservatism of
the robust optimization model. Specifically, in the numerator
of (6a), the first part calculates the total served sensing MI
when all grids perform the average channel gain, i.e., have
the average MI. The second part is the robust bias, which
indicates that there are up to ⌊Γi⌋ coefficients allowed to
change within the range [M ijk − M̂ijk,M ijk + M̂ijk], and
one coefficient can at most change by (Γi − ⌊Γi⌋)M̂ijk. This
kind of uncertainty set is referred as cardinality constrained
uncertainty set in [15], which reflects the inherent nature that
only a subset of grids perform the worst channel gain in
order to adversely affect the MI performance. Considering two
extreme cases, setting Γi = 0 is the most ideal scenario when
all grids have the average sensing performance. In contrast,
setting Γi = |Ji × Ki| is the most conservative case in
which all grids perform the worst channel gain and therefore
have the lowest MI. Overall, the numerator in (6a) calculates
the satisfied sensing demand under the cardinality constrained
uncertainty set and the denominator Mi denotes the sensing
demand of the grid i. Therefore, (6a) defines the sensing SR
M̃i. Similarly, the communication SR R̃i is defined by (6b)
where Λi and Ri are the protection level and communication
demand, respectively.

Hereafter, the proposed bi-objective optimization problem
is formulated to maximize the weighted sum of minimum
sensing and communication SR,

max
X,Y,Z,M̃,R̃

µM̃ + (1− µ)R̃ (7a)

s.t. M̃i ≥ M̃, R̃i ≥ R̃, ∀i, (7b)∑
i∈I

∑
j∈J

xijk ≤ 1,
∑
i∈I

∑
j∈J

yijk ≤ 1, ∀k, (7c)∑
i∈I

∑
k∈K

xijk ≤ IKzj ,
∑
i∈I

∑
k∈K

yijk ≤ IKzj , ∀j, (7d)∑
j∈J

zj ≤ 1, (7e)

xijk, yijk, zj ∈ {0, 1}, ∀i, j, k, (7f)

M̃, R̃ ∈ [0, 1], (7g)

where X ≜ {xijk}, Y ≜ {yijk} and Z ≜ {zj} are the set
of variables, µ ∈ [0, 1] is a predefined weight parameter. Eq.
(7b) denotes the minimum sensing and communication SR by
M̃ and R̃. The constraints in (7c) denote that each orthogonal
subcarrier can at most allocated to one grid for sensing or
communication to avoid intra-cell interference, respectively.
Eq. (7d) ensures that only when a RABS has been deployed
at the location j then the grids can be associated to it for joint
sensing and communication. Eq. (7e) indicates that there is
only one RABS that can be deployed.

III. MILP REFORMULATION AND ALGORITHM DESIGN

1) MILP Reformulation: To convert the constraints in (6a)
into linear constraints, we first define the protection function
with a given X∗ as,

γi(X
∗) = max

{Ji×Ki∪(ji,ki) | Ji⊆J ,Ki⊆K,

|Ji×Ki|≤⌊Γi⌋,(ji,ki)∈J×K−Ji×Ki}

{ ∑
j∈Ji

∑
k∈Ki

M̂ijkx
∗
ijk

+ (Γi − ⌊Γi⌋)M̂ijikix
∗
ijiki

}
,

(8)

which can be written as the following problem:

γi(X
∗) = max

wi

∑
j∈J

∑
k∈K

M̂ijkx
∗
ijkwijk (9a)

s.t.
∑
j∈J

∑
k∈K

wijk ≤ Γi, (9b)

0 ≤ wijk ≤ 1, ∀j, k, (9c)

where wi ≜ {wijk|∀j ∈ J ,∀k ∈ K} is the introduced
variable. The equality between (8) and (9) can be proved by
the observation that the optimal solution of (9) must include
⌊Γi⌋ variables taking the value of one and one variable at
Γi −⌊Γi⌋. The detailed proof can be found in the Proposition
1 of [15]. Write the dual of (9) as follows,

γi(X
∗) = min

αi,{βijk | ∀j,k}

∑
j∈J

∑
k∈K

βijk + Γiαi (10a)

s.t. αi + βijk ≥ M̂ijkx
∗
ijk, ∀j, k, (10b)

αi ≥ 0, βijk ≥ 0, ∀j, k, (10c)

where {αi} and {βijk} are dual variables. It can be observed
that the problem (8) is a linear programming thus the strong
duality is held between (9) and (10), i.e., they have the equal
optimal solutions if feasible. Introducing (10) into (6a), the
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constraints M̃i ≥ M̃ in (7b) can be rewritten as the following
constraint set:

1

Mi

(∑
j∈J

∑
k∈K

(M ijkxijk −βijk)−Γiαi

)
≥ M̃, ∀i,

αi + βijk ≥ M̂ijkxijk, ∀i, j, k,
αi ≥ 0, βijk ≥ 0, ∀i, j, k.

(11a)

(11b)
(11c)

Applying the same procedure to the constraints R̃i ≥ R̃
in (7b), the problem (7) can be then reformulated as a MILP
without loss of optimality.

2) Iterative LP Rounding Algorithm: To overcome the
curse of dimensionality, an iterative LP rounding algorithm
proposed in [16] is employed to solve the reformulated MILP
problem approximately. Firstly, we focus on a selected location
and use the same method to traverse all candidate locations at
subsequent stages to obtain the best one. It can be observed
that the sensing and communication decisions in (7) can be
decoupled once the variable Z is determined. We set zj′ = 1
and all other elements in Z are zero. A MILP problem
including only the variables related to the sensing task can
be written from (7) and (11) as,

max
Xj′ ,M̃,A,Bj′

µM̃ (12a)

s.t.
1

Mi

(∑
k∈K

(M ij′kxij′k − βij′k)−Γiαi

)
≥ M̃, ∀i, (12b)

αi + βij′k ≥ M̂ij′kxij′k, ∀i, k, (12c)∑
i∈I

xij′k ≤ 1, ∀k, (12d)

M̃ ∈ [0, 1], αi ≥ 0, βij′k ≥ 0, ∀i, k, (12e)
xij′k ∈ {0, 1}, ∀i, k, (12f)

where Xj′ ≜ {xij′k

∣∣∀i ∈ I,∀k ∈ K}, A ≜ {αi} and B ≜
{βij′k

∣∣∀i ∈ I,∀k ∈ K} are the sets of variables.
To apply the iterative LP rounding algorithm [16], we

first solve the linear relaxation of the problem (12), that
is, replacing the constraints in (12f) by xij′k ∈ [0, 1], and
denote the solution as (X∗

j′ , M̃
∗,A∗,B∗). If X∗

j′ is binary, the
optimal solution for (12) is obtained. Otherwise, we introduce
xij′k = 1 to (12) if x∗

ij′k = 1 as new constraints. Afterwards
we would decide to round the variables with fractional values
in X∗

j′ to binary values via a procedure of verifying feasibility.
Firstly, we select one variable with the largest fractional
value in X∗

j′ and denote it as xi0j′k0
.2 We add the constraint

xi0j′k0
= 1 to (12) and try to solve this modified LP. If it

is infeasible, we set xi0j′k0
= 0 and round other variables

according to X∗
j′ . If the modified LP is feasible, we add the

constraint xi0j′k0 = 1 to (12) and repeat the above procedure
until a binary Xj′ is achieved or there is no more subcarrier
can be allocated. More details of the iterative LP rounding
algorithm could be found in [16].

In the section 6.6.1 of [17], the worst case of solving a
linear programming is O

(
(nv +nc)1.5nv2

)
, where nv and nc

2Because the objective is to maximize the minimum SR, it is suggested
that in this step, prioritize selecting the elements in X∗

j′ corresponding to the
grids that have not allocated any subcarriers to guarantee the fairness.

TABLE I
PARAMETER SETTINGS

Parameter Value Parameter Value
K 64 Ts 5 µs
Gs

t , G
s
r 30 dB [3] Ns 16 [2]

Gc
r 30 dB [3] σ2 -174 dBm/Hz

Gc
s 0 dB |ak|2 1 W

η 1 m2 [9] µ 0.5

Fig. 2. Achievable minimum SR (objective function) versus robustness.

are the number of variables and constraints, respectively. In
the iterative LP rounding algorithm, the number of iterations is
upper bounded by I×K, thus the complexity of the proposed
algorithm is approximately O

(
IK · (nv + nc)1.5nv2

)
, where

nc = 2IK+I+K+1 and nv is upper bounded by 2IK+I+1
for the linear relaxation of (12).

IV. NUMERICAL INVESTIGATIONS

A geographical area of 100 × 100 m2 is divided into 25
small square grids with the size of 20 × 20 m2, where 10
candidate locations distributed randomly for RABS grasping.
The sensing and communication demand of grids follows the
log-normal distribution [18], where the mean value and stan-
dard deviation are denoted by [msen,mcom] and [σsen, σcom]
[18]. Hereafter, unless otherwise specified, we set msen = 15
bit, mcom = 20 Mbps and σsen = σcom = 1 unless otherwise
stated. Moreover, the carrier frequency of the ISAC signals is
f c
0 = 3 GHz and each subcarrier has the spacing ∆f = 0.25

MHz. Accordingly, the frequency of the kth subcarrier is
calculated by f c

k = f c
0 +k∆f [1]. For notational convenience,

we introduce a robustness parameter δ to control the protection
level {Γi} and {Λi}, that is, Γi = Λi = δ × J × K.
Taking δ = 10−1 as an example, it means that 10% of
the coefficients in (6a)-(6b) are allowed to take values from
[M ijk − M̂ijk,M ijk + M̂ijk] and [Rijk − R̂ijk, Rijk + R̂ijk].
Other simulation parameters are reported in Table I.

By adjusting the robustness parameter δ, we control the
protection level {Γi} and {Λi} as well as the robustness
of the problem (7). It can be observe from Fig. 2 that the
minimum SR decreases as the robustness increases. This is
in accordance with the intuition that the growth of system
robustness comes at the expense of system performance.
Taking a fixed small cell distributed randomly as a benchmark,
it is shown from Fig. 2 that the RABS can improve the system
performance by 28.61% and 21.46% on average when setting
the standard deviation to 1 and 2, respectively. Moreover,
comparing the results for different standard deviation values
of traffic distribution, it can be seen that the robustness has
less impact on the system performance when the traffic spatial
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Fig. 3. Subcarrier allocation versus sensing rate demand.

distribution is highly heterogeneous, represented as smoother
curves in Fig. 2.

Fig. 3 investigates the number of subcarriers allocation ver-
sus the sensing traffic distribution. Note that more subcarriers
are biased to grids with higher traffic demand. The reason is
that our objective is to maximize the minimum SR to guarantee
fairness. Moreover, Fig. 3 shows that the robustness parameter
δ also affects the subcarrier allocation decisions. Comparing
the results when setting δ = 10−4 and δ = 100, the number
of allocated subcarriers differs in grids 2, 14, 21, and 24.

The performance of the proposed iterative LP rounding
algorithm is analyzed in Fig. 4. Although the maximum
number of iterations is upper-bounded by I×K, as alluded
in section III-2, in reality the stopping criteria is satisfied
after solving a limited number of LP problems as shown in
Fig. 4(a). Moreover, Fig. 4(b) presents the optimal gap of
the iterative LP rounding algorithm by comparing with the
globally optimal solution solved by Gurobi [19]. Numerically,
the optimality gap of the proposed method is at least 2%
when the robustness parameter is 10−4, and 22% at most
when robustness parameter is 10−2.5. However, as shown in
section (III-2), the complexity of the proposed algorithm is
in polynomial time, in contrast to the exponential worst-case
complexity of Gurobi [19].

V. CONCLUSIONS

In this paper, a flexible integrated sensing and communi-
cation (ISAC) system is proposed, assisted by the robotic
aerial base station (RABS). To characterize the users’ mobility
and changing demand, we employ a grid-based model to
represent the spatial traffic distribution. A robust programming
is formulated on the cardinality constrained uncertainty set
to determine the RABS deployment and resource allocation.
which is reformulated as a MILP via duality theory and solved
by a proposed iterative LP rounding algorithm in polynomial
time. Numerical investigations show that the minimum SR
can be improved by 28.61% on average thanks to the flexible
mobility of RABS deployment. Future extensions of this letter
may consider employing the novel orthogonal time frequency
space modulation to improve the performance of OFDM-based
ISAC systems [20], and applying the Cramér–Rao lower bound
as the metric to investigate how the maneuverability of the
RABS can enhance the ISAC performance.
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