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Improved Label Design for Timing Synchronization
in OFDM Systems against Multi-path Uncertainty
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Abstract—Timing synchronization (TS) is vital for orthogonal
frequency division multiplexing (OFDM) systems, which makes
the discrete Fourier transform (DFT) window start at the inter-
symbol-interference (ISI)-free region. However, the multi-path
uncertainty in wireless communication scenarios degrades the
TS correctness. To alleviate this degradation, we propose a
learning-based TS method enhanced by improving the design
of training label. In the proposed method, the classic cross-
correlator extracts the initial TS feature for benefiting the follow-
ing machine learning. Wherein, the network architecture unfolds
one classic cross-correlation process. Against the multi-path
uncertainty, a novel training label is designed by representing
the ISI-free region and especially highlighting its approximate
midpoint. Therein, the closer to the region boundary of ISI-free
the smaller label values are set, expecting to locate the maximum
network output in ISI-free region with a high probability. Then,
to guarantee the correctness of labeling, we exploit the priori
information of line-of-sight (LOS) to form a LOS-aided labeling.
Numerical results confirm that, the proposed training label
effectively enhances the correctness of the proposed TS learner
against the multi-path uncertainty.

Index Terms—Timing synchronization, OFDM, label design-
ing, multi-path uncertainty, machine learning.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) technology has been widely applied in the

modern wireless and mobile communication systems, e.g.,
the fifth generation (5G) system [1]. At an OFDM receiver,
the correct timing synchronization (TS) locates the starting
of discrete Fourier transform (DFT) window per OFDM
symbol within its inter-symbol-interference (ISI)-free region
[2]. However, this task is hardly complete in multi-path
propagation scenarios. In fact, wireless propagation scenarios
emerge a lot of multi-path uncertainty, e.g., uncertain multi-
path delays and complex path gains, etc [3]. Under such
uncertainty, the error probability of TS is increased.

To suppress the multi-path uncertainty, the joint TS and
channel estimation method via the iterative interference can-
cellation is proposed in [4]. While this iterative processing
requires high computational complexity and large process-
ing delay. Machine learning, due to its powerful ability in
tackling nonlinear problems [5], can be an alternative way to
improve the TS correctness against the impact of multi-path
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interference. The authors in [6] investigate a neural network
(NN)-based signal detection with impacts of TS error and
multi-path uncertainty, yet this study does not focus on the
TS task. In a recent study [7], a convolutional NN (CNN)-
based TS is investigated, which features a specially designed
network architecture to improve the TS correctness. However,
this method takes a long time for training and is not conducive
to practical application. In [8], the residual timing offset
estimation is accomplished by assuming the achievement of
coarse TS and channel estimation, and therefore it omits the
impacts of multi-path uncertainty. Since training labels to be
learned are usually helpful to improve the model training
without fine-tuning [9], the authors in [10] improve the TS
correctness against multi-path interference by specially de-
signing training labels. While the uncertainty of multi-path
delay is hardly considered in [10], which greatly affects the
correctness of label designing. Thus, the incorrect labeling
limits the improvement of TS correctness provided by [10].
To our best knowledge, there is limited literature addressing
this issue by designing the training label against uncertain
multi-path delay.

In this paper, a learning-based TS method aided by the
improved label designing is proposed, which aims to improve
its adaptability against the multi-path uncertainty. Specifically,
we design novel training label by assigning nonzero values to
the label values indexed in the ISI-free region while setting
other label values to zeros. In the designed training label, the
values of these labels are set smaller when they are closer
to the ISI-free region boundary, which highlights the ISI-free
middle region to reduce the risk of timing error. Nevertheless,
the uncertain multi-path delay may result in a variation of
ISI-free region with environmental changes, leading to the
incorrect labeling and affecting the TS correctness. To over-
come this issue, we further relax the labeling restrictions to
line-of-sight (LOS) cases to reserve an enough region for
accommodating the uncertain multi-path delay for non-line-
of-sight (NLOS) cases. This avoids the highlighted midpoint
being outside the ISI-free region and thus forms the LOS-
based priori information. Without excessively increasing the
computational complexity, we combine a single hidden back-
propagation NN (BPNN) with the classic TS processing to
form the learning-based TS (so called TS learner), in which the
employed BPNN only unfolds one cross-correlation process.
Numerical results show that the proposed training label can
effectively enhance the adaptability and correctness of TS
learner against the multi-path uncertainty.

Notations: [·]T , E{·}, |·|, ⌈·⌉, and (·)∗ denote the operations
of transpose, statistical expectation, absolute, ceiling, and
complex conjugate, respectively.
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Fig. 1. System model.

II. SYSTEM MODEL

We consider an OFDM system with N subcarriers, as shown
in Fig. 1. At the transmitter, a transmitted OFDM symbol is
expressed as

s (n) =


N−1∑
k=0

d (k) ej
2πk
N n, 0 ≤ n ≤ N

s (n+N) , −Ng ≤ n < 0

, (1)

where d(k) represents the data symbol or the element of
training sequence modulated on the kth subcarrier. Ng is the
length of cyclic prefix (CP). In (1), E{|s(n)|2} = Pt with
Pt being the transmitted signal power. After transmitting s(n)
over multi-path channel [11], the received sample is given by

y(n) = ej
2πn
N ε

L∑
l=1

hls(n− θ − τl) + w(n), (2)

where θ denotes the timing offset to be estimated, ε is the
normalized carrier frequency offset, and w(n) stands for the
additive white Gaussian noise with zero-mean and variance σ2.
In (2), hl and τl are the complex gain and normalized multi-
path delay of the l-th resolvable path, respectively. Besides,
the multi-path delays are shorten than the CP length to prevent
ISI, i.e., Ng > τl, and τl = l − 1 is considered in this paper.

By considering a Nw-length observed interval, Nw-samples
of the received samples are buffered as the observed vector
y ∈ CNw×1, i.e.,

y = [y (0) , y (1) , · · · , y (n) , · · · , y (Nw − 1)]
T
, (3)

where Nw = 2N + Ng aims to observe a complete training
sequence, and correspondingly, the length of searching range
for unknown θ is Ns = Nw−N = N+Ng . In Section III, the
proposed TS method for estimating timing offset is elaborated,
in which the estimation value of θ is denoted as θ̂.

III. LEARNING-BASED TS AIDED BY LABEL DESIGNING

A. Improvement of Label Designing

By paying special attention to the uncertain multi-path
delay, a novel training label t ∈ RNs×1 is designed to enhance
the TS learner, i.e.,

t =

0, · · · , 0︸ ︷︷ ︸
θ+τL

, ζ (1) , · · · , ζ (D)︸ ︷︷ ︸
ISI-free region

, 0, · · · , 0︸ ︷︷ ︸
Ns−θ−Ng−1


T

, (4)

where D = Ng−τL+1, denoting the length of ISI-free region.
For convenience, a discrete interval for searching θ is denoted
as Ω and defined as that Ω : {m |0 ≤ m ≤ Ns − 1,∀m ∈ Z}.
Therein, the ISI-free region (denoted as Ωfree) is defined as that
Ωfree : {m |τL ≤ m− θ ≤ Ng }, and the ISI region, denoted
as ΩISI, corresponds to a complementary set of Ωfree in Ω, i.e.,

ΩISI ∩ Ωfree = ∅ and ΩISI ∪ Ωfree = Ω. For ∀m ∈ Ωfree, the
m-th entry in t is denoted as ζ (d), d = 1, 2, · · · , D, i.e.,

ζ (d) =

{
d, 1 ≤ d < ⌈D + 1/2⌉
D − d+ 1, ⌈D + 1/2⌉ ≤ d ≤ D

, (5)

where each value of ζ(d) satisfies that the closer to the left-
most or rightmost boundary of Ωfree, the smaller values are set.
Different from [10], the designed t in (4) not only represents
Ωfree, but also highlights its middle region. Since the minimal
training loss can be achieved after BPNN training [12], the
maximum value of network output will be concentrated nearby
the midpoint of Ωfree with a high probability. That is, the
probability of correct TS is increased.

In (4), an approximate midpoint of Ωfree, denoted as µ =
θ+ ⌈(τL +Ng) /2⌉, is considered as the ideal case of correct
labeling for (4), i.e., µ ∈ Ωfree. However, due to the uncertain
multi-path delay in NLOS cases, µ /∈ Ωfree may appear, which
makes error labeling. If µ /∈ Ωfree has appeared in (4), the
trained TS learner will learn the incorrect label, and thus
degrades its TS correctness significantly. To tackle this issue,
the labeling restriction is relaxed to LOS cases to reserve the
enough region for accommodating the uncertain multi-path
delays of NLOS cases.

B. Labeling by LOS-based Priori Information

By separately denoting ξ, Gr, Gt, and λ as the propagation
distance, received antenna gain, transmitted antenna gain, and
wavelength, the received signal power in a LOS scenario,
denoted as Pr(ξ), is given by Pr(ξ) = λ2

(4πξ)2PtGtGr [13].
With the given transmitted power Pt and the resolvable
received power (i.e., a constant value denoted by Pres), the
maximum propagation distance in a LOS scenario (denoted as
ξLOS) is ξLOS = maxξ {Pr (ξ) ≥ Pres}. Therein, the resolvable
received power is defined as the received power of the minimal
resolvable path during the synchronization phase [14]. For ∀ξ
with a given Pt, relative to LOS scenarios, Pr (ξ) of a NLOS
scenario is inevitably reduced due to obstacles [13]. Accord-
ingly, with a given Pt, the maximum propagation distance in
a NLOS scenario, denoted as ξNLOS, satisfies ξNLOS ≤ ξLOS.
Correspondingly, τL ≤ ξLOS

c·T is satisfied, where T and c denote
the sampling interval and light speed, respectively. Usually, τL
of NLOS scenario is difficult to obtain due to the uncertain
multi-path delay, while ξLOS seems to be much easier to
obtain, so that ξLOS

c·T can be easily captured. Without loss of
generality, ξLOS

c·T < Ng is assumed. From [15], the CP length
is much greater than the maximum propagation delay. Thus,
we explore the prior information of ξLOS

c·T < Ng to improve
the TS correctness. In fact, this prior information is a loose
upper bound, which is only utilized to reflect the heuristic
idea of this letter. With the development of integrated sensing
and communication (ISAC), the sensing technology (e.g., [16])
can be employed to obtain a tight bound to further improve
the TS correctness. Then, in a real propagation environment,
τL ≤ ξLOS

c·T < Ng can be satisfied, yielding

θ + τL ≤ θ +
ξLOS

c · T
< θ +Ng. (6)
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TABLE I
NETWORK ARCHITECTURE

Layer Name Neuron Nodes Activation Function Normalization

Input Layer Ns None ℓ2-norm
Hidden Layer N Sigmoid None
Output Layer Ns None None

The above (6) can be viewed as the LOS-based priori infor-
mation, obtaining a narrowed interval of ISI-free region, i.e.,

Ωnfree :

{
m| ξLOS

c · T
≤ m− θ < Ng

}
s.t. Ωnfree ⊆ Ωfree. (7)

Although the uncertain multi-path delay makes µ ∈ Ωfree
hardly, it can be easily achieved by µ ∈ Ωnfree. Then, m in (7)
is substituted by µ, in which ξLOS

c·T ≤ µ − θ < Ng . By using
(6), we have

θ + τL ≤ µ < θ +Ng, (8)

and thus µ ∈ Ωfree is satisfied. By considering µ = θ +
⌈(τL +Ng) /2⌉, the τL for training can be obtained via ξLOS

c·T .
In (6), if ⌈Ng/2⌉ ≤ ξLOS

c·T < Ng , the τL for training can be set
as 2 ξLOS

c·T −Ng ≤ τL ≤ ξLOS
c·T . Otherwise, 1 ≤ τL ≤ ξLOS

c·T can be
considered. For the both cases, a training option of τL aided
by the LOS priori information of (6) is expressed as τL ∼ U

[
1,
⌈
ξLOS
c·T

⌉]
, ξLOS

c·T ∈
(
0,
⌈
Ng

2

⌉)
τL ∼ U

[
2
⌈
ξLOS
c·T

⌉
−Ng,

⌈
ξLOS
c·T

⌉]
, ξLOS

c·T ∈
[⌈

Ng

2

⌉
, Ng

) .

(9)
According to (6)–(9), the τL for training is derived to promise
the correct labeling given in (4). Since the ISI-free’s approxi-
mate midpoint µ is highlighted with µ = θ+ ⌈(τL +Ng) /2⌉
and τL = 2⌈µ−θ⌉−Ng , the setting of τ in (9) can guarantee
the condition that µ ∈ Ωnfree ⊆ Ωfree. On the basis of this, the
NN trained by the label designed in (4) can achieve θ̂ ∈ Ωfree
with a high probability. Furthermore, the more cases of τL
that are learned, the greater robustness against the varied τL
that can be achieved. Therefore, it is reasonable to relax τL
to a random value instead of a constant value, as done in (9).

C. Learning-based TS Method

1) Network Architecture: The architecture of the designed
TS learner is illustrated in TABLE I, which has an input
layer, a hidden layer and an output layer. To avoid excessively
increasing complexity, the neurons of input layer, hidden layer,
and output layer are set as Ns, N , and Ns, respectively.
Therein, the N -neuron hidden layer is derived from consider-
ing unfolding one cross-correlation process. Since the input
scale of NN may differ from those of other layers, it is
practical to employ the ℓ2-norm in the input layer. Besides,
the hidden layer employs the sigmoid activation function, i.e.,
f(x) = 1/(1+ e−x), for the reason that it is easy to calculate
and suitable for shallow NNs [17].

2) Initial Feature Extraction: By employing the classic TS
method, its timing metric is utilized as the initial Ns features
of TS to facilitate the model learning [18], i.e.,

F (m) =

∣∣∣∣∣
N−1∑
n=0

x∗ (n) y (m+ n)

∣∣∣∣∣
2

, 0 ≤ m ≤ Ns − 1, (10)

where x(n) is a local training sequence, e.g., the Zadoff-
Chu sequence in [19]. By using the ℓ2-norm of F (m),

the network input, denoted as Q(m), is normalized to the
interval [0, 1), i.e., 0 ≤ Q(m) < 1, which is expressed

as Q(m) = F (m)/
√∑Ns−1

m=0 |F (m)|2. The vector form of
Q(m), denoted as Q ∈ RNs×1, is expressed as Q =
[Q (0) , · · · , Q (Ns − 1)]

T .
3) Offline Training: First, by using (1)–(10), the training

data set {Qi, ti}Nt=104

i=1 are obtained. For the i-th train-
ing sample, we employ the exponentially decayed channel
model with its decayed factor ηi being ηi ∼ U [0.01, 0.5]
for combating the uncertainty of complex path gain. Mean-
while, ξLOS

c·T = ⌈7Ng/8⌉ is given, which derives τL,i ∼
U [⌈3Ng/4⌉, ⌈7Ng/8⌉] for the label designing in (4) to combat
the uncertain multi-path delay. Besides, the SNR for gen-
erating the i-th training sample is randomly selected from
{−2dB, 0dB, 2dB, ..., 10dB} with a probability of 1/7.

In the developed TS learner, the optimizer employs the
stochastic gradient descent (SGD) algorithm and sets the initial
learning rate as α = 0.001 [20]. In this paper, the loss function
is defined as

LΘ =
1

Nt

Nt∑
i=1

∥GΘ (Qi)− ti∥22, (11)

where Θ is a set of network parameters (i.e., weights and
biases) to be optimized, and GΘ(·) is a mapping function
parameterized by Θ. By setting J as the total iterative steeps,
the network optimization is defined as [21]

Θj+1 ← Θj − α∇LΘj
, (12)

where Θj , j = 1, 2, · · · , J , denotes the network parameters
after the jth optimization, and ∇LΘj

is the gradient of LΘj
.

4) Online Deployment: According to (1)–(2) and (10), the
initial TS features are first extracted, and then normalized to
form the network input Q. With the trained GΘ, the network
output O ∈ RNs×1 is obtained by O = GΘ (Q). Finally, the
output O is expressed as [O(0), · · · , O(m), · · · , O(Ns − 1)]

T

for timing offset estimation, i.e., θ̂ = argmax
m∈Ω

|O (m)|.

IV. NUMERICAL RESULTS

A. Parameter Setting

In the simulations, we consider that N = 128, Ng = 32,
Nw = 288, and Ns = 160. The error probability of TS is
utilized to evaluate the TS correctness, which is defined as
the probability of estimating the timing offset outside of the
ISI-free region. The OFDM technology is primarily employed
to combat the ISI caused by the multi-path propagation [22],
and thereby the frequency selective fading channels are mainly
considered in the simulations. We leverage the delay spread
profile to quantify the uncertainty of multi-path fading [23]. To
simulate the multi-path uncertainty, Fig. 3 to Fig. 5 depict the
TS correctness of the proposed method for the cases where the
training delay spread profile differs from the testing ones. The
case of the maximum LOS propagation delay (i.e., ξLOS

c·T ) is set
only to provide the LOS priori information (i.e., (6)) for assist-
ing the improvement of label designing in (4). Consequently,
we consider a relatively large value of ξLOS

c·T to guarantee
the correctness of LOS priori information, i.e., ξLOS

c·T is set
as ⌈7Ng/8⌉. In the simulations, the exponentially decayed
Rayleigh fading channel in [11] and different 5G tapped-delay-
line (TDL) channel models (e.g., TDL-B and TDL-C given in
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TABLE II
COMPUTATIONAL COMPLEXITY AND PROCESSING DELAY

Method Computational Complexity Example
(CM)

Processing
Delay (sec)

Ref [4] LNNs +
∑L

l=1(3lNs + l3 + l2Ns) 2167396 81.41
Ref [10] 1.5N + 4(Ns − 1) + 16N2

s 410428 1.614
Ref [7] 0.5N2

s + 2NNs + 1.5NgNs +Ns 70240 0.349
Prop NNs + 0.5NNs 30720 0.141

Fig. 2. Computational complexity analysis.

3GPP TR 38.901 [24]) are employed. Besides, the signal-to-
noise ratio (SNR) is defined as SNR = 10 log10(Pt/σ

2
n) [25],

and correspondingly,
∑L

l=1 |hl|2 = 1 is considered [11].
For the ease of description, the TS learner with the training

labels proposed in this paper and [10] are referred as to “Prop”
and “Ref [10]”, respectively. “Ref [7]” is the TS method given
in [7]. “Ref [4]” stands for the iterative-based TS method in
[4]. Besides, the classic TS method in [26], denoted as “Ref
[26]”, serves as the baseline.

B. Computational Complexity and Processing Delay

TABLE II presents the expression of computational com-
plexity, in which the complex multiplication (CM) is used for
evaluating the computational complexity. By considering the
impact of searching length Ns, Fig. 2 plots the CM of each
given TS method in terms of Ns, where Ns increases from
160 to 1024 with the interval being 16. All the evaluations are
carried out on an Intel Core i5-11300H, 3.10GHz CPU, and
L = 28 is considered for 104 experiments in both TABLE II
and Fig. 2. In Fig. 2, the CM of “Prop” is smaller than those
of “Ref [4]”, “Ref [7]”, and “Ref [10]”. Similarly, TABLE II
reflects that “Prop” obtains a lower computational complexity
and processing delay, and the case where Ns = 160 is
given. The reason is that “Prop” unfolds one cross-correlation
process, while others unfold at least two iterations of the cross-
correlation process. From TABLE I, the CM of the designed
NN of “Prop” is 0.5NNs, which does not exceed the CM of
one cross-correlation process, i.e., NNs. Naturally, the CM
of “Prop” will not exceed the CM of two cross-correlation
process. Thus, the relatively lightweight NN is employed by
“Prop” compared with the given TS methods.

C. Effectiveness Analysis

Fig. 3 plots the error probability of TS to evaluate the
TS performance of different methods against multi-path in-
terference and its uncertain multi-path delay. Meanwhile, the

Fig. 3. Effectiveness analysis.

Fig. 4. Robustness analysis.

case of {τL = 27, η = ln 10/(L − 1)}is employed to
simulate the uncertainty of multi-path delay, while the case of
{τL ∼ U [24, 28], η ∼ U [0.01, 0.5]} is utilized for the offline
training presented in Section III-C. For each given SNR in
Fig. 3, “Prop” obtains significantly smaller error probability
of TS compared with other given TS methods. Compared
with “Prop”, “Ref [26]” presents a weaker robustness against
the increased numbers of multi-path due to the lack of the
consideration of rich multi-path scenarios (only 3 or 6 taps are
considered in the simulations in [26]). Relative to “Ref [10]”,
the superiority of “Prop” is that the proposed training label
is not only specially designed for decreasing the risk of esti-
mating the timing offset outside the ISI-free region, but also
improved by LOS-based labeling for increasing the correctness
of labeling. Although “Prop” and “Ref [7]” both exploit the
LOS-based priori information for correct labeling, the training
label designed by “Prop” is superior due to the highlighting
of ISI-free region and its approximate middle point. This
reveals the feasibility of enhancing the label designing in
improving the TS correctness. Last but not least, compared
with “Ref [4]”, “Prop” achieves a lower error probability with
the reduced computational complexity, due to the powerful
ability of machine learning in coping with the deficiencies
such as noise and multi-path interference. This reflects that the
learning-based TS method with an appropriate training label
can improve the TS correctness with the reduced complexity,
and thereby the proposed method provides an alternative
solution for alleviating the demand of complexly modeling in a
practical system. To sum up, relative to “Ref [26]”, “Ref [4]”,
“Ref [7]”, and “Ref [10]”, “Prop” can effectively improves the
TS correctness against uncertain multi-path delay.
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Fig. 5. Generalization analysis.

D. Robustness Analysis

To analyze the robustness against the training sequence
length (i.e., N ), Fig. 4 plots the error probability of TS,
where N = 96, N = 128, and N = 160 are considered.
Except for N , other parameters remain the same as those
mentioned in Section III-C. For each given value of N in
Fig. 4, “Prop” reaches the smallest error probability compared
with other given TS methods. This reflects the robustness of
“Prop” against the change of N . Meanwhile, it is worth noting
that the error probability of “Prop” reduces with the increases
of N . This is due to the fact that the ability of anti-noise in
cross-correlator is enhanced (deteriorated) with the increase
(decrease) of N . Therefore, the proposed learning-based TS
method assisted by the improved label design can robustly
improve the TS correctness.

E. Generalization Analysis

Fig. 5 presents the comparison of error probability in differ-
ent channel models to analyze the generalization performance
of “Prop”. Except for the testing wireless channel models,
other parameters are the same as those mentioned in Section
IV-B. Importantly, the NN adopted in this letter dose not
need to be retrained when the testing channel model differs
from the training one. For each given channel model in
Fig. 5, “Prop” reaches the lowest error probability among the
given TS methods. Furthermore, it is not obvious that, for
all given SNRs, the fluctuations of the error probabilities of
“Prop” caused by different channel models. Therefore, the TS
correctness of “Prop” is superior to those of other TS methods.
This shows that the proposed TS methods possesses a good
generalization performance against different 5G TDL channel
models.

V. CONCLUSION

Against the influence of uncertain multi-path delay, the
proposed learning-based TS method aided by the improved
label designing is investigated in OFDM systems. By high-
lighting the ISI-free region and its the approximate midpoint
against uncertain multi-path delay, the designed training label
effectively reduces the risk that the DFT window starts at the
ISI region. Meanwhile, with the LOS-based priori information,
the incorrect labeling affected by the uncertain multi-path
delay is further rectified. Simulation results validates the
effectiveness and generalization of designed training label in
improving the TS correctness of the learning-based TS method
against multi-path uncertainty. In our future works, we will

investigate the the sensing-aided TS from the perspective of
ISAC.
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