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Deep Reinforcement Learning Based Intelligent

Reflecting Surface Optimization for TDD Multi-User

MIMO Systems

Fengyu Zhao, Wen Chen, Ziwei Liu, Jun Li, and Qingqing Wu

Abstract

In this letter, we investigate the discrete phase shift design of the intelligent reflecting surface

(IRS) in a time-division duplexing (TDD) multi-user multiple-input-multiple-output (MIMO) system.

We modify the design of deep reinforcement learning (DRL) scheme so that we can maximizing the

average downlink data transmission rate free from the sub-channel channel state information (CSI). Based

on the characteristics of the model, we modify the “proximal policy optimization (PPO)” algorithm and

integrate gated recurrent unit (GRU) to tackle the non-convex optimization problem. Simulation results

show that the performance of the proposed PPO-GRU surpasses the benchmarks in terms of performance,

convergence speed, and training stability.

Index Terms

Intelligent reflecting surface (IRS), time-division duplexing (TDD), multi-user multiple-input-multiple-

output (MU MIMO), deep reinforcement learning (DRL).

I. INTRODUCTION

Intelligent reflecting surface (IRS) is a low power technology that smartly tunes the radio signal

prorogation in wireless networks via a plurality of low-cost passive reflecting elements. Numerous
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influential works have been done on the configuration of continuous phase shifts of IRS with dif-

ferent design objectives. The authors in [1] studied an IRS-aided radar-communication (Radcom)

scenario considering the cross-correlation design and the interference introduced by the IRS on

the Radcom base station (BS). In [2], IRS-assisted simultaneous wireless information and power

transfer (SWIPT) non-orthogonal multiple access (NOMA) networks are investigated to minimize

BS transmit power. In [3], multiple access schemes are investigated in IRS-aided wireless-

powered mobile edge computing (WP-MEC). However, all the aforementioned papers are based

on the instantaneous/perfect channel state information (CSI) assumption. It is a practically

difficult task to acquire the CSI of the channel between the IRS and its serving BS/users since IRS

is passive. Secondly, previous IRS studies concentrate on continuous phase shifts at reflecting

components, which are difficult to realize practically due to hardware limitations. Hence, we

focus on discrete phase shifts of the IRS without reliance on sub-channel CSI.

Deep reinforcement learning (DRL) has been widely used to solve resource allocation problems

in wireless networks. The optimization problems are transformed into the design of the Markov

decision process (MDP). The major advantage of DRL is that the mobility of the wireless

network (e.g., time varying channel, terminal mobility, and real-time control of IRS reflective

elements) can be resolved during the process when the agent keeps interacting with the wireless

environment. There have been various attempts to operate the IRS based on machine learning.

In [4], multi-agent RL algorithm is firstly employed in multiple IRSs-assisted multi-user (MU)

systems. In [5], a model-free control of IRS based on received pilot is accomplished with

a modified version of double deep Q-network (DDQN) called DRL with extremum seeking

control (ESC). However, the proposed schemes only compare to other non-DRL algorithms

under different values of Rician factor, which is less persuasive. Secondly, the DRL with ESC

doesn’t compare with the single DRL without ESC in the experiments, so the performance

improvement of ESC is not verified. Thirdly, it is incomprehensible that the large action space

doesn’t achieve better results than the small action space in the simulation. Inspired by those,

we carry out discrete phase shift design based on DRL in a TDD MU-MIMO system free from

the instantaneous sub-channel CSI.

The primary innovations of this letter can be summarized as follows:

• We introduced a novel approach for achieving discrete control of IRS in TDD multi-

user MIMO systems. The key benefit of our design is that the IRS deployment enhances

communication quality without relying on the instantaneous or statistical CSI of sub-
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channels.

• Based on the characteristics of our model, we have made appropriate modifications to the

PPO algorithm, resulting in the creation of a modified version named PPO-GRU. The new

algorithm incorporates three significant modifications, including:

1) We integrated Gated Recurrent Unit (GRU), an improved type of Recurrent Neural

Network (RNN), into the original PPO network structures of both the actor and critic.

This modification allows the actor and critic to handle two types of state information,

namely channel gains and angles, and deal with their correlation in the time domain

within TDD systems.

2) Normalization: dynamic mean and variance values are maintained during simulation for

all encountered states or advantages. The current state or advantage is then normalized

accordingly.

3) We incorporated a strategy entropy term into the actor’s loss function, ensuring the

strategy’s entropy remains as large as possible while optimizing the actor’s loss.

Notations: A column vector is represented as a boldface lowercase letter, and a matrix is

defined with a boldface capital letter. ⊙ represents the Hadamard product of a matrix, (·)H is

the conjugate transpose operation. For a set A, |A| denotes the number of elements in the set. For

a complex valued vector x, |x| denotes L1 norm. The operator diag(·) represents the diagonal

matrix of a vector. The random variable x following the complex Gaussian distribution with

zero-mean and unit variance is represented as x ∼ CN (0, 1).

Downlink transmission

Uplink transmission
Wired control link

IRS controller

BS

User J

IRS

Fig. 1. The TDD multi-user MIMO scenario.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, the communication procedure can be divided into uplink channel estima-

tion and downlink data transmission.

A. Channel Estimation

At uplink transmissions, multiple users transmit orthogonal pilot signals to BS simultaneously.

The received signal matrix can be represented as

Y = XH+N, (1)

where X ∈ CNK×NK is the pilot pattern, N ∈ CNK×NB is the additive white Gaussian noise,

which element follows the circularly symmetric complex Gaussian (CSCG) distribution CN (0, 1).

In an IRS-assisted wireless communication system, the uplink channel gain H is given by

H = HUB +HURΦHRB, (2)

where Φ = diag
{
γ1e

jβ1 , γ2e
jβ2 , . . . , γNR

ejβNR

}
is the reflection coefficients matrix. γi and βi

depict the amplitude and phase shift reflecting coefficient of IRS element i respectively. We

consider the phase shift of each IRS reflecting element restricted to a finite number of discrete

value F = {0,∆θ, · · · ,∆θ(NR − 1)}, where ∆θ = 2π/NR.

TABLE I

SUMMARY OF MAIN NOTATION

Notation Description

NB Number of BS antennas

NR Number of IRS elements

NK Number of users

HUB Channel gain between users and BS

HUR Channel gain between users and IRS

HRB Channel gain between IRS and BS

Φ The reflection coefficients matrix of the IRS

K The Rician factor

R Downlink data sum rate

F A set of discrete angle
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Let HUB ∈ CNK×NB , HUR ∈ CNK×NR , HRB ∈ CNR×NB portray the channel gain from users

to the BS, the channel gain from users to the IRS, and the channel gain from the IRS to the

BS respectively. All the channels are modeled as the Rician channel [6], we take HUB as an

example,

HUB =

√
K

K + 1
HUB,LoS +

√
1

K + 1
HUB,NLoS, (3)

where K is the Rician factor, HUB,LoS denotes the deterministic line-of-sight (LoS) component,

and HUB,NLoS signifies the fading non-line-of-sight (NLoS) component.

To get rid of the dependence on sub-channel CSI, we use the minimum mean square error

(MMSE) to estimate the channel, which can be formulated as [7]

Ĥ = YXH
(
XXH + σ2

NI
)−1

. (4)

B. Data Transmission

At downlink transmission, zero-forcing (ZF) precoding is performed according to the reci-

procity between uplink and downlink channel. The precoding matrix Â is represented as

Â = [â1, â2, . . . , âK ], (5)

where âk is the kth power normalized vector of

(ĤHĤ)−1ĤH .

The received signal at the kth user can be expressed as

yk = aH
k hkxk +

NK∑
j ̸=k

aH
j hkxj + nk, (6)

where xk is the signal to be sent to the kth user, and nk ∼ CN (0, σ2
k) is the additive white

Gaussian noise. Consequently, the signal-to-interference-plus-noise ratio (SINR) at the kth user

can be written as

SINRk =

∣∣aH
k hk

∣∣2∑K
j ̸=k

∣∣aH
j hk

∣∣2 + σ2
k

. (7)

The achievable downlink data sum rate can be obtained as

R =

NK∑
k=1

log2 (1 + SINRk) . (8)
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We only consider the fully reflective IRS, so our optimization problem is formulated as

max
Φ(t)

lim
T→∞

1

T

T∑
t=0

R(t),

s.t. γi(t) = 1, ∀i ∈ {1, 2, . . . , NR} ,

βi(t) ∈ F , ∀i ∈ {1, 2, . . . , NR} .

(9)

III. DEEP REINFORCEMENT LEARNING-BASED SOLUTION

After obtaining the uplink CSI of the current time slot, the IRS controller adjusts the current

phase based on the CSI and the phase of the previous time slot to improve the downlink

transmission rate.

A. MDP Formula

1) Environment: We treat the whole wireless communication system except for the IRS

controller as the environment, and the working mechanism of the environment is incom-

prehensible to it.

2) Agent: The IRS controller is served as the agent, which changes the configuration of

IRS based on the performance feedback from the environment and the phase of each IRS

element in the past.

3) State: We define the state St as the combination of the channel estimation and IRS phase

at time slot t− 1,

St = {SΦ
t , S

H
t }, (10a)

SΦ
t ≜ [ℜ{Φt−1},ℑ{Φt−1}] , (10b)

SH
t ≜

[
ℜ{Ĥt−1},ℑ{Ĥt−1}

]
. (10c)

4) Action: The action is defined as the amount of change in phase from Φt−1,

Φt = Φt−1 ⊙∆Φt. (11)

The phase shift ∆Φ is limited to the subset (or full set) of NR point discrete Fourier

transform (DFT) vectors v(k),

v(k) =

[
1, e

jπk
NR , . . . , e

jπ(NR−1)k

NR

]
. (12)
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For an example, when the size of the action space |A| = 2n+1, we could set action space

A = {v(−n), v(−n + 1), . . . , v(0), v(1), . . . , v(n)}. IRS Controller will select v(k) ∈ A

depending on its current policy function, then the phase shift at time slot t will be

∆Φt = diag {v(k)} . (13)

Firstly, it has been demonstrated in [8] that utilizing an IRS with 2-bit phase shifters can

achieve the same asymptotic squared power gain as the ideal scenario with continuous

phase shifts. Therefore, discrete phase control based on DFT matrix is already sufficiently

effective [9] [10]. Secondly, increasing the number of IRS elements only increases the

dimensionality of the v(k) vector. The agent still selects from A even when the size of the

discrete phase set is fixed at |A| = 2n+1. As a result, our design is capable of achieving

good convergence performance even with a larger number of reflecting elements.

5) Reward: We adopt the downlink data sum rate in (8) as the reward.

B. IRS Control Using Improved PPO Algorithm

Our modifications to PPO can be summarized as modifying the network architecture, normal-

izing state and advantage, and modifying the loss function equation. We will explain each of

these modifications in the order listed.

Given that the state in our MDP contains two types of information, namely phase and channel

gain, and is correlated in the time domain, we have made modifications to the actor and critic

network structures in the traditional PPO algorithm to accommodate this model. The modified

actor and critic network structures are similar in nature, we present the actor network as an

example in Fig.2.

Prior to inputting the states into the neural network, we first perform separate normalization

for the two types of states. We demonstrate the normalization process using SΦ
t . At time slot

t, all the values of the state SΦ = [SΦ
1 , S

Φ
2 , ..., S

Φ
t ] are recorded, and the normalized state is

calculated using the following equation:

ŜΦ
t =

SΦ
t − µ

σ
, (14)

where ŜΦ
t represents the normalized state of phase, µ is the mean of all the state values at

time slot t, and σ is the standard deviation.
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Fig. 2. Revised PPO actor network framework.

In our system model, SΦ
t and SH

t typically correlate with a prior data point or a data point

spanning a time period. The LoS component within the channel gain experiences minimal

variation if the user’s position changes only slightly between time slots t − 1 and t, ensuring

that the receiving antenna stays stationary. Furthermore, Φt is a time-dependent sequence data,

as its value relies on the preceding phases Φ1,Φ2, ...,Φt−1 as described in (11). Consequently,

we incorporate two separate GRUs following two linear layers. The features extracted from the

linear layer serve as inputs for the GRUs, enabling them to capture long-term dependencies

in this sequence data. This enhances the model’s accuracy and generalization capabilities. The

results extracted from SΦ
t and SH

t after passing through a three-layer network are added together

and then input into another linear layer. In this way, the selected discrete phase of IRS is based

on the consideration of the two types of state information.

Advantage is also normalized in our approach, which we refer to as mini batch normalization.

After calculating the advantages using General Advantage Estimation (GAE) for a batch [8],

instead of directly normalizing the entire batch’s advantages, we normalize the advantages of

the current mini-batch before using it to update the policy in each iteration. Compared to the

original PPO, our improved algorithm requires additional control over two hyperparameters:

batch size D and sample mini-batch ND. The loss function of actor Lactor with mini batch

advantage normalization is given by

Lactor = min

(
πθ(a | s)
πθk(a | s)

Âπθk (s, a), g
(
ϵ, Âπθk (s, a)

))
, (15)
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where

g(ϵ, Âπθk (s, a)) =

(1 + ϵ)Âπθk (s, a) Âπθk (s, a) ≥ 0

(1− ϵ)Âπθk (s, a) Âπθk (s, a) < 0
, (16)

in which ϵ is a hyperparameter which roughly controls the variation between the new policy and

the old one, and Â(s, a) is the normalized advantage function.

Thirdly, we modify the loss function expression above. Referring to the definition of entropy

in information theory and probability statistics, the entropy of a strategy is represented as

H (π (· | st)) = −
∑
at

π (at | st) log (π (at | st)) . (17)

The greater the entropy of a strategy, the more evenly distributed the probabilities of selecting

each action are. To improve the exploration capability of the algorithm, we add a term for

strategy entropy to the actor’s loss Lactor, multiply it by a coefficient δ, and optimize Lactor

while maximizing the strategy’s entropy. The modified loss function Lactor
′ is given by

Lactor
′ = Lactor + δ ∗ H (π (· | st)) . (18)

where δ is the entropy coefficient.

Algorithm 1 Proximal Policy Optimization Based IRS Control in TDD Multi-User MIMO

Systems.
Input: Initial IRS controller policy parameters θ0, initial value function parameters ϕ0.

for k = 0, 1, 2, . . . do

Collect the trajectories into a set Dk = {τi} by running current policy πk = π (θk) in the

environment.

Randomly select a mini batch of trajectories. Compute rewards-to-go R̂t =∑T
t′=tR (st′ , at′ , st′+1).

Compute advantage estimates Ât using GAE method and do the mini batch normalization.

Update the policy by minimizing the loss function defined in (18).

Update value function by minimizing the mean-squared error between value function Vϕ(st)

and R̂t,

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ (st)− R̂t

)2

.

end for
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IV. SIMULATION RESULTS

A. Simulation Settings

We establish our model in a three-dimensional Cartesian coordinate system. The BS is located

at the coordinate [0,0,0], and IRS is placed at the coordinate [5,5,5]. The UEs whose height is

ranging from 1.5m to 1.8m are uniformly distributed in a circle area with radium equal to 10m.

The Rician factor K = 10. The LoS component varies every 20 seconds by randomly selecting

the user positions within the circle, while the NLoS component varies every second.

The channel matrix HUB,HUR and HRB are generated in a similar manner, we take HRB as

an example. The LoS channel gain between IRS and BS is

HRB,LoS = vBv
H
R , (19)

where the steering vectors are formulated as

vR = v (ΨR, NR,y) =
[
1, ejπΨR , . . . , ej(NR,y−1)πΨR

]T
,

vB = v (ΨB, NB,x) =
[
1, ejπΨB , . . . , ej(NB,x−1)πΨB

]T
.

According to [11], the directional cosines ΨR,ΨB are represented as

ΨR = eTReBR, (20a)

ΨB = eTBeBR. (20b)

We place the uniform linear array (ULA) of the BS at the coordinate [1,0,0], and assume that

the reflector array of IRS can be regarded as a ULA placed at [0,1,0], so eR = [0, 1, 0]T and

TABLE II

NETWORKS PARAMETERS

Total Training steps T 10000000

Batch size D 2048

Sample mini-batch ND 64

Discount factor γ 0.99

GAE parameter λ 0.95

Learning rate of actor network αh 0.0003

Learning rate of the critic network αp 0.0003

PPO clip parameter ϵ 0.2

PPO entropy coefficient δ 0.01
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eB = [1, 0, 0]T . The NLoS components follow the complex Gaussian distribution CN (0, 1). HUB

and HUR are calculated in the same way.

B. Comparisons With Benchmarks

We set the number of users NK = 2, the number of BS antennas NB = 2, the action space

size of IRS controller |A| = 5, and the number of the elements of IRS NR = 32. Other network

parameters settings are listed in Table II.
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Fig. 3. Performance comparisons of different algorithms.

In Figs. 3 and 4, we compare the proposed PPO-GRU scheme with four benchmarks: random

reflection, multi-armed bandit (MAB), DDQN in [5] and original PPO. All the schemes use

the same action sets but handle the information differently. Random reflection cannot analyze

and utilize all kinds of information, resulting in the poorest performance. MAB is a simpler

version of DQN which builds the connection between reward and action by calculating the

reward distribution of all the arms. However, it fails to fully utilize the state information in our

model. Compared to other DRL algorithms, such as the original PPO and DDQN, our PPO-

GRU achieves better performance and faster convergence. Our modifications can enhance the

model’s accuracy and generalization capabilities, enabling the PPO-GRU to capture the changing

dynamics of the wireless environment and adapt the agent’s policy accordingly.

In Fig. 5, we study the impact of different action spaces A on the performance of the proposed

PPO scheme. When |A| = 3, the algorithm converges at the fastest speed but ends up with the

lowest data rate. When |A| = 11, the agent performs poorly at the beginning of the training but

results in the best performance.However, it will take too much time to converge if we increase
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Fig. 4. Comparisons of algorithm performance with different numbers of users
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Fig. 5. Performance of PPO with different action sets.

the number of users. When |A| = 5, it achieves nearly good performance and converges much

faster. So a moderate size of action space is best for practical deployment.

V. CONCLUSION

This letter investigates the problem of maximizing the average data sum rate in IRS-assisted

TDD MU-MIMO networks under the constraints of discrete phase shifts. To address this chal-

lenging problem, we propose an improved PPO algorithm. Simulation results demonstrate that

our modified PPO algorithm outperforms previous algorithms in various scenarios. Moreover,

we show that a well-designed action space can achieve both high training efficiency and good

performance.
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