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Abstract

Over-the-air computation (AirComp) has recently been identified as a prominent technique to

enhance communication efficiency of wireless federated learning (FL). This letter investigates the impact

of channel state information (CSI) uncertainty at the transmitter on an AirComp enabled FL (AirFL)

system with the truncated channel inversion strategy. To characterize the performance of the AirFL

system, the weight divergence with respect to the ideal aggregation is analytically derived to evaluate

learning performance loss. We explicitly reveal that the weight divergence deteriorates as O(1/ρ2) as

the level of channel estimation accuracy ρ vanishes, and also has a decay rate of O(1/K2) with the

increasing number of participating devices, K. Building upon our analytical results, we formulate the

channel truncation threshold optimization problem to adapt to different ρ, which can be solved optimally.

Numerical results verify the analytical results and show that a lower truncation threshold is preferred

with more accurate CSI.
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I. INTRODUCTION

Federated learning (FL), a distributed machine learning paradigm, has been regarded as a

promising technique to support ubiquitous intelligence in the beyond fifth-generation (B5G)

wireless networks [1], [2]. In a wireless FL system, the distributed devices, orchestrated by a

parameter server (PS), iteratively train a shared learning model through the exchange of model

parameters rather than the raw data, thereby protecting data privacy [3], [4]. However, due

to the frequent uplink transmissions of model parameters from a large number of devices,

the communication overhead and latency of FL become excessively high, which hinders its

deployment in resource-constrained wireless networks.

To facilitate communication-efficient FL design, over-the-air computation (AirComp) has been

greatly adopted for effective uplink model transmission [5]–[7]. By exploiting the waveform

superposition nature of multiple access (MAC) channels, simultaneous model transmission and

over-the-air model aggregation can be achieved, which can reduce the communication latency

and save the uplink communication bandwidth substantially. In [5], a truncated channel in-

version scheme was proposed to combat deep fadings in an AirComp-aided FL (AirFL), and

the fundamental trade-offs between communication and learning was discussed. Then in [6],

the power control strategy was further optimized to alleviate the impacts brought by AirComp

errors. Considering the constraint of limited wireless communication resources, device selection

and power control were jointly optimized to minimize the accuracy loss for AirFL in [7].

However, most of the existing AirFL scheme design and resource allocation optimization

optimistically assumed the availability of perfect channel state information (CSI) at the trans-

mitter, which is hardly to acquire in practice especially in a wireless network. More importantly,

unlike traditional communication systems, the CSI imperfection in the AirFL system brings a

severe impact. To be concrete, considering transmit power constraints, the users in deep fading

should be truncated and therefore not participate in AirComp. Moreover, to achieve the uniform

model aggregation, channel inversion should be performed at the transmitter. Considering the

CSI uncertainties, the model aggregation is perturbed due to the imperfect truncation decision

and channel inversion, resulting in the deterioration in learning performance. In [8], the authors

considered a bounded CSI error and analyzed the impact of imperfect CSI on the convergence rate

of FL. However, few effort has been endeavored to explicitly analyze in theory the aggregation

distortion and accuracy loss brought by CSI uncertainty. To the best of our knowledge, there is
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no theoretical guidance on channel truncation strategy of imperfect CSI.

Against the above backgrounds, we focus on an AirFL system adopting the truncated channel

inversion scheme, where only partial CSI is available at the PS. We theoretically characterize

the aggregation distortion due to imperfect CSI and the corresponding channel truncation, and

derive an upper bound of the weight divergence of the aggregated gradient to evaluate the

degradation of learning performance. Our results unrevil that as the level of channel estimation

accuracy ρ decreases, the weight divergence enlarges at the order of 1/ρ2. The analytical result

further suggests that increasing the number of participating devices, K, help decrease the weight

divergence as O(1/K2) and can completely eliminate the impact of CSI imperfection. Moreover,

based on the derived analytical results, we derive the optimal truncation threshold as a function

of channel estimation uncertainty and system SNR. Numerical tests are conducted to verify the

effectiveness of performance analysis and truncation threshold optimization.

II. SYSTEM MODEL OF AIRFL

A. Federated Learning Model

We consider a typical FL algorithm, where a shared machine learning model is trained via the

collaboration between a central PS and K distributed devices. Let Dk denote the local dataset

owned by the kth device. The local loss function of model parameters, w, at the device k is

defined as

Fk(w,Dk) =
1

|Dk|
∑
u∈Dk

L(w,u), (1)

where u is a data sample and L(w,u) represents the sample-wise loss function. Without loss

of generality, we assume that the size of all local datasets is the same, i.e., |Dk| = D, ∀k. Then,

the global loss function over all the datasets is given by

F (w) =
1

K

K∑
k=1

Fk(w,Dk). (2)

The goal of the FL is to find the optimal model parameters, denoted by w∗, to minimize the

global loss function in (2).

To effectively handle this problem, we apply the widely used FL algorithm in [8]. Specifically,

in the mth round of the FL algorithm, the PS firstly broadcasts the up-to-date global parameter

wm to all devices. With the received global model wm and their local datasets, each device
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Fig. 1. An architecture of AirFL with one PS and K devices.

runs a stochastic gradient descent (SGD) algorithm on a local mini-batch to compute the local

gradient, which follows

gk
m ≜ ∇Fk (wm,Dk,m) =

1

|Dk,m|
∑

u∈Dk,m

L(wm,u), (3)

where Dk,m is the mini-batch selected from Dk. Next, all devices report the local gradients in

(3) to the PS. Upon receiving all the local gradients, PS performs the update as

wm+1 = wm − ηgm, (4)

where η denotes the learning rate and

gm ≜
1

K

K∑
k=1

gk
m. (5)

The FL algorithm iterates (3) and (4) until convergence.

B. Over-the-Air Computation for FL

In practice, we adopt the AirComp method for model aggregation in wireless networks, shown

in Fig. 1. We express the channel between the kth device and the PS as d
−α

2
k hk, where dk

denotes the distance between the PS and device k, α is the large scale path loss exponent, and

hk represents the small-scale fading of the channel. Assume that the channels are independent

Rayleigh fading channels, i.e., hk ∼ CN (0, 1). In general, the small-scale fading of the channel

cannot be perfectly estimated at devices. Denote the channel estimate at device k by ĥk and
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a relationship between hk and ĥk can be modelled as hk = ρĥk +
√
1− ρ2vk, where ρ ∈

(0, 1] represents the correlation coefficient between hk and ĥk, and vk ∼ CN (0, 1) is the error

independent of ĥk. Note that ρ directly corresponds to the level of channel estimation accuracy

and ρ = 1 implies the availability of perfect CSI. To overcome the negative impact of deep

fading, a must truncated channel inversion scheme is headed for the uplink transmission [5]. To

be concrete, only when |ĥk|2 exceeds a predetermined threshold, γth, the device is activated to

transmit its gradient to PS. Accordingly, the received signal at the PS follows

y =
∑
k∈Sm

d
−α

2
k hkβkg

k
m + zm, (6)

where Sm represents the set of activated devices, βk is the pre-processing factor for device k,

and zm ∼ CN (0, σ2I) is the additive Gaussian noise with power σ2. Given the imperfect CSI,

the pre-processing factor for device k is chosen as βk =
ζλd

α/2
k ĥ∗

k

K|ĥk|2
[7], where ζ is a scaling

factor for ensuring the transmit power constraint and λ is a compensation constant for ensuring

unbiasedness of the gradient estimation. For simplicity, we consider the uniform transmit power

budget Pmax at each device and choose the factor ζ to guarantee

E
[∥∥βkg

k
m

∥∥2] ≤ Pmax. (7)

At the receiver, by scaling y with 1
ζ

and taking the real part, an estimate of the actual gradient

in (5) is given by

ĝm =
1

K

K∑
k=1

ξkg
k
m + z̄m, (8)

where z̄m≜ ℜ{zm}
ζ

is the equivalent noise, and ξk is given by

ξk =

 λ
ℜ{h∗

kĥk}
|ĥk|2

|ĥk|2 ≥ γth,

0 |ĥk|2 < γth.
(9)

By comparing (8) and (5), the distortion in the gradient estimation comes from two aspects,

i.e., the coefficient distortion ξk caused by the imperfect CSI, and the scaled additive Gaussian

noise z̄m. Also, we notice that the expectation of ξk determines whether the gradient estimation

is unbiased, and the variance of ξk and z̄m measure the gradient estimation distortion, which

brings notable deterioration in convergence performance [4].
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III. PERFORMANCE ANALYSIS AND OPTIMIZATION

In this section, we theoretically capture the impact of the imperfect CSI on the performance

of AirFL. Based on the analytical results, we further optimize the truncation threshold γth with

respect to ρ and system SNR.

A. Performance Analysis for AirFL

Firstly, we need to determine the value of the compensation constant λ for achieving an

unbiased gradient estimation.

Lemma 1: In order to ensure the unbiasedness of gradient transmission, the compensation

constant truncation and imperfect CSI is chosen by λ = eγth
ρ

.

Proof: Please refer to Appendix A. □

Then, to facilitate the performance analysis for AirFL, the following Lemma 2 derives the

variance of AirComp parameters ξk, which directly reflects the mean squared error (MSE) of

AirComp [9].

Lemma 2: The variance of ξk with unit mean is given by

E
[
(ξk − 1)2

]
= eγth − 1− ρ2

2ρ2
Ei(−γth)e

2γth − 1, (10)

where Ei(·) denotes the exponential integral function.

Proof: Please refer to Appendix B. □

Remark 1: Note that limγth→0 Ei(γth) = −∞. Hence, from (10), regardless of the level of

channel estimation accuracy, the truncation is necessary to avoid unbounded variance.

Remark 2: It is worth noting that for other power control schemes of AirComp, e.g., that in

[6], the method of theoretical analysis still applies through treating them as special truncated

channel inversion schemes. Without loss of generality, we therefore consider the most commonly

adopted truncated channel inversion scheme as a general analysis.

Next, to evaluate the accuracy loss caused by the imperfect model aggregation, we choose a

popular performance metric as the expected weight divergence with respect to ĝm and gm [10],

defined by ∆2 = E
[
∥ĝm − gm∥2

]
. It is worth noting that ∆2 corresponds to the MSE of the
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gradient estimation at the PS and directly reflects the accuracy of gradient estimation via the

AirComp, which determines the convergence performance. To pave the way for performance

analysis, we make the following widely used assumption [6].

Assumption: The stochastic gradients on random batches are uniformly bounded, i.e., E
[∥∥gk

m

∥∥2] ≤
G2. And the obtained global gradient, gm, is unbiased and variance bounded, i.e.,

E [gm] = ∇F (wm), E [∥gm −∇F (wm)∥] ≤ δ2. (11)

Then, the weight divergence can be accurately characterized under this general assumption.

Theorem 1: The weight divergence, ∆2, is bounded by

∆2≤ G2

K2

(
eγth− 1−ρ2

2ρ2
Ei(−γth)e

2γth−1+
σ2maxk{dαk} e2γth

2Pmaxρ2γth

)
. (12)

Proof: Please refer to Appendix C. □

Remark 3: According to (12), the imperfect channel estimation deteriorates the learning per-

formance with the order of 1
ρ2

. It validates our statement that the accurate channel estimation is

a key to the AirFL system.

Remark 4: Especially for high SNR regime, i.e., Pmax

σ2 → ∞, the weight divergence ∆2 is

dominated by the impact of imperfect CSI rather than noise. It implies that, for a given level

of channel estimation accuracy, the accuracy loss caused by imperfect CSI can no longer be

compensated by increasing the transmit power while only weakens the impact of the noise. This

is the key observation that is different from the impact of CSI error in pure communication

systems for data recovery.

Remark 5: By direct inspection of (12), as the increase of the number of devices, K, the

weight divergence decreases as O (1/K2) and eventually tends towards zero, i.e., the impact of

imperfect CSI is completely eliminated. This phenomenon can be qualitatively explained by the

law of Large Numbers, that is, the randomness of aggregation distortion is eliminated when the

participating devices tend to be infinite many.

Then, starting from (12), the convergence performance of FL is characterized in the following

theorem.
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Theorem 2: Suppose the loss function F is L-Lipschitz with respect to w and the learning

rate satisfies η < 2
L

. The convergence of FL algorithm is bounded by

1

M

M−1∑
m=0

E
[
∥∇F (wm)∥2

]
≤ 1

M

(
F (w0)− E [F (wM)]

η − Lη2

2

+
MLη(∆2 + δ2)

2− Lη

)
. (13)

Proof: Please refer to Appendix D. □

This theorem implies that the convergence is guaranteed with sufficiently large M and the

gap to the optimality converges to Lη(∆2+δ2)
2−Lη

, which linearly increasing with respect to ∆2.

B. Optimization of the Truncation Threshold

According to the result in Theorem 1, we find that he impacts of learning algorithms and

the wireless transmission are decoupled. Hence, the truncation threshold optimization can be

isolated from the specific learning algorithms and parameters, thus being defined as follows:

max
γth>0

h(γth) ≜ eγth − k1Ei(−γth)e
2γth + k2

e2γth

γth
, (14)

where k1≜
1−ρ2

2ρ2
, and k2≜

σ2 maxk{dαk}
2Pmaxρ2

are positive constants.

Theorem 3: The objective function in (14) is convex.

Proof: Please refer to Appendix E. □

Based on convexity of h(·), the optimal value of γth can be easily obtained from a bisection

method with low complexity. Specifically, the derivative of h(x) is

h′(x) = ex − k1
ex

x
− 2k1Ei(−x)e2x + k2e

2x2x− 1

x2
. (15)

Since limx→0 h
′(x) < 0 and limx→∞ h′(x) > 0, the unique zero point of h′(x), i.e., the optimal

solution of γth, can be found through the bisection search.

IV. SIMULATION RESULTS

In this section, we provide simulation results to verify the performance analysis and trunca-

tion threshold optimization. We train a multi-layer perceptron (MLP) on the popular MNIST

dataset via the AirFL algorithm. The distance dk is uniformly distributed over (0, 500)m. Unless
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Fig. 3. Test accuracy versus different truncation thresholds.

otherwise specified, the other parameters are set as: K = 10, α = 2.2, Pmax = 0.1 W, σ2 = −40

dBm, and η = 0.005.

Fig. 2 depicts the numerical variance of ξk obtained from Monte-Carlo simulations, compared

with the theoretical result in (10). It shows that the numerical results matches well with the

theoretical results, which verifies our analysis. Moreover, the channel estimation accuracy level,

ρ, imposes more significant impacts on the variance than the truncation threshold.

In Fig. 3, we evaluate the impact of truncation threshold optimization on learning performance

and compare it with other schemes. The four benchmark schemes are described as: “Commu-

nication oriented” and “Computation oriented” schemes represent γth is optimized to minimize
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the noise related and computation related term in (12), respectively; “Fixed γth” represents the

truncation threshold is set as a constant [5]; The “Full power” scheme represents the transmitter

does not perform power control and only compensates channel phase offset [11]. For all the

tested setups, the proposed optimization method outperforms all the benchmarks due to the

joint consideration of communication and computation. It is observed that the test accuracy first

improves and then deteriorates with γth. This is because with the increase of γth, the performance

is first limited by noise and then limited by less participating devices. Also, for larger ρ, a lower

truncation threshold is preferred. Moreover, compared with the full power scheme, the proposed

power control strategy successfully alleviates the impact of data heterogeneity, leading to a much

prominent performance gain.

V. CONCLUSION

In this paper, we theoretically analyzed the performance of AirFL with imperfect CSI and

optimized a channel truncation strategy. The analytical results revealed the importance of accurate

channel estimation for AirFL. Our results can also be extended to performance analysis and

optimization for other power control schemes of AirFL.

APPENDIX A

PROOF OF LEMMA 1

To determine λ, we start with the expectation of ξk, expressed as

E [ξk]=λE

[
ℜ{h∗

kĥk}
|ĥk|2

∣∣∣∣∣ |ĥk|2 ≥ γth

]
Pr
{
|ĥk|2 ≥ γth

}
, (16)

which should be equal to 1 to guarantee an unbiased gradient estimation in (8). Considering that

hk and its estimate ĥk are correlated, we first introduce a new random variable to tackle with

this difficulty, which follows

x ≜
1√

1− ρ2

(
ℜ{h∗

kĥk}
|ĥk|2

− ρ

)
=

ℜ{v∗kĥk}
|ĥk|2

, (17)

where vk and ĥk are uncorrelated Gaussian variables with zero mean and unit variance. Then,

we have

E
[
x
∣∣∣|ĥk|2 ≥ γth

]
=E

[
v∗kĥk + vkĥ

∗
k

2|ĥk|2

∣∣∣∣∣ |ĥh|2≥γth

]
=0. (18)



11

Then, by comparing (16) and (17), through some linear transformations, we arrive at E [ξk] =

λe−γthρ = 1, which implies that λ = eγth/ρ and the proof completes.

APPENDIX B

PROOF OF LEMMA 2

We derive the variance of ξk by using the form of conditional expectation as

E [(ξk − 1)]2 = E

(ℜ{h∗
kĥk}eγth

|ĥk|2ρ
− 1

)2
∣∣∣∣∣∣ |ĥk|2 ≥ γth

Pr
{
|ĥk|2 ≥ γth

}
+ Pr

{
|ĥk|2 < γth

}
=

eγth(1−ρ2)

ρ2
E
[
(x−c)2

∣∣ y≤−γth
]
+ 1−e−γth , (19)

where y≜−|ĥk|2 and c≜ ρ(1−eγth )

eγth
√

1−ρ2
. To calculate the conditional expectation, we first need to

find the joint distribution of x and y. The joint cumulative distribution function (CDF) of x and

y equals

Fxy(t, γ) = Pr

{
ℜ{v∗kĥk}
|ĥk|2

< t, −|ĥk|2 < γ

}
= Pr

{
v∗kĥk + vkĥ

∗
k − 2t|ĥk|2 < 0, −|ĥk|2 < γ

}
= Pr

{
zHA1z < 0, zHA2z < γ

}
, (20)

where z ≜ [ĥk, vk]
H , and

A1 ≜

 −2t 1

1 0

 , A2 ≜

 −1 0

0 0

 . (21)

According to [12, Eq. (3.2c.5)], the joint moment generating function (MGF) of the two quadratic

forms, z1 ≜ zHA1z and z2 ≜ zHA2z, follows

Mz1,z2(s1, s2) = det (I − s1A1 − s2A2)
−1 . (22)

Applying the inverse Laplace transformation, we express the probability in (20) as

Pr
{
zHA1z < 0, zHA2z < γ

}
=

1

(2πi)2

∫ ϵ1+i∞

ϵ1−i∞

∫ ϵ2+i∞

ϵ2−i∞

eγs2

s1s2
Mz1,z2(s1, s2)ds2ds1
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(a)
=

1

2πi

∫ ϵ1+i∞

ϵ1−i∞

1

s1(1 + 2ts1 − s21)
ds1 −

1

2πi

∫ ϵ1+i∞

ϵ1−i∞

1

s1(1 + 2ts1 − s21)
e−(1+2ts1−s21)γds1

(b)
=

t+
√
1 + t2

2
√
1 + t2

+
1

2πi

∫ ϵ+i∞

ϵ−i∞

(
t+

√
t2 + s+ 1

)
eγs

2s(s+ 1)
√
t2 + s+ 1

ds

(c)
=

t

2
√
1 + t2

(
1− Erf

(√
−γ(1 + t2)

)
U(−γ)

)
+

eγ

2
Erfc

(
−
√
−γt

)
U(−γ), (23)

where (a) comes from Eq. (5.2.4) in supplements of [13], (b) exploits the Cauchy’s residue

theorem and s ≜ s21−2ts1−1, (c) is due to Eq. (5.3.7) in supplements of [13], Erf(·), Erfc(·), and

U(·) represent the error function, the complementary error function and the Heaviside function,

respectively. From (20) and (23) and by taking the derivative of joint CDF, the joint probability

density function (PDF) of x and y equals

fxy(t, γ) =

√
−γ

π
eγ(1+t2)U(−γ). (24)

From (24), we calculate the conditional expectation in (19) as

E
[
(x− c)2

∣∣ y ≤ −γth
]
=

∫ ∞

−∞

∫ −γth
−∞ fxy(t, γ)dγ

Pr {y ≤ −γth}
dt

= eγth
∫ −γth

−∞

∫ ∞

−∞
(t− c)2

√
−γ

π
eγ(1+t2)dtdγ

(a)
= eγth

∫ −γth

−∞

2c2γ − 1

2γ
eγdγ

(b)
= c2 − 1

2
Ei(−γth)e

γth , (25)

where (a) exploits [14, Eq. (3.462.8)] and [14, Eq. (3.321.1)] and the fact that
∫∞
−∞ teγt

2
dt = 0.

The equality in (b) comes from the definition of the exponential integral function, Ei(·). Applying

(25) into (19), we complete the proof.

APPENDIX C

PROOF OF THEOREM 1

The weight divergence is reformulated as

E
[
∥ĝm − gm∥2

]
= E

∥∥∥∥∥ 1

K

K∑
k=1

(ξk − 1)gk
m + z̄m

∥∥∥∥∥
2


(a)
=

1

K2

K∑
k=1

E
[
(ξk − 1)2

]
E
[∥∥gk

m

∥∥2]+ E
[
∥z̄m∥2

]
, (26)



13

where (a) is due to the zero mean and independence between ξk − 1, ∀k. As for the noise

term, recall that z̄m = ℜ{zm}
ζ

and we have E
[
∥z̄m∥2

]
= σ2

2ζ2
. According to the transmit power

constraint in (7), the scaling factor ζ must satisfy

max
k∈Sm

{
ζ2λ2dαk

K2|ĥk|2
E
[∥∥gk

m

∥∥2]} ≤ Pmax. (27)

Note that for all k∈Sm, we have |ĥk|2≥γth. Combining (27) with the value of λ and the bound

assumption of E
[∥∥gk

m

∥∥2]≤G2, ζ is set as ζ = Kρ
√
Pmaxγth

Gmaxk

{
d
α/2
k

}
eγth

. Then, combining all the derived

results, we obtain (12) and complete the proof.

APPENDIX D

PROOF OF THEOREM 2

Under the general assumption, we have

E [F (wm+1)− F (wm)]

(a)
≤ E

[
−η(∇F (wm))

T ĝm +
Lη2

2
∥ĝm∥2

]
(b)
= −ηE

[
∥∇F (wm)∥2

]
+

Lη2

2
E
[
∥ĝm − gm + gm −∇F (wm) +∇F (wm)∥2

]
(c)
= −

(
η − Lη2

2

)
E
[
∥∇F (wm)∥2

]
+

Lη2

2
E
[
∥ĝm − gm∥2

]
+

Lη2

2
E
[
∥gm −∇F (wm)∥2

]
(d)
≤ −

(
η − Lη2

2

)
E
[
∥∇F (wm)∥2

]
+

Lη2(∆2 + δ2)

2
, (28)

where (a) is due to the fact that F (·) is L-Lipschitz and the definition of wm+1, (b) comes from

Lemma 1, (c) uses the assumption, and (d) exploits Theorem 1. By summing (28) from m = 0

to m = M − 1, we have

1

M

M−1∑
m=0

E
[
∥∇F (wm)∥2

]
≤ 1

M

(
F (w0)− E [F (wM)]

η − Lη2

2

+
MLη(∆2 + δ2)

2− Lη

)
, (29)

which holds for any small η < 2
L

.
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APPENDIX E

PROOF OF THEOREM 3

We check the second derivative of h(x) as

h′′(x) =ex +
k1e

x

x2

(
−4x2exEi(−x)− 3x+ 1

)
+

2k2e
x(2x2 − 2x+ 1)

x3
. (30)

It is obvious that the first and the third terms in (30) are positive for positive x. To prove the

nonnegativity of the second term, we use the inequalities [15, Eq. (5.1.20)]

−Ei(−x) >
1

2
e−xln

(
1 +

2

x

)
> e−x 1

x+ 1
, (31)

which yields to −4x2exEi(−x) − 3x + 1 > (x−1)2

x+1
≥ 0. Then, we conclude that h′′(x) > 0 for

x > 0 and hence h(x) is convex.
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