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Abstract—The integration of subterranean LoRaWAN and
non-terrestrial networks (NTN) delivers substantial economic
and societal benefits in remote agriculture and disaster rescue
operations. The LoRa modulation leverages quasi-orthogonal
spreading factors (SFs) to optimize data rates, airtime, coverage
and energy consumption. However, it is still challenging to effec-
tively assign SFs to end devices for minimizing co-SF interference
in massive subterranean LoRaWAN NTN. To address this, we
investigate a reinforcement learning (RL)-based SFs allocation
scheme to optimize the system’s energy efficiency (EE). To
efficiently capture the device-to-environment interactions in dense
networks, we proposed an SFs allocation technique using the
multi-agent dueling double deep Q-network (MAD3QN) and the
multi-agent advantage actor-critic (MAA2C) algorithms based
on an analytical reward mechanism. Our proposed RL-based
SFs allocation approach evinces better performance compared to
four benchmarks in the extreme underground direct-to-satellite
scenario. Remarkably, MAD3QN shows promising potentials in
surpassing MAA2C in terms of convergence rate and EE.

Index Terms—Subterranean LoRaWAN, non-terrestrial net-
works, reinforcement learning, SFs allocation, energy efficiency.

I. INTRODUCTION

THE integration of LoRaWAN-based wireless under-
ground sensor networks and non-terrestrial networks

(NTN) enables subterranean massive machine-type commu-
nications (mMTC) applications to operate in hard-to-reach
or disaster rescue areas [1]. LoRa, a chirp spread spec-
trum modulation variation in LoRaWAN, introduces quasi-
orthogonality between packets with different spreading factors
(SFs) [2]. This characteristic grants LoRa its resistance to
interference while offering a range of trade-offs between time-
on-air (ToA), radio coverage, and energy consumption through
varying SF levels. However, in subterranean mMTC scenarios,
the Aloha-like media access protocol used in LoRa constrains
the network capacity and collision robustness. For instance, the
simulation results reported in [1], [3] illustrate a relatively low
probability of successful packet delivery when a large number
of end devices (EDs) are assigned with the same SF in the
underground direct-to-satellite (U-DtS) connectivity. This is
attributed to the frequent co-SF interference that occurs when
packets featuring the same SF are simultaneously transmitted
on the same channel.

To leverage LoRa quasi-orthogonality, several studies have
discussed the SFs allocation techniques and evaluated the scal-
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ability for terrestrial networks. Specifically, two notable one-
time spatial SFs allocation schemes, namely equal-interval-
based (EIB) [4] and equal-area-based (EAB) [5], were pro-
posed to mitigate the co-SF interference and improve the
packet delivery ratio. To adjust to dynamic underground envi-
ronments, adaptive parameters assignment schemes were pro-
posed in LoRaWAN, such as the adaptive data rate mechanism
specified by the LoRa Alliance [6] and the path-loss-based
(PLB) scheme proposed in [7]. Nevertheless, both solutions
overlook the co-SF interference. Thus, their performance di-
minishes in practical subterranean mMTC applications. Re-
cently, reinforcement learning (RL) has shown to be a promis-
ing paradigm for solving the SFs allocation problem in Lo-
RaWAN. For instance, in [8], [9], authors used a single-agent
RL (SARL) approach to derive the optimal SFs allocation by
considering the co-SF interference for improving the network
reliability and throughput. To further enhance the exploration
efficiency of SARL in mMTC applications, a multi-agent RL
(MARL) approach has been applied in [10] to determine the
optimal SFs allocation for improving the energy efficiency of
underground EDs. However, the above RL approaches only
adopt the basic deep Q-network (DQN). Considering the issues
related to the overestimation and imprecision of Q value in the
basic DQN, the multi-agent dueling double DQN (MAD3QN)
is proposed to augment the agents’ optimization capabili-
ties [11]. Meanwhile, in [12], another mainstream MARL
algorithm based on value-based and policy-based optimization,
namely the multi-agent advantage actor-critic (MAA2C), is
developed to provide a more efficient exploration strategy
compared to DQN.

To the best of our knowledge, there have been no stud-
ies exploring the effectiveness of MAD3QN or MAA2C in
optimizing SFs allocation in LoRaWAN, let alone our con-
sidered massive subterranean NTN scenarios. Notably, energy
efficiency is a significant metric from both economic and
sustainable perspectives for the design of such a system [13],
[14]. Motivated by this, this letter utilizes the MAD3QN and
the MAA2C algorithms with our developed analytical reward
mechanism for SFs allocation, aiming to maximize the sys-
tem’s energy efficiency characterized by the average amount
of energy consumed for uplink packet delivery. The simulation
results demonstrate the superiority of our approach over four
well-established benchmarks in extreme U-DtS scenarios.

II. SYSTEM MODEL

For the sake of clarity, in the rest of the paper, we focus
on a U-DtS example based on a very-low-Earth-orbit (VLEO)
satellite. However, the presented methods and obtained results
can be generalized for any underground-to-NTN connectivity
scenario, including those employing unmanned aerial vehi-
cles or high-attitude platforms. Consider the subterranean
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Fig. 1. The subterranean LoRaWAN NTN system taking a VLEO satellite
as an example.

LoRaWAN NTN system depicted in Fig. 1 where a LoRaWAN
gateway (GW) deployed on the non-terrestrial (NT) platform
generates a single spot beam for covering a massive set
U = {Un|n = 1, 2, . . . , N} of underground EDs buried
at the same depth du. Specifically, N underground EDs are
distributed according to the Poisson point process (PPP) with
intensity λ = N

πR2Tp
within a circular region of radius R.

Herein, we assume that all EDs transmit an uplink packet
with a period of Tp, the fixed physical layer (PHY) payload
PL, the same bandwidth B, and the maximum transmit power
Pt. A LoRa packet is successfully demodulated when the
received signal-to-noise ratio (SNR) and signal-to-interference
ratio (SIR) requirements are satisfied.

1) Path Loss Model: The total path loss from Un to the NT
GW comprises the air attenuation Lair, the fraction loss on
the soil-air interface Lr, and the attenuation in underground
soil Lsoil. Consider that a ground-to-satellite link propagates
in free space and the attenuation caused by the ionosphere,
atmospheric gases, fog, clouds, and rain droplets can be
neglected in the sub-GHz frequency band, the free space path
loss model is adopted for the air path loss calculation [1].
Hence, the total path loss model is given by [1], [15].

g(d) =LairLrLsoil=

(
4πfc
c

)2

(d)
η

(
2βdp

exp(−αdp)

)2

, (1)

where fc is the carrier frequency, c denotes the speed of light
in free space, d is the distance between Un and the NT GW, η
is the path-loss exponent, dp = du/(cos arcsin(1/

√
ε′)) is the

length of the underground path; α and β are the attenuation
constant and phase shifting constant, respectively,

α = 2πfc

√
µrµ0ε′ε0

2
[
√
1 + (ε′′/ε′)2 − 1], (2)

β = 2πfc

√
µrµ0ε′ε0

2
[
√
1 + (ε′′/ε′)2 + 1], (3)

where µr is the soil’s relative permeability, µ0 is the free-space
permeability, ε0 is the free space permittivity. At the same
time, ε′ and ε′′ are the real and imaginary parts of the soil’s
complex dielectric constant (CDC), i.e., ε = ε′+jε′′. CDC can
be calculated by the mineralogy-based soil dielectric model
developed in [16]. Notably, the refraction loss on the soil-air
interface Lr can be neglected in our study, implying Lr = 1.
This is because most energy is refracted when electromagnetic
waves propagate from a high-density medium (soil) to a lower-
density one (air).

2) Success Probability for SNR Guarantee: In the absence
of interference, the probability of successfully decoding a
packet as a function of distance d is

PSNR(d)=P
[
PtGtGr|h|2

g(d)σ2
w

> q

]
=exp

(
−g(d)qσ

2
w

PtGtGr

)
, (4)

where Gt and Gr are the antenna gains of the underground
ED and the NT GW, respectively, |h|2 accounts for fading in
the EDs-to-GW channel, whose coefficients are characterized
by Rayleigh fading and the power follows an exponential
distribution with a unit mean, σ2

w is the variance of the additive
white Gaussian noise, and LoRa SF-specific SNR demodula-
tion threshold q = {−6,−9,−12,−15,−17.5,−20} dB for
SF7∼12 denoted by {SFk|k = 1, . . . , 6}, respectively [2].

3) Success Probability for SIR Guarantee: The recent stud-
ies have demonstrated the presence of the capture effect for
LoRa signals, which implies that a receiver demodulates the
stronger packet under the interference of the weaker ones if the
SIR is above a certain threshold [4]. Given the SIR threshold
δ and the interference set (i.e., simultaneously transmitted
packets featuring the same-SF) Φ, the SIR success probability
according to distance d is

PSIR(d) = P

[
|h|2g(d)∑

i∈Φ |hi|2 g(di)
> δ

]
(a)
= exp

(
−4Nk · ToAk
d2maxTpNc

∫ dmax

0

δdηd−ηi
1 + δdηd−ηi

di ddi

)
(b)
= exp

[
−2Nk · ToAk

TpNc
2F1

(
1,

2

η
; 1 +

2

η
;−d

η
max

δdη

)]
,

(5)

where (a) follows after using the probability generating func-
tional of the product over PPP [4], and (b) is obtained by
adopting the definition of the Gauss Hypergeometric function
2F1(·) [17]. Furthermore, i represents the interfering signal,
Nk is the number of EDs assigned by SFk, dmax denotes the
maximum distance between EDs and the NT GW, ToAk is the
time-on-air of SFk, and Nc is the number of uplink channels.

4) Packet Delivery Ratio: The overall probability of suc-
cessful packet delivery is the product of PSNR and PSIR

PS(d) = PSNR(d)PSIR(d). (6)
Fig. 2 highlights that the success probability PS of the ana-
lytical model described in (6) agrees well with that obtained
from the Monte-Carlo simulations, where N = 1000 (i.e., 1k)
EDs transmit a 23-byte PHY payload packet in a single uplink
channel with the period of Tp = 600 s.

5) Energy Per Packet (EPP): The system’s energy effi-
ciency is characterized by EPP, which denotes the average
amount of energy consumed by an ED to successfully deliver
a packet to the NT GW [6]. Note that for the sake of tractabil-
ity, we do not consider the downlink communication (i.e.,
LoRaWAN receive windows) and the energy consumption
associated with it. Thus, EPP is given by

EPP =
VsupplyItxToAk

PS
, (7)

where Vsupply = 3.3 V is the supply voltage of the ED, while
Itx is the transmit current consumption determined by Pt.

III. RL-BASED SFS ALLOCATION APPROACH

This work aims to determine the optimal SFs allocation
strategy that minimizes the system’s EPP in massive U-DtS
scenarios. Hence, the optimization objective is formulated as
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Fig. 2. Analytical and simulated overall success probability PS versus
distance from ED to satellite d. The related parameters can be found in Table I.

min
{a1,...,aN}

1

N

N∑
n=1

EPPn s.t. an ∈ {SFk}, (8)

where an is the selected SF configuration for the n-th ED. To
achieve this, we utilize two MARL approaches, i.e., MAD3QN
and MAA2C. Concretely, we consider each ED as an in-
dependent RL agent responsible for selecting and utilizing
an SF configuration for packet transmission. The NT GW
then applies the MARL approach to derive the SFs allocation
strategy based on the received information from all agents.
Finally, the NT GW broadcasts the SFs allocation results to
all EDs. The MARL components are as follows:

1) Agent: Each agent includes (stn; a
t
n; r

t
n; s

t+1
n ), which

implies the n-th ED in state stn chooses an action atn according
to certain policy at step t. Then, it will receive its own rtn and
fall into state st+1

n at the next training step.
2) Action Space A: The action space of each agent is A =

{SFk}. Thus, the selected actions of all agents at step t can
be defined as At = {at1, . . . , atN}, a ∈ A.

3) State Space S: The state observed in each agent consists
of the selected SF configuration, SNR probability, SIR prob-
ability, packet delivery ratio, and EPP, which can be denoted
as stn = {atn, (PSNR)tn, (PSIR)tn, (PS)tn, EPP tn}. Hence, the
state set of all agents at step t is St = {st1, . . . , stN}.

4) Reward R: The objective of the RL approach is to
minimize the EPP; thus, the reward of each agent at step t
is defined as rtn = 1

EPP t
n

. Consequently, the reward set of all
agents is Rt = {rt1, . . . , rtN}. Notably, our reward mechanism,
which accounts for local and global rewards, contributes to the
expeditious convergence of the MARL algorithm.
A. MAD3QN Approach

The workflow of the MAD3QN approach is illustrated in
Algorithm 1. The value-based MAD3QN is devoted to ob-
taining an optimal policy, which maps a state to a distribution
over actions [11]. Each agent’s policy is characterized by the
DQN Q(stn, a;ωn) to estimate the expectation of action-value
distribution, where ωn denotes the policy network weights of
the n-th agent. Hence, MAD3QN aims to search for optimal
weights of each agent by minimizing the loss function, i.e.,

ytn = rtn+γQ(st+1
n , argmax

a∈A
Q(st+1

n , a;ωn); ω̂n),

L̂n = (ytn −Q(stn, a
t
n;ωn))

2, (9)

where γ ∈ [0, 1) denotes a discount factor that balances
the trade-off between immediate and future rewards, and ω̂n

Algorithm 1 MAD3QN Approach
1: Initialize initial state S0, policy network Q(s0n, a;ωn) with ran-

dom weights ωn, target Q-network Q(s0n, a; ω̂n) with ω̂n = ωn,
replay memory M, ϵt = 0, ϵT = 0.9999, γ = 0.7, and m = 100

2: for t = 1 to Tmax do
3: for n = 1 to N do

4: atn =

Randomly select atn ∈ A, rand() > ϵt

argmax
a∈A

Q(stn, a;ωn), otherwise

5: end for
6: Execute action At in the environment and get(

St,At,St+1,Rt
)

by (4), (5), (6), and (7)
7: for n = 1 to N do
8: Store transition

(
atn, s

t
n, r

t
n, s

t+1
n

)
in M

9: if M is full then
10: Sample random mini-batch of transitions from M
11: Update ωn by performing a gradient descent step on (9)
12: end if
13: Set state stn = st+1

n

14: Update ϵt with ϵt = min(ϵT , ϵt + 0.0002)
15: Every m steps clone ωn to ω̂n

16: end for
17: end for
Output: Learned Q(stn, a;ωn)

denotes the target network weights of the n-th agent. The
target network is generated by cloning the current network
and updating the weights after a fixed number of iterations.
The network weight ωn is updated through a gradient descent
method, i.e., ωn = ωn − τ∇ωn

L̂n(ωn), where τ is the
learning rate. Furthermore, compared with the single estimator
in the basic DQN, the output of each agent in MAD3QN is
divided into two estimators, i.e., value function and advantage
function, to accelerate the convergence. Accordingly, the Q-
value of each agent in MAD3QN can be presented as
Q
(
stn, a

t
n; ω̄n, κn, νn

)
= V

(
stn; ω̄n, κn

)
+[

A
(
stn, a

t
n; ω̄n, νn

)
− 1

|A|
∑
a∈A

A
(
stn, a; ω̄n, νn

)]
, (10)

where ω̄n, κn, νn are the weights of the shared convolutional
encoder, value function V(·) and advantage function A(·),
respectively, for the n-th agent.

B. MAA2C Approach

The workflow of the MAA2C approach is described in
Algorithm 2. Unlike MAD3QN, MAA2C focuses on training
the critic function C(stn; ψ̂n) that measures average expected
return from current state stn to obtain the optimal actor policy
T (atn|stn;ψn) of the n-th agent [12]. The ψn and ψ̂n are the
actor and critic network weights, respectively. MAA2C aims
to obtain the optimal policy of each agent by minimizing the
loss of actor and critic functions. The loss function of the critic
network for the n-th agent is

zn = rtn + γC(st+1
n ; ψ̂n)− C(stn; ψ̂n),

L̂C = (zn)
2
. (11)

Meanwhile, the loss function of the actor network is
L̂T = −zn log(T (atn|stn;ψn)). (12)

Herein, the network weights of actor and critic are updated by
a gradient descent method, i.e., ψn = ψn− τ∇ψn

L̂T (ψn) and
ψ̂n = ψ̂n − τ∇ψ̂n

L̂C(ψ̂n), respectively.
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Algorithm 2 MAA2C Approach
1: Initialize initial state S0, actor networks T (a0n|s0n;ψn) with

random weights ψn, critic network C(s0n; ψ̂n) with random
weights ψ̂n, and γ = 0.7

2: for t = 1 to Tmax do
3: for n = 1 to N do
4: Select atn ∼ T (atn|stn;ψn)
5: end for
6: Execute action At in the environment and get(

St,At,St+1,Rt
)

by (4), (5), (6), and (7)
7: for n = 1 to N do
8: Update ψ̂n by performing a gradient descent step on (11)
9: Update ψn by performing a gradient descent step on (12)

10: Set state stn = st+1
n

11: end for
12: end for
Output: Learned T (atn|stn;ψn), C(stn; ψ̂n)

TABLE I
SIMULATION PARAMETERS

Parameters Values
Operation Environments [1]
Total nodes (N ) 1k∼10k
Burial depth (du) 0.4 m
VWC (mv) 11.19%
Clay (mc) 16.86%
PHY payload (PL) 23 Bytes
Report period (Tp) 600 s
Traffic pattern Periodic
VLEO Satellite Configuration [18]
Elevation angles (E) 10◦ ≤ E ≤ 90◦

Orbital height (H) 200 km
Link distance (d) 200 km∼825 km
Coverage radius (R) 822 km
Radio Configuration [1]
Carrier frequency (fc) 915 MHz
Antenna gains (Gt and Gr) (2.15 dBi, 35 dBi)
SIR threshold (δ) 6 dB
Path loss exponent (η) 2
Uplink channel number (Nc) 1
Transmit power (Pt) 20 dBm
Transmit current (Itx) 133 mA
BW (B) 125 KHz
Agent Setting

Approach MAD3QN MAA2C
Actor Critic

Learning rate (τ ) 0.001 0.001 0.001
Input layer linear, |sn| linear, |sn| linear, |sn|
Hidden layer ReLU, 16 ReLU, 16 ReLU, 16
Output layer linear, |A| softmax, |A| linear, 1

IV. SIMULATION RESULTS AND ANALYSIS

A. Simulation Settings

To evidence the performance of our proposed approach, the
extreme subterranean LoRaWAN NTN scenario, i.e., U-DtS, is
considered in the simulation. Herein, we envision a LoRaWAN
GW deployed on a VLEO satellite, which provides one spot
beam covering the real-life center-pivot irrigation farm [1],
[18]. The specific simulation parameters are listed in Table I.
To ensure the execution of the algorithm, we assume that
our system is capable of compensating for Doppler effects
and accurately predicting the positions of satellites [19]. For
the MARL parameters, we set that the reply memory size is
|M| = 16, the mini-batch size is 4, and the maximum training
episode is Tmax = 6000. We optimize the weights of all
DQNs with the Adam optimizer. Besides, the hyper-parameter

1k 2k 3k 4k 5k 6k 7k 8k 9k 10
k
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Fig. 3. The comparison of the average EPP versus the number of EDs for
proposed RL-based SFs allocation scheme and the same SF [3], EIB [4],
EAB [5], and PLB [7] based techniques.
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Fig. 4. The convergence performance of MAD3QN and MAA2C under N =
5k EDs.

settings, the activation functions, and the neuron numbers of
each deep neural network layer are summarized in Table I.

For performance comparison, four benchmarks are imple-
mented: (1) Same SF [3]: all EDs are assigned by the same
SF; (2) EIB [4]: the coverage area is partitioned into six equal-
width (i.e., R

|A| ) annuli for SFs allocation; (3) EAB [5]: the

coverage area is segmented into six equal-area (i.e., πR2

|A| )
annuli for SFs allocation; (4) PLB [7]: annuli are determined
based on the path loss model described in (1) and the SF-
specific SNR threshold q.
B. Simulation Results

We first present the average EPP (i.e., 1
N

∑N
1 EPPn) under

different approaches as a function of the number of EDs N in
Fig. 3. One can observe that the average EPP increases with the
number of EDs due to the high probability of co-channel co-
SF interference in a denser network. Our proposed MAD3QN
and MAA2C approaches yield a significant improvement in
the average EPP compared to the other four benchmarks, and
such a performance gain becomes more pronounced with an
increase in N . Meanwhile, the average EPP of MAD3QN is
slightly lower than that of MAA2C, implying better energy
efficiency. Specifically, the average EPP of MAD3QN and
MAA2C is 2.46 J and 2.61 J, respectively, at N = 5k.

Fig. 4 depicts the average EPP of MAD3QN and MAA2C
under N = 5k EDs concerning the training episodes, from
which we can observe that MAD3QN performs better than
MAA2C in terms of convergence rate. For instance, the EPP
of MAD3QN converges to a stable value after around 300th

training episodes, while it takes MAA2C nearly 600th training
episodes to converge.

Fig. 5 demonstrates the SFs distribution for N = 5k
EDs under different approaches. In Fig. 5(a), the same SF
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(a) (b) (c)

(d) (f)(e)

Fig. 5. SF distribution of N = 5k EDs under (a) Same SF, (b) EIB, (c)
EAB, (d) PLB, (e) MAD3QN, and (f) MAA2C approaches. The color of
point represents the selected SF configuration, e.g, red for SF7.

Fig. 6. The statistical proportions of each SF for Figs. 5(a)∼(f), respectively.

scheme allocates all EDs with SF9, which balances ToA and
propagation capability. However, many EDs configured with
the same SF can result in a lower PSIR. Meanwhile, PSNR
of the EDs at the edge degrades due to the limited link
budget. Figs. 5(b) and (d) highlight that EIB and PLB allocate
the larger SF (i.e., SF11 and SF12) to the peripheral EDs
for a higher PSNR. However, the significant number of EDs
operating at higher SF levels leads to a considerable increase
in EPP. This is primarily due to the elevated transmit power
consumption and the higher collision probability caused by
the extended ToA. Despite EAB equally assigning SFs among
all EDs to mitigate the same-SF interference, as depicted
in Fig 5(c), the EDs configured with SF7 cannot establish
reliable U-DtS connectivity, which results in the worse PSNR
and the increased average EPP. Figs. 5(e) and (f) reveal that
our proposed MARL approaches assign the EDs near the inner
ring by SF8∼10 while allocating SF11 or SF12 to the EDs
at the edge. This allocation strategy aims to accomplish the
robust link with the lower transmit power consumption and to
reduce the co-SF interference probability, thereby improving
the average EPP. Consequently, our proposed approaches ex-
hibit notably superior performance compared to all the four
benchmarks. The share of EDs using each SF under the
discussed approaches are illustrated in Fig. 6.

V. CONCLUSION

This letter investigates the effectiveness of MARL for
optimizing SFs allocation in massive U-DtS scenarios. After
developing an analytical model to characterize packet delivery
ratio and using it as our reward mechanism, we utilize the
MAD3QN and MAA2C approaches to optimize SFs allocation
for improving the system’s energy efficiency. Through a com-

parison with the four benchmarks in a realistic farm case, our
numerical results reveal that the proposed approaches exhibit
the lowest average EPP, where MAD3QN slightly outperforms
MAA2C in terms of the average EPP and convergence rate.
Note that our proposed MARL approach is universal, and
can be generalized for other subterranean LoRaWAN NTN
applications. The future work will focus on developing a
strategy for broadcasting the derived SF configuration to each
ED by considering in more detail the mobility of NTN and
the reliable downlink communication [20], [21].
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