
ar
X

iv
:2

30
7.

15
02

3v
1 

 [
cs

.I
T

] 
 2

7 
Ju

l 2
02

3
1

Revealing the Impact of Beamforming in ISAC
Chongjun Ouyang, Yuanwei Liu, and Xingqi Zhang

Abstract—This letter proposes advanced beamforming design
and analyzes its influence on the sensing and communications
(S&C) performance for a multiple-antenna integrated S&C
(ISAC) system with a single communication user and a single tar-
get. Novel closed-form beamformers are derived for three typical
scenarios, including the sensing-centric design, communications-
centric design, and Pareto optimal design. Regarding each
scenario, the outage probability, ergodic communication rate
(CR), and sensing rate (SR) are analyzed to derive the diversity
orders and high signal-to-noise ratio slopes. Numerical results
are provided to demonstrate that i) beamforming design can
affect the high-SNR power offset and diversity order but does
not influence the high-SNR slope; ii) ISAC exhibits larger high-
SNR slopes and a more extensive SR-CR region than conventional
frequency-division S&C (FDSAC) techniques.

Index Terms—Beamforming design, integrated sensing and
communications (ISAC), performance analysis.

I. INTRODUCTION

Integrated sensing and communications (ISAC) is a cutting-

edge paradigm that enables seamless sharing of time-

frequency-power-hardware resources between sensing and

communications (S&C) functionalities [1]. In contrast to the

conventional frequency-division S&C (FDSAC) techniques,

where S&C operations necessitate isolated frequency bands

and dedicated hardware infrastructures, ISAC offers a more

spectrum-, energy-, and hardware-efficient solution [2]. As a

result, ISAC has garnered significant attention from both the

academic community and industrial sectors alike [1]–[4].

In recent times, considerable attention has been given to the

application of multiple-antenna techniques in ISAC systems,

as they offer significant beamforming gains that can benefit

both S&C functionalities; see [2]–[4] and related references.

However, the existing research primarily focuses on optimizing

the beamforming design, and there is a notable lack of

quantitative analysis concerning the fundamental impact of

beamforming design on the overall S&C performance. On the

other hand, the assessment of information-theoretic limits in

S&C systems can be achieved through the S&C mutual infor-

mation (MI), which quantifies the amount of environmental or

data information that can be recovered [1]. These performance

metrics have been instrumental in establishing an upper limit

on ISAC’s performance capabilities [1].

Despite their importance, there have been limited efforts

to investigate the impact of beamforming design in ISAC
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systems from the perspective of MI, with the aim of enhancing

S&C performance. Although some studies have explored the

influence of power allocation on S&C MI, the specific effect

of beamforming has not been fully addressed in these analyses

[5], [6]. Thus, the full extent of the relationship between

beamforming and S&C MI remains relatively unexplored.

To address the existing gap in the literature, this letter aims

at investigating the beamforming design in ISAC systems from

a MI perspective, with a particular focus on analyzing the

impact of beamforming design on the S&C performance. As

an initial attempt, we consider a downlink multiple-antenna

ISAC system with a single communication user (CU) and a

single target.

The primary contributions of this letter are listed as follows:

i) We propose a novel dual-functional S&C (DFSAC) beam-

forming design tailored to three typical scenarios: the sensing-

centric (S-C) design that maximizes the sensing rate (SR, the

sensing MI each time-frequency unit), the communications-

centric (C-C) design that maximizes the communication rate

(CR, the communication MI each time-frequency unit), and

the Pareto optimal design (characterizing the Pareto boundary

of the SR-CR region). ii) We derive optimal beamformers for

each scenario in closed form, providing explicit expressions

for the beamforming strategies to achieve the desired objec-

tives. iii) For each scenario, we analyze the outage probability

(OP) of the CR and demonstrate that beamforming has no

influence on the diversity order. iv) For each scenario, we

derive closed-form expressions for both the SR and ergodic

CR (ECR), along with their approximations in the high signal-

to-noise ratio (SNR) region, and establish that beamforming

design does not affect the high-SNR slope but can significantly

influence the high-SNR power offset. v) Through rigorous

analysis, we demonstrate that ISAC provides superior degrees

of freedom and a broader SR-CR region compared to the

conventional FDSAC techniques.

II. SYSTEM MODEL

We consider an ISAC system as sketched in Fig. 1, where

a DFSAC base station (BS) is serving a single-antenna CU,

while simultaneously sensing a single target in its surrounding

environment. The BS is equipped with M transmit antennas

and N receive antennas. Let X = [x1 . . .xL] ∈ C

M×L

be a DFSAC signal matrix, with L being the length of the

communication frame/sensing pulse. From a communication

perspective, xl ∈ C

M×1 for l ∈ L = {1, . . . , L} denotes

the lth data symbol vector. For sensing, xl represents the

sensing snapshot transmitted at the lth time slot. In the

considered ISAC system, we could design the signal matrix

as X =
√
pwsH, where w ∈ C

M×1 is the normalized

beamforming vector, p is the power budget, and s ∈ C

L×1

http://arxiv.org/abs/2307.15023v1
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Fig. 1: Illustration of an ISAC system.

denotes the unit-power data streams intended for the CU with

L−1‖s‖2 = 1.

A. Communication Model

The observation at the CU can be written as follows:

yH

c = hH

cX+ nH

c =
√
phH

c wsH + nH

c , (1)

where nc ∼ CN (0, I) is the additive white Gaussian noise

(AWGN) vector, and hc ∈ CM×1 represents the communica-

tion channel, which is assumed to be known to the BS. We

consider that the communication link shown in Fig. 1 suffers

Rayleigh fading, which yields hc ∼ CN (0, αcI) with αc re-

flecting the influence of the large-scale path loss. Accordingly,

the received SNR at the CU is given by γc = p|wHhc|2. It

follows that the CR satisfies Rc = log2(1 + γc).

B. Sensing Model

By transmitting X to sense the target, the BS observes the

following reflected echo signal matrix at its receiver:

Ys = GX+Ns =
√
pGwsH +Ns, (2)

where Ns ∈ C

N×L is the AWGN matrix with each entry

having zero mean and unit variance, and G ∈ C

N×M

represents the target response matrix. Specifically, the target

response matrix can be modeled by [1], [6], [8]

G = βa (θ)bH (θ) , (3)

where β is the complex amplitude of this single target,

a (θ) ∈ C

N×1 and b (θ) ∈ C

M×1 are the associated receive

and transmit array steering vectors, respectively, and θ is the

angle of the target. Following the Swerling target model, we

model the reflection coefficient of the target as a complex

Gaussian variate, i.e., β ∼ CN (0, αs), where αs represents

the average strength.

We consider that the angle of the target is perfectly tracked

and focus on the estimation of the reflection coefficient β.

Under this circumstance, the sensing task aims at extracting

the environmental information contained in β from Ys by

knowing X. The information-theoretic limits on this sensing

task is thus characterized by the sensing MI, which is defined

as the MI between Ys and β or G conditioned on the DFSAC

signal X [1], [6], [8]. On this basis, we adopt the SR as the

performance metric of sensing, which is defined as the sensing

MI per unit time [1], [6], [8]. Assuming that each DFSAC

symbol lasts 1 unit time, we write the SR as follows:

Rs = L−1I (Ys;β|X) = L−1I (Ys;G|X) , (4)

where I (X ;Y |Z) denotes the MI between X and Y condi-

tioned on Z . For a given w, we calculate Rs as follows.

Lemma 1. The SR can be calculated as follows:

Rs = L−1 log2(1 + pNLαs|wHhs|2), (5)

where hs , b (θ) can be treated as the sensing channel.

Proof: Please refer to Appendix A for more details.

Given the above ISAC framework, we intend to analyze its

S&C performance by investigating the CR Rc and SR Rs.

Note that both Rc and Rs are influenced by the beamforming

vector w. However, finding an optimal w that maximizes both

Rs and Rc concurrently poses a challenging task. Motivated

by this challenge, we explore three distinct scenarios to gain

further insights into the system, i.e., the S-C design, the C-C

design, and the Pareto optimal design.

III. PERFORMANCE OF ISAC

A. Communications-Centric Design

Under the C-C design, the beamforming vector w is set to

maximize Rc, which satisfies

argmaxw Rc = argmaxw|wHhc| = ‖hc‖−1
hc , wc. (6)

1) Performance of Communications: Given w = wc, the

CR can be written as Rc

c = log2
(

1 + p‖hc‖2
)

. We next

exploit the OP and the ECR to evaluate the performance of

communications. Theorem 1 provides an exact expression for

the ECR Rc
c = E{Rc

c} and its high-SNR approximation.

Theorem 1. In the C-C design, the ECR is given by

Rc
c =

∑M−1

µ=0

(−1/(pαc))
M−1−µ

(M − 1− µ)! ln 2

(

−e
1

pαc Ei

( −1

pαc

)

+
∑M−1−µ

i=1
(i − 1)! (−1/(pαc))

−i

)

, (7)

where Ei(x) = −
∫

∞

−x
e−tt−1dt is the exponential integral

function [7, Eq. (8.211.1)]. As p→ ∞, the ECR satisfies

Rc
c ≈ log2 p+ log2 αc + ψ (M) / ln 2, (8)

where ψ (x) = d
dx ln Γ (x) is the Digamma function [7, Eq.

(6.461)] and Γ (x) =
∫∞

0 tx−1e−tdt is the gamma function

[7, Eq. (6.1.1)]. When x ∈ Z+, ψ(x) = ψ(1) +
∑x−1

i=1
1
i .

Proof: Please refer to Appendix B for more details.

Remark 1. The results in (8) suggest that the high-SNR slope

and the high-SNR power offset of Rc
c are given by Sc

c = 1

and Lc
c = − log2 αc − ψ(M)

ln 2 , respectively.

Turn to the OP Pc
c = Pr(Rc

c < R0), where R0 denotes the

target CR. The following theorem provides an exact expression

for the OP as well as its high-SNR approximation.

Theorem 2. In the C-C design, the OP is given by Pc
c =

1
Γ(M)γ(M, 2

R0−1
pαc

), where γ (s, x) =
∫ x

0 t
s−1e−tdt is the

lower incomplete gamma function [7, Eq. (8.350.1)]. As

p→ ∞, the ECR satisfies Pc
c ≈ (2R0−1)M

pMαM
c M ! .

Proof: Please refer to Appendix B for more details.

Remark 2. Theorem 2 suggests that a diversity order of Dc
c =

M is achievable for the OP under the C-C design.

2) Performance of Sensing: For w = wc, the SR reads

Rc

s = L−1 log2(1 + pNLαs|hH

c hs|2‖hc‖−2
). (9)

Noticing the statistics of hc, we further define the average

SR as Rc
s = E{Rc

s}, which can be calculated numerically.

Besides, the following theorem is found.

Theorem 3. As p→ ∞, Rc
s can be approximated as follows:

Rc
s ≈

1

L

(

log2 p+ log2
(

LNαs‖hs‖2
)

−
M−1
∑

i=1

1

i ln 2

)

. (10)

Proof: Please refer to Appendix C for more details.



3

Remark 3. The results in (10) suggest that the high-SNR slope

and the high-SNR power offset of the SR achieved by the C-C

design are given by Sc
s = 1

L and Lc
s = − log2

(

LNαs‖hs‖2
)

+
∑M−1

i=1
1

i ln 2 , respectively.

B. Sensing-Centric Design

Under the S-C design, the beamforming vector w is set to

maximize Rs, which satisfies

argmax
w
Rs = argmax

w
|wHhs| = ‖hs‖−1

hs , ws. (11)

1) Performance of Sensing: The following theorem pro-

vides an exact expression for the SR achieved by the S-C

design as well as its high-SNR approximation.

Theorem 4. In the S-C design, the achieved SR is given by

Rs
s = L−1 log2(1 + pNLαs‖hs‖2). (12)

As p→ ∞, the SR can be approximated as follows:

Rs
s ≈ L−1

(

log2 p+ log2
(

NLαs‖hs‖2
))

. (13)

Proof: Similar to the proof of Theorem 3.

Remark 4. The results in (13) suggest that the high-SNR slope

and the high-SNR power offset of Rs
s are given by Ss

s = 1
L

and Ls
s = − log2

(

LNαs‖hs‖2
)

, respectively.

Remark 5. The fact of Ss
s = Sc

s = L−1 means that the

beamforming design does not influence the high-SNR slope of

the SR. By contrast, the fact of Lc
s−Ls

s =
∑M−1

i=1
1

i ln 2 suggests

that the beamforming design affects the SR via shaping its

high-SNR power offset, and the sensing performance gap

between the S-C design and the C-C design is more highlighted

when the DFSAC BS has more transmit antennas.

2) Performance of Communications: The CR achieved by

the S-C design can be written as Rs

c = log2
(

1 + p|wH

s hc|2
)

.

The following theorem provides an exact expression for the

ECR Rs
c = E{Rs

c} as well as its high-SNR approximation.

Theorem 5. In the S-C design, the ECR is given by

Rs
c = −e1/p/αcEi(−1/p/αc)/ ln 2. (14)

As p→ ∞, the ECR satisfies

Rs
c ≈ log2 p+ log2 αc + ψ (1) / ln 2. (15)

Proof: Please refer to Appendix B for more details.

Remark 6. The results in (15) suggest that the high-SNR slope

and the high-SNR power offset of Rs
c are given by Ss

c = 1 and

Ls
c = − log2 αc − ψ(1)

ln 2 , respectively.

Turn to the OP Ps
c = Pr(Rs

c < R0). The following theorem

provides an exact expression for the OP.

Theorem 6. In the S-C design, the OP is given by Ps
c =

1− e−
2R0−1

pαc . As p→ ∞, the ECR satisfies Ps
c ≈ 2R0−1

pαc
.

Proof: Please refer to Appendix B for more details.

Remark 7. Theorem 6 suggests that a diversity order of Ds
c =

1 is achievable for the OP under the S-C design.

Remark 8. The fact of Ss
c = Sc

c = 1 means that the

beamforming design does not influence the high-SNR slope of

the CR. By contrast, the fact of Ds
c = Dc

c/M and Ls
c − Lc

c =
ψ(M)−ψ(1)

ln 2 =
∑M−1

i=1
1

i ln 2 suggests that the beamforming

design affects the CR via shaping its high-SNR power offset

and diversity order, and the communication performance gap

between the S-C design and the C-C design is more highlighted

when the DFSAC BS has more transmit antennas.

C-C

Fig. 2: Pareto optimal beamformer for problem (16).

C. Pareto Optimal Design

In addition to maximizing the CR or SR, the beamforming

vector w can be designed to satisfy different qualities of ser-

vices, which results in a communication-sensing performance

tradeoff. This tradeoff can be evaluated by the Pareto boundary

of the SR-CR region. Particularly, any rate-tuple on the Pareto

boundary can be obtained via the rate-profile based method,

i.e., solving the problem as follows [6]:

maxw,R R, s.t. Rs ≥ αR,Rc ≥ (1−α)R, ‖w‖2 = 1, (16)

where α ∈ [0, 1] is a rate-profile parameter. The entire Pareto

boundary is obtained by solving the above problem with α
varying from 0 to 1. Despite of its non-convexity, problem

(16) can be optimally solved in a closed form as follows.

Theorem 7. Given α, we denote β1 = (1 − α) ln 2, β2 =
Lα ln 2, h1 =

√
phc, h2 =

√
pNLαshs, α11 = p‖hc‖2,

α22 = pNLαs‖hs‖2, α12 = p
√
NLαsh

H

c hs, δ =
√

eβ2R−1
eβ1R−1

,

̺1 = α22 − δ|α12|, ̺2 = α11 − δ−1|α12|, χ = ̺1β1e
β1R +

̺2β2e
β2R, µ1 = ̺1

χ , µ2 = ̺2
χ . Let R⋆ denote the solution of

R to the equation α11α22−|α12|2 = (α11−δ−1|α12|)(eβ2R−
1)+(α22−δ|α12|)(eβ1R−1). Then, the optimal beamforming

vector in problem (16) is given by

w⋆
α=











wc µ2 = 0, µ1 > 0

τµ1h1

(eβ1R−1)−0.5 +
τµ2h2e

−j∠α12

(eβ2R−1)−0.5 µ1 > 0, µ2 > 0

ws µ1 = 0, µ2 > 0

. (17)

where R in {δ, χ} satisfies R = R⋆ and τ is for normalization.

Proof: Please refer to Appendix D for more details.

Corollary 1. The whole Pareto boundary of the rate region

can be achieved by the beamforming vector as follows:

wξ =
ξhc + (1− ξ)hse

−j∠α12

|ξhc + (1− ξ)hse−j∠α12 | , (18)

where the weighting factor ξ varies between [0, 1].

Proof: Please refer to Appendix E for more details.

Remark 9. Note that wξ can represent any arbitrary linear

combination of hc and hse
−j∠α12 with non-negative real

coefficients. The results in Corollary 1 suggest that the Pareto

optimal beamforming vector lies in the plane spanned by hc

and hse
−j∠α12 , as depicted in Fig. 2.

Given α, let Rα

c , Rα
c , and Rα

s denote the instantaneous CR,

ECR, and average SR achieved by w⋆
α, respectively. It follows

that Rα
c ∈ [Rs

c,Rc
c] and Rα

s ∈ [Rc
s ,Rs

s] with R1
s = Rs

s and

R0
c = Rc

c. By the Sandwich theorem, we find Corollary 2.

Corollary 2. For a sufficiently larger SNR, i.e., p→ ∞, Rα
s ≈

Sαs (log2 p − Lαs ), Rα
c ≈ Sαc (log2 p − Lαc ), and Pr(Rα

c <
R0) ≃ O(p−D

α
c ), where Sαs = 1

L , Lαs ∈ [Ls
s,Lc

s ], Sαc = 1,

Lαc ∈ [Lc
c,Ls

c], and Dα
c ∈ [Ds

c,Dc
c].

Remark 10. The arguments in Remark 5, Remark 8, and

Corollary 2 collectively suggest that the beamforming design
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System
CR SR

D S S
C-C ISAC M 1 1/L

Pareto Optimal ISAC [1,M ] 1 1/L
S-C ISAC 1 1 1/L
FDSAC M κ (1− κ)/L

TABLE I: Diversity Order (D) and High-SNR Slope (S)
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Fig. 3: Performance of communications. R0 = 1 bps/Hz.

influences the CR and SR via shaping the high-SNR power

offset and diversity order rather than the high-SNR slope.

Remark 11. Denote Rs and Rc as the achievable SR and CR,

respectively. Then, the rate region achieved by ISAC reads

Ci = {(Rs,Rc) |Rs∈ [0,Rα
s ] ,Rc∈ [0,Rα

c ] , α∈ [0,1]} . (19)

IV. PERFORMANCE OF FDSAC

We consider FDSAC as a baseline scenario, where κ ∈
[0, 1] fraction of the total bandwidth and µ ∈ [0, 1] fraction of

the total power is used for communications, and the other is

used for sensing. Based on [8], the CR and the SR are given

by Rf

c = κ log2(1 + µ
κp‖hc‖2) and Rf

s = (1−κ)
L log2(1 +

1−µ
1−κpNLαs‖hs‖2), respectively. Note that (Rf

c,Rf
s) can be

analyzed in a similar way we analyze (Rc

c,Rs
s).

Corollary 3. As p→ ∞, a diversity order of M is achievable

for the OP Pr(Rf

c < R0) in the FDSAC system. Furthermore,

the high-SNR slopes of Rf
c = E{Rf

c} and Rf
s are given by κ

and (1− κ) 1
L , respectively.

Corollary 4. the rate region achieved by FDSAC is given by

Cf =
{

(Rs,Rc)

∣

∣

∣

∣

∣

Rs ∈
[

0,Rf
s

]

,Rc ∈
[

0,Rf
c

]

,

κ ∈ [0, 1] , µ ∈ [0, 1]

}

. (20)

After completing all the analyses, we summarize the results

related to diversity order and high-SNR slope in Table I.

Remark 12. The results in Table I suggest that ISAC yields

larger high-SNR slopes than FDSAC, which means that ISAC

provides more degrees of freedom than FDSAC in terms of

both communications and sensing.

We then compare the rate regions Ci and Cf as follows.

Theorem 8. The achievable rate regions satisfy Cf ⊆ Ci.
Proof: Similar to the proof of [6, Theorem 7].

Remark 13. The above results suggest that the rate region of

FDSAC is entirely covered by that of ISAC.

V. NUMERICAL RESULTS

In this section, the S&C performance of ISAC is evaluated

by using computer simulations. The parameters used for

simulation are listed as follows: M = 4, N = 5, L = 20,

αc = 1, αs = 1, and b(θ) = [ejπ(m−1) sin θ]Mm=1 with θ = 0.

Fig. 3(a) depicts the OP as a function of the power budget

p. The simulation results (symbols) align remarkably well

with the analytical results, and in the high-SNR regime,
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Fig. 4: (a) Performance of sensing; (b) Rate region.

the asymptotes accurately match the provided simulations.

The graph clearly demonstrates that C-C ISAC achieves the

lowest OP, followed by FDSAC and S-C ISAC. Additionally,

it is observed that C-C ISAC and FDSAC have the same

diversity order, which is higher than that of S-C ISAC. These

findings are consistent with the conclusions drawn in Remark

8. Turning to Fig. 3(b), it showcases the ECR as a function

of p. The analytical results exhibit a good match with the

simulation data, and in the high-SNR region, the asymptotes

precisely capture the behavior of the simulations. Notably,

C-C ISAC achieves the largest ECR among the three cases

considered. Moreover, S-C ISAC exhibits the same high-SNR

slope as C-C ISAC, which is larger than that of FDSAC.

Further observations reveal that when both C-C ISAC and

S-C ISAC achieve the same ECR in the high-SNR region,

C-C ISAC outperforms S-C ISAC by a constant power gap.

In essence, this means that C-C ISAC yields a smaller high-

SNR power offset compared to S-C ISAC. These results align

with the findings presented in Remarks 8 and 12.

Fig. 4(a) displays the SR as a function of p. In the high-SNR

region, the asymptotes closely match the provided simulations,

ensuring the accuracy of our analysis. Notably, S-C ISAC

achieves the highest SR, while FDSAC exhibits the lowest

SR in the high-SNR regime. Furthermore, it is observed that

S-C ISAC and C-C ISAC share the same high-SNR slope,

with both being superior to FDSAC in this aspect, confirming

the validity of Remark 12. Of particular interest is the fact

that when achieving the same SR, S-C ISAC outperforms C-C

ISAC by a constant power gap. This observation suggests that

S-C ISAC yields a smaller high-SNR power offset compared

to C-C ISAC, in line with the findings given in Remark 5.

In Fig. 4(b), we present a comparison of the CR-SR region

achieved by ISAC with that achieved by FDSAC. In the

context of ISAC, two distinct points are of particular interest:

point Ps, attained by the S-C design (i.e., w = w0 or

w = ws), and point Pc, achieved by the C-C design (i.e.,

w = w1 = wc). Notably, the curve segment connecting Ps

and Pc represents ISAC’s Pareto boundary in terms of the rate

region. Significantly, we make a noteworthy observation that

FDSAC’s rate region is entirely encompassed within ISAC’s

region. This finding unequivocally verifies the correctness

of Theorem 8. Additionally, it is observed that the Pareto

boundary achieved by the beamformer, as per Theorem 7,

precisely aligns with that achieved by the beamformer, as

per Corollary 1.This alignment provides further support to the

results presented in Remark 9.
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VI. CONCLUSION

In this letter, we have proposed optimal beamforming design

tailored to three distinct DFSAC scenarios. Novel expressions

have been derived to characterize the achieved OP, ECR,

and SR. Theoretical analyses and numerical simulations have

shown that the DFSAC beamforming design influences SR

and CR by shaping the high-SNR power offsets and diversity

orders. Besides, it has been demonstrated that ISAC achieves

a broader rate region than FDSAC.

APPENDIX

A. Proof of Lemma 1

Inserting (3) into (2) gives Ys =
√
pbH (θ)wa (θ) sHβ +

Ns, which satisfies vec(Ys) =
√
pbH (θ)wvec(a (θ) sH)β +

vec(Ns).Therefore, the conditioned MI between vec(Ys) (or

Ys) and β can be treated as the capacity of a multiple-input

single-input Gaussian channel with Gaussian distributed inputs

β ∼ CN (0, αs) and channel vector
√
pbH (θ)wvec(a (θ) sH).

Thus, the sensing MI satisfies I (Ys;β|X) = log2(1 +
p‖s‖2‖a(θ)‖2αs|wHhs|2). The final results can be obtained

by using the fact that ‖s‖2 = L and ‖a(θ)‖2 = N .

B. Proof of Theorem 1

Under the C-C design, we have γc = p‖hc‖2. Since

hc ∼ CN (0, αcI), the PDF and the CDF of ‖hc‖2 are given by

fc(x) = xM−1

Γ(M)αM
c

e−
x
αc and Fc(x) = 1

Γ(M)γ(M, xαc
), respec-

tively. Under the S-C design, we have γc = p|wH

s hc|2. Since

ws is independent with hc, we have wH

s hc ∼ CN (0, αc). The

resulting PDF and CDF of |wH
s hc|2 can be obtained by replac-

ing M in fc(·) and Fc(·) with 1, respectively. After obtaining

the PDF and CDF, we can derive the closed-form expressions

of the OP, ECR, and their high-SNR approximations by using

similar steps as those outlined in [8, Appendices A–B].

C. Proof of Theorem 3

Using the fact that limx→∞ log2(1+x) ≈ log2 x, we obtain

limp→∞ Rc
s ≈ L−1 log2(pNLαs) + L−1

E{log2(|hH
c hs|2)} −

L−1
E{log2(‖hc‖2)}. It follows from hc ∼ CN (0, αcI) that

hH
c hs ∼ CN (0, αc‖hs‖2). The final results can thus be derived

by using [7, Eq. (4.352.1)] and the fact that ψ(x) = ψ(1) +
∑x−1

i=1
1
i for x ∈ Z+.

D. Proof of Theorem 7

The optimal solution to problem (16) can be obtained from

the Karush-Kuhn-Tucker (KKT) condition as follows:
{∇(−R) + λ∇(‖w‖2−1) + µ1∇f1 + µ2∇f2 = 0, (21)

µ1f1 = 0, µ2f2 = 0, λ ∈ R, µ1 ≥ 0, µ2 ≥ 0, (22)

where fi = eβiR − 1 − wHhih
H

i w for i ∈ {1, 2}, and

{λ, µ1, µ2} are real-valued Lagrangian multipliers. From (21),

it can be shown that
{

(µ1h1h
H

1 + µ2h2h
H

2 )w = λw, (23)

µ1e
β1Rβ1 + µ2e

β2Rβ2 = 1. (24)
It is clear that the optimal beamformer w is an eigenvector of

the matrix (
∑2

i=1 µihih
H

i ) with a corresponding eigenvalue λ.

It follows from (24) that µ1 and µ2 cannot be 0 at the same

time. Moreover, from (23), we have

µ1w
Hh1h

H

1w + µ2w
Hh2h

H

2w = λwHw = λ. (25)

The above results suggest that λ > 0. It is widely known that

the eigenvector of (
∑2

i=1 µihih
H

i ) corresponding a non-zero

eigenvalue can be written as the linear combination of h1 and

h2. Thus, w = ah1 + bh2. Particularly, we have w = wc for

µ2 = 0 and µ1 > 0, and w = ws for µ1 = 0 and µ2 > 0.

Consider the case of µ1 > 0 and µ2 > 0, which yields

fi = 0 ⇔ eβiR − 1 = wHhih
H

i w, i = 1, 2. (26)

Substituting w = ah1+bh2 into (23) and (26) and performing

some simple mathmematical manipulations, we have
{

a/b = (µ1

√

eβ1R−1)/(µ2

√

eβ2R−1e−j∠α12), (27)

µ1(α11 + α12b/a) = µ2(α
∗

12a/b+ α22) = λ. (28)

By combining (24) and (28), we have µ1 = ̺1
χ and µ2 = ̺2

χ .

Inserting µ1 = ̺1
χ and µ2 = ̺2

χ into (28) gives λ = (α11α22−
|α12|2)/χ. Furthermore, substituting the above results and (26)

into (25) gives α11α22 − |α12|2 = (α11 − δ−1|α12|)(eβ2R −
1) + (α22 − δ|α12|)(eβ1R − 1). When µ1 > 0 and µ2 > 0,

it is easily shown that (α11 − δ−1|α12|)(eβ2R − 1) + (α22 −
δ|α12|)(eβ1R−1) is a monotonic function with R. By solving

this equation, we can obtain the optimal solution of R, and

the final results follow immediately.

E. Proof of Corollary 1

Let (Rs
α,Rc

α) and (Rs
ξ,Rc

ξ) denote the SR-CR pairs

achieved by w⋆
α and wξ, respectively. It is easily shown

that Rs
ξ decreases with ξ, whereas Rc

ξ increases with ξ.

Let (R1,R2) denote the achievable SR-CR pair. Thus, the

attainable rate regions achieved by w⋆
α and wξ are given by

C1 = {(R1,R2) |Rs∈ [0,Rs
α] ,Rc∈ [0,Rc

α] , α∈ [0,1]} , (29)

C2 =
{

(R1,R2) |Rs∈
[

0,Rs
ξ

]

,Rc∈
[

0,Rc
ξ

]

, ξ∈ [0,1]
}

, (30)

respectively. Since C1 contains all the achievable rate pairs, we

have C2 ⊆ C1. Besides, since w⋆
α is the linear combination of

hc and hse
−j∠α12 with non-negative real coefficients, we have

C1 ⊆ C2. It follows that C2 = C1, which means that C2 and C1
have the same boundary. The final results follow directly.
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