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Abstract—Terahertz (THz) band is envisioned for the future
sixth generation wireless systems thanks to its abundant band-
width and very narrow beamwidth. These features are one of the
key enabling factors for high resolution sensing with milli-degree
level direction-of-arrival (DOA) estimation. Therefore, this paper
investigates the DOA estimation problem in THz systems in the
presence of two major error sources: 1) gain-phase mismatches,
which occur due to the deviations in the radio-frequency cir-
cuitry; 2) beam-squint, which is caused because of the deviations
in the generated beams at different subcarriers due to ultra-
wide bandwidth. An auto-calibration approach, namely NoisE
subspAce correcTion technique for MUltiple SIgnal Classification
(NEAT-MUSIC), is proposed based on the correction of the noise
subspace for accurate DOA estimation in the presence of gain-
phase mismatches and beam-squint. To gauge the performance
of the proposed approach, the Cramér-Rao bounds are also
derived. Numerical results show the effectiveness of the proposed
approach.

Index Terms—Array calibration, beam-squint, DOA estima-
tion, gain-phase mismatch, Terahertz.

I. INTRODUCTION

TERAHERTZ (THz) band, spanning from 0.1 to 10 THz,

has emerged as a promising frontier for the realization

of significant advancements in sixth-generation (6G) wireless

networks [1]. Ensuring milli-degree precision in direction-of-

arrival (DOA) estimation is of paramount importance to guar-

antee the reliability of THz sensing as well as communication

applications, e.g., THz automotive radar, real-time tracking

and user localization [2–4]. High-resolution DOA estimation

within the THz-band, however, is impeded by myriad chal-

lenges such as high path losses, intricate propagation/scattering

dynamics, and the deployment of extremely large arrays

in conjunction with massive multiple-input multiple-output

(mMIMO) configuration [1, 5, 6]. To elaborate, the mMIMO

systems leverage hybrid analog/digital beamforming archi-

tectures with phase shifter networks to reduce the number

of radio-frequency (RF) chains. Nonetheless, the embedded

RF circuits are susceptible to gain-phase mismatches (GPM)

that necessitate periodic over-the-air estimations/calibrations,

especially as these mismatches can fluctuate due to tempera-

ture variations and hardware aging [7]. Its impact on hybrid
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architectures is often go overlooked and remains relatively

unexamined [7, 8].

Besides, the THz systems also suffer from beam-squint aris-

ing from the subcarrier-independent analog beamformers [9–

11]. This leads to misaligned beam generation at different

subcarriers squint in the spatial domain; that is, the main lobes

of the array gain corresponding to the lowest and highest

subcarriers do not overlap because of ultra-wide bandwidth

as illustrated in Fig. 1, causing significant discrepancies in

DOA estimation as a direct consequence. For instance, a beam-

squint of roughly 6◦ is observed at 0.3 THz with a bandwidth

of 30 GHz, while it is about 0.4◦ for a bandwidth of 1
GHz at 60 GHz [4, 11]. Notably, existing countermeasures for

beam-squint are predominantly hardware-based [12]. Specif-

ically, additional hardware components such as time-delayer

networks are realized to generate a negative group-delay for its

compensation [10]. However, they are expensive because each

phase shifter of the network is connected to multiple delayer

elements, each of which consumes approximately 150% more

power than a single phase shifter at THz band [4]. THz channel

estimation [11] and hybrid analog/digital beamforming [9,

10, 13] under beam-squint have been explored in prior THz

studies, which largely omit discussions on DOA estimation

and GPM calibration. While the DOA estimation problem is

studied for both THz [2] and millimeter-wave [7, 14] mMIMO

as well as phased-arrays [15, 16], the impact of beam-squint

is often disregarded.

In this letter, we present a novel perspective, focusing on

over-the-air GPM calibration of DOA estimation, especially in

the context of beam-squint effects in THz mMIMO systems. A

subspace-based auto-calibration approach is proposed, wherein

the DOA angles and the GPM parameters are alternatingly esti-

mated. Traditional subspace-based approaches, e.g., MUltiple

SIgnal Classification (MUSIC) algorithm [17] falls short in

estimating the DOAs because of inaccurate noise-subspace

which is corrupted by beam-squint and GPM. To address these

issues, the main contributions of this work are as follows:

1) We introduce a NoisE subspAce correcTion tech-

nique for MUSIC (NEAT-MUSIC) to estimate beam-squint-

corrected DOAs. NEAT-MUSIC involves crafting a linear

transformation matrix that constructs a mapping between the

nominal and the beam-squint-distorted steering vectors, which

facilitates the rectification of the skewed noise-subspace matrix

derived from the covariance of the array data.Once the DOAs

are obtained, a minimum eigenvalue problem is solved to

identify the GPM parameters.

2) We also derive the Cramér-Rao bounds (CRBs) for
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Fig. 1. Array gain of a single target direction at 60◦ for (a) narrowband
(fc = 300 GHz, B = 0.1 GHz) and (b) wideband (fc = 300 GHz, B = 30
GHz).

the intended scenario to benchmark the performance of the

proposed NEAT-MUSIC algorithm.

II. SYSTEM MODEL

We consider a wideband THz mMIMO system, wherein the

base station (BS) employs hybrid analog/digital beamformers

performed over M subcarriers with N -element uniform linear

array (ULA) and NRF RF chains. The BS employs the

subcarrier-independent precoder F ∈ CN×NRF and the sensing

signals sm(ti) ∈ C
NRF , where i ∈ [1, T ] and T is the

number of snapshots along the fast-time axis [18]. To sense the

environment, the BS activates NRF RF chains and transmits

the probing signal Xm = [xm(t1), · · · ,xm(tT )] ∈ CN×T ,

where xm(ti) = Fsm(ti) ∈ CN , and E{XmXH
m} = PrT

MN IN ,

for which FFH = 1/N and Pr is the transmit power.

Assuming there are K targets in the far-field of the antenna

array, the received N ×T target echo signal impinging on the

array is given by

Ỹm =

K∑

k=1

Gma(θk,m)x̃k,m + Ñm, (1)

where Ñm ∼ CN (0, σ2IN ) is temporarily and spatially white

zero-mean complex Gaussian noise matrix of size N×T with

variance σ2. Gm = diag{gm} is an N ×N diagonal matrix

representing the GPM parameters gm = [g1,m, · · · , gN,m]T ∈
CN 1. x̃k,m ∈ C1×T denotes the echo signal reflected from

the k-th target as x̃k,m = βm,k [Gma(θk,m)]
T
Xm, for which

βm,k ∈ C is the reflection coefficient. a(θk,m) ∈ CN is the

steering vector corresponding to the physical target direction

θk = sinϑk, where ϑk ∈
[
−π2 , π2

]
, where the spatial direction

θk,m is defined as θk,m = ηmθk. Here, ηm denotes the

distortion coefficient due to beam-squint and defined as the

ratio of the subcarrier frequencies, i.e., ηm = fm
fc

, where fc
is the carrier frequency and fm = fc +

B
M (m − 1 − M−1

2 )
denotes the frequency of the m-th subcarrier for bandwidth

1For the mismatch-free scenario, wherein the antennas are fully-calibrated,
we have Gm = IN .

TABLE I
NOMENCLATURE

θk True DOA θk,m Beam-squinted DOA
Xm Transmitted Signal Ym Received Signal
F Precoder Matrix W Combiner Matrix

Gm GPM Matrix Tm(θ) Transformation Matrix

UN
m Corrupted Noise Subspace VN

m Corrected Noise subspace

B [9]. To provide further insight, we define the n-th element

of a(θk,m) in terms of θk as

[a(θk,m)]n = 1/
√
N exp

{
j(n− 1)

2πd

λm
θk
}

= 1/
√
N exp

{
j(n− 1)πηmθk

}
, (2)

where d is the half-wavelength element spacing, i.e., d = c
2fc

,

where c denotes the speed of light, and λm = c
fm

is the

wavelength of the m-th subcarrier2. The aim of this work is

to estimate the beam-squint-corrected DOA angles {θk}Kk=1

and the GPM parameters {gn,m}Nn=1 for m ∈M.

III. THE PROPOSED NEAT-MUSIC APPROACH

Define W̆ ∈ CN×NRF as the analog combiner matrix

applied to the array output Ỹm in (1) as

Y̆m = W̆HỸm =
K∑

k=1

W̆HGma(θk,m)x̃k,m + W̆HÑm, (3)

which yields an NRF × 1 data for parameter estimation. In

order to collect the full array data from NRF RF chains, we

follow a subarrayed approach, wherein the BS activates the

antennas in a subarrayed fashion to obtain N × 1 array data

in J = N
NRF

time slots. Let Wj ∈ CN×NRF be the applied

combiner matrix at the j-th time slot (instead of W̆ in (3)) as

Wj =
[
0T

jNRF×NRF
,W

T

j ,0
T

N−(j+1)NRF×NRF

]T

∈ CN×NRF ,

where Wj ∈ CNRF×NRF represents the combiner for the j-
th block for j = 1, · · · , J . Note that during collecting the

received target echoes for J = N
NRF

time slots, the target

DOAs are assumed to maintain invariant within a time slot

while changing over time slots, which is reasonable for THz

system wherein the symbol time in the order of picoseconds [2,

18]. Then, the NRF × T echo signal reflected from the K
targets at the j-th time slot is

Yj,m = WH

j Ỹm =
K∑

k=1

WH

jGma(θk,m)x̃k,m +WH

j Ñm

=
K∑

k=1

βkW
H

j hk,mhT

k,mXm +Nj,m, (4)

where hk,m = Gma(θk,m) ∈ CN and Nj,m =

WH
j Ñm ∈ CNRF×T represents the noise term. Defining

Hm = [h1,m, · · · ,hK,m] ∈ CN×K , Dj,m = WH
jHm ∈

CNRF×K and Πm = diag{β1,m, · · · , βK,m} ∈ CK×K , (4)

becomes Yj,m = Dj,mΠmHT
mXm+Nj,m. Stacking all Yj,m

2In beam-squint-free case, e.g., narrowband (
|fm−fc|

fc
≪ 1), we have

ηm → 1 and θk → θk,m.
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Algorithm 1 NEAT-MUSIC

Input: Ym, W, K , Ψ, ǫ, ηm for m ∈M.

1: Initialize: ℓ = 1, Gℓ
m = IN for m ∈M.

2: Rm = 1
TYmYH

m for m ∈M.

3: Obtain the noise subspace UN
m from Rm for m ∈ M.

4: for θ ∈ Ψ do

5: Construct T(θm) = diag{τ (θm)} with

τn(θm) = exp{jπ(n− 1)∆m(θ)} for m ∈M.

6: end for

7: while ǫℓ < ǫ do

8: for m ∈ M
9: Construct the corrected noise subspace as

VN
m
ℓ ← TH(θm)Gℓ

m
H
WUN

m.

10: Construct the MUSIC spectra for m
11: P ℓm(θ)← 1

aH(θ)VN
m

ℓVN
m

ℓH
a(θ)

.

12: end

13: Combined MUSIC spectra: P ℓ(θ)←∑M
m=1 P

ℓ
m(θ).

14: Find {θ̂ℓk}Kk=1 from the K highest peaks of P ℓ(θ).
15: Construct a(θ̂ℓk), and solve (11) for gℓm for m ∈ M.

16: Gℓ+1
m ← diag{gℓm} for m ∈ M.

17: ℓ← ℓ+ 1.

18: ǫℓ ←∑K
k=1 |θ̂ℓk − θ̂ℓ−1

k |.
19: end while

Return: θ̂k = θ̂ℓ−1
k and Ĝm = Gℓ

m for m ∈M.

into a single N × T matrix leads to the overall observation

matrix Ym ∈ C
N×T as Ym =

[
YT

1,m, · · · ,YT

J,m

]T
, i.e.,

Ym = DmΠmHT

mXm +Nm, (5)

where Dm =
[
DT

1,m, · · · ,DT

J,m

]T
= WHHm ∈

CN×K W = [W1, · · · ,WJ ] ∈ CN×N and Nm =[
NT

1,m, · · · ,NT

J,m

]T
. The N × T array output data in (5) is

collected via limited number of RF chains from multiple time-

slots, which can be used to construct the covariance matrix to

invoke the MUSIC algorithm. In the following, we introduce

an alternating approach, wherein the DOA angles and GPM

parameters are estimated one-by-one iteratively.

A. DOA Estimation

To estimate the physical DOA angles via NEAT-MUSIC, we

first introduce the corrected noise subspace for beam-squint

[17]. Define the N ×N covariance matrix of the observations

in (5) as Rm = 1
TYmYH

m, i.e.,

Rm =
1

T
Dm

(
PrT

MN
Π̃m

)
DH

m +
1

T
NmNH

m

≅
Pr
MN

DmΠ̃mDH

m +
σ2

N
IN , (6)

where NmN
H
m ≅

σ2T
N IN since WHW = 1

N and Π̃m =

ΠmHT
mH∗

mΠ
H

m ∈ CK×K . The eigendecomposition of Rm

yields Rm = UmΣmUH
m, where Σm ∈ CN×N is a diagonal

matrix composed of the eigenvalues of Rm in a descending

order; Um =
[
US
mUN

m

]
∈ CN×N corresponds to the eigen-

vector matrix; US
m ∈ CN×K and UN

m ∈ CN×(N−K) are the

signal and noise subspace eigenvector matrices, respectively.

By exploiting the orthogonality of the signal and noise

subspaces, i.e., UN
m ⊥ US

m, and the fact that the columns

of US
m and Dm span the same subspace [17, 19], we have

‖dH

k,mUN
m‖22 = 0, (7)

where dk,m = WHGma(θk,m) ∈ CN is the k-th column

of Dm ∈ C
N×K . Notice that (7) implies the orthogonality

with the corrupted steering vector dk,m, whereas our aim is

to estimate the beam-squint-free physical DOA θk. Therefore,

we define VN
m ∈ CN×(N−K) as the beam-squint-corrected

noise subspace matrix, which is orthogonal to the nominal

steering vectors. To that end, we first define the beam-squint

transformation matrix T(θk,m) ∈ CN×N , which provides

a linear mapping between the nominal and beam-squint-

corrupted steering vectors3 as

a(θk,m) = T(θk,m)a(θk), (8)

where T(θk,m) = diag{τ (θk,m)}, for which the n-th element

of τ (θk,m) ∈ CN is τn(θk,m) = exp{jπ(n− 1)∆m(θk)},
where ∆m(θk) denotes the beam-squint [9, 11] as ∆m(θk) =
(1− ηm)θk. Using (8), (7) is rewritten as

‖
(
WHGma(θk,m)

)H

UN
m‖22 =

‖aH(θk)T
H(θk,m)GH

mWUN
m‖22 = ‖aH(θk)V

N
m‖22 =0, (9)

where VN
m , TH(θk,m)GH

mWUN
m is the corrected noise

subspace matrix. Examining (9) reveals the useful property

regarding the orthogonality of the corrected noise subspace

VN
m and the beam-squint-free steering vectors as a(θk) ⊥ VN

m

for m ∈ M. Consequently, given Gm, we can write the beam-

squint-corrected MUSIC spectra for M subcarriers as

P (θ) =

M∑

m=1

1

aH(θ)VN
mVN

m
H
a(θ)

, (10)

whose K highest peaks correspond to the physical target

directions {θ̂k}Kk=1, which can be identified through a peak-

finding algorithm for (10) only once since it includes the

combination of spectra for M subcarriers.

B. GPM Parameter Estimation

Using the DOA angles {θ̂k}Kk=1 obtained from (10), the

GPM parameters are found by solving the following optimiza-

tion problem, i.e.,

minimize
gm

gH

mΘmgm, (11)

where Θm is an N ×N diagonal matrix as Θm =∑K
k=1 diag{a(θ̂k)}HVN

mVN
m

H
diag{a(θ̂k)}. The problem in

(11) is convex, and its optimal solution is given by [19]

ĝm = evmin{Θm}, (12)

where evmin{Θm} is the eigenvector corresponding to the

smallest eigenvalue of Θm.

Algorithm 1 presents the algorithmic steps for the proposed

NEAT-MUSIC approach. Specifically, we first compute the

3Note that T(θk,m) only involves the corruptions due to beam-squint
whereas the remaining uncertainties can be modeled in the GPM matrix Gm.
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beam-squint-corrupted noise subspace UN
m and the beam-

squint transformation matrix T(θk,m) for θ ∈ Ψ = [−1, 1]
in Steps 2-6. Then, the estimated DOA angles θℓk and the

GPM parameters Gℓ
m are computed iteratively in Steps 8-13

and 14-15, respectively. The alternating algorithm in NEAT-

MUSIC terminates when the estimated DOA angles in two

consecutive iterations satisfy
∑K

k=1 |θ̂ℓk − θ̂ℓ−1
k | ≥ ǫ for a pre-

defined threshold ǫ. While the alternating algorithm does not

guarantee optimality, its convergence is shown in the relevant

literature [8, 15, 16, 19]. Nevertheless, the proposed approach

attains the CRB very closely (see Fig. 2).

C. Computational Complexity and Identifiability

The complexity of the proposed NEAT-MUSIC approach

is mainly due to eigendecomposition of Rm (O(MN3)),
solving the minimum eigenvalue problem in (11) (O(MN3))
as well as the computation the corrected noise subspace

VN
m (O(MN2[3N − K])) for m ∈ M. Thus, the overall

computational complexity order is O(MN2[5N −K]). Note

that the complexity reduces to O(2MN3) for the traditional

MUSIC algorithm, which does not account for beam-squint.

The problem of DOA and GPM parameter estimation involves

K and MN unknowns, respectively, while the collected array

data from NRF RF chains for J = N
NRF

time-slots is N×1 for

M subcarriers. Hence, the proposed NEAT-MUSIC technique

is feasible only if rank{UN
mUN

m
H} = N −K ≥ 1, provided

that T ≥ K data snapshots are available. This condition

becomes NRF − K ≥ 1 if the output for a single time-slot

is used.

D. Theoretical Performance Analysis

We derive the theoretical mean-squared-error (MSE) of

the DOA and GPM estimation in the presence of beam-

squint. While the CRB is derived for various DOA esti-

mation settings including narrowband [20], wideband [21]

and GPM [19], our formulation includes the beam-squint

scenario. Let us first define the unknown vector as ψ =
[θ1, · · · , θK ,∆1(θ1), · · · ,∆M (θK),gT

1 , · · · ,gT

M ]T ∈ CQ,

where Q = K + MK + MN . Then, the MSE for ψi is

lower bounded as E{(ψ̂i − ψi)(ψ̂i − ψi)
∗} ≥ [CRB]ii,

where i ∈ [1, Q] and CRB ∈ CQ×Q denotes the the CRB

matrix whose inverse has the following relationship with the

Fisher information matrix as [CRB−1]ij = [FIM]ij , where

i, j ∈ [1, Q]. To obtain FIM, we compute the logarithm

of the joint probability density function for T statistically

independent observations of Ym = [ym(t1), · · · ,ym(tT )]
as L = ln{p(ym(t1)), · · · , p(ym(tT ))}= −T ln {|Rm|} −
TTr{R−1

m Rm}, where Rm = E{YmYH
m} is the true co-

variance matrix and Tr{·} is the trace operation. Then, the

FIM is be computed from the expected value of the second

derivative of L with respect to (w.r.t.) ψ [19, 20] as

[FIM]ij= −E
{ L
∂ψi∂ψj

}
= TTr

{
R−1
m

∂Rm

∂ψi
R−1
m

∂Rm

∂ψj

}
,

where E{Rm} = Rm. Following the steps in [20, 21],

we get [CRB]ij = σ2

2T

∑M
m=1

1

Tr{KmΞ
ij
m} , where Km =

Π̃
H

mDH
mR

−1
m DmΠ̃m ∈ CK×K and Ξijm ∈ CK×K in-

clude the derivative of the actual steering matrix Dm =
WHHm = WH [h1,m, · · · ,hK,m] w.r.t. ψ as Ξijm ={
∂Hm

∂ψi

}H

W
(
IN −DmD†

m

)
WH

{
∂Hm

∂ψj

}
, where i, j ∈

[1, N ] and (·)† denotes the More-Penrose pseudo inverse.

To construct Ξijm, we need to compute the derivatives of

n-th element of hk,m = Gma(θk,m), i.e., [hk,m]n =

gn,me
jπ(n−1)ηm sin θ̃k , w.r.t. θk, ∆m(θk) and gn,m for n ∈

[1, N ], respectively, as

∂[hk,m]n
∂θk

= jgn,mπ(n− 1)ηm cos θ̃k[hk,m]n, (13)

∂[hk,m]n
∂∆m(θk)

= jgn,mπ(n−1)
ηm

1− ηm
ejπ(n−1)ηmθk[hk,m]n, (14)

∂[hk,m]n
∂gn,m

= [a(θk,m)]n. (15)

IV. NUMERICAL EXPERIMENTS

The efficiency of our NEAT-MUSIC algorithm is bench-

marked against the direct application of the MUSIC algo-

rithm [17], the MUSIC algorithm with known GPM parame-

ters (i.e., Gm) or known beam-squint (i.e., ∆m(θk)) as well

as the asymptotic performance bound, i.e., CRB, which is

derived in Sec. III-D in terms of root-MSE (RMSE), i.e.,

RMSEθ = ( 1
JTK

∑JT

i=1

∑K
k=1 |θ̂i,k − θi,k|2)1/2, where θ̂i,k

stands for the estimated DOA for the i-th instance of JT = 500
Monte Carlo trials. The default simulation parameters are

fc = 300 GHz, B = 30 GHz, M = 32, N = 128,

NRF = 8, T = 500, K = 2 [2, 9]. The DOAs are selected

uniform at random from the interval θ̃k ∼ unif[−π2 , π2 ]. In

order to achieve asymptotic DOA estimation performance, the

angular sector is divided into 214 uniform grid points for the

calculation of a(θ), a(θm) as well as Tm(θ) in (10). The

GPM parameters are generated based on Gm ∼ CN (IN ,
1
σ2

G

),

with the signal-to-noise ratio (SNR) SNRG = 10 log10

(
1
σ2

G

)
.

The combiner matrix is modeled as [W]i,j = 1√
N
ejφ, where

φ ∼ unif[−π2 , π2 ] for i ∈ [1, N ] and j ∈ [1, NRF]. Our NEAT-

MUSIC method presented in Algorithm 1 approximately con-

verges within ℓ = 20 iterations for ǫ = 10−4.

Fig. 2 shows the DOA estimation RMSE with respect to

SNR, defined as SNR = 10 log10(
ρ
σ2
n
) with ρ = Pr

M2N2 = 1,

when the GPM parameters are generated with SNRG = 10
dB. Notably, even the informed MUSIC algorithm displays

a relatively poor performance, marked by an approximate 5◦

DOA error, primarily because beam-squint effects are over-

looked. When beam-squint is perfectly calibrated (utilizing

NEAT-MUSIC but excluding GPM calibration), the DOA error

is lower than that of known GPM case. Nevertheless, the

RMSE cannot be further improved because of the precision

loss due to uncalibrated GPM and yields approximately 0.02◦

for SNR ≥ −10 dB. Thus, we can conclude that beam-

squint causes much severer RMSE than that of GPM for DOA

estimation problem. In contrast, our novel NEAT-MUSIC

algorithm outperforms the competing algorithms by attaining

the CRB very closely. This superior performance of NEAT-

MUSIC can be attributed to the calibration of both GPM and



5

-20 -15 -10 -5 0 5 10
10-3

10-2

10-1

100

Fig. 2. DOA estimation RMSE vs. SNR when SNRG = 10 dB.

beam-squint without any priori knowledge, thereby proving

high resolution DOA accuracy.
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Fig. 3. DOA estimation RMSE vs. B for SNR = 0 dB, SNRG = 10 dB.

Fig. 3 shows the DOA estimation RMSE versus bandwidth

B. In comparison, GPM-only and beam-squint-only calibra-

tion lead to approximately 5◦ and 0.02◦ DOA error while our

NEAT-MUSIC algorithm provides accurate DOA estimation

RMSE for wide range of bandwidth, i.e., B ∈ [0, 30] GHz.

V. SUMMARY

In this work, we investigated the DOA estimation prob-

lem for wideband THz mMIMO system. An auto-calibration

approach, called NEAT-MUSIC, is proposed to accurately

estimate the DOA angles in the presence of beam-squint and

GPM. While the latter has a marginal impact (∼ 0.02◦) on

DOA estimation, the former causes significant errors in the

array gain and be severe (∼ 5◦). It is shown that our NEAT-

MUSIC approach can effectively estimate the DOA angles

with high precision, without requiring additional hardware

components, e.g., time-delayer networks.
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