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Abstract—Non-terrestrial networks (NTNs) are expected to
play a pivotal role in the future wireless ecosystem. Due to
its high-dynamic characteristics, the accurate estimation and
compensation of carrier frequency offset (CFO) are crucial for
supporting 5G new radio (NR) enabled satellite direct access.
With emphasis on ensuring reliable uplink synchronization,
we propose a clustering-neural network based CFO estimation
scheme by virtue of NR random access preambles. By leveraging
the sparsity and regularity of input samples, the proposed scheme
can achieve fast and precise prediction of CFOs, while establish-
ing robustness against time uncertainty and channel variation
within a satellite beam. Simulation results validate the feasibility
of our scheme in various NTN scenarios, and demonstrate its
superiority in terms of stable estimation performance over the
existing schemes.

Index Terms—Non-terrestrial networks, carrier frequency off-
set estimation, random access preamble, clustering, neural net-
work.

I. INTRODUCTION

TO expand the coverage and services of terrestrial net-
works (TNs), the deployment of non-terrestrial networks

(NTNs) has been regarded as a promising solution [1], given
its capability of providing ubiquitous and continuous wireless
connectivity. So far, the 3rd generation partnership project
(3GPP) has been actively pushing forward the evolution of
5G new radio (NR) to support NTNs, and constantly delving
into the new range of use cases, such as satellite direct
access [2]. In this regard, one of the major challenges is
how to address the impacts of characteristics of NTNs that
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are prominently distinguished from TNs on NR-based air
interface transmissions [3]. In particular, large Doppler shifts
caused by the fast movement of NT platform, e.g. low-earth-
orbit (LEO) satellites, will result in dramatically increased
carrier frequency offsets (CFOs), which severely degrades the
performance of the orthogonal frequency division multiplexing
(OFDM) waveform based NR uplink [4]. Therefore, it is
essential to design an effective frequency alignment scheme
to achieve multi-access orthogonality in high-dynamic NTN
scenarios.

Towards this end, a potential solution is to pre-compensate
CFO in advance by using its value estimated in downlink
synchronization [5], [6], which, however, may lead to outdated
and inaccurate CFO adjustment due to the rapid variation
of NTN channels. A more reasonable alternative is to esti-
mate the CFO directly by means of the reference signals in
the NR uplink, e.g., random access (RA) preambles. Based
on the conjugate symmetric Zadoff-Chu (CSZC) sequences
[7], an integral CFO1 estimation method was proposed for
satellite communication system. In [8], two RA preamble
sequences with different root indexes were concatenated to
realize integral CFO estimation. However, the aforementioned
approaches rely on the specific channel models and preamble
formats, and moreover, they have to involve compensation
strategy or cyclic prefix (CP)-based scheme [9] to mitigate the
residual CFO. By contrast, the data-driven machine learning
(ML) techniques are demonstrating increasing feasibilities in
resolving synchronization issues, and neural networks (NNs)
have been recently adopted for CFO estimation in OFDM
systems [10], [11]. Nevertheless, the limited CFO estimation
range and high implementation complexity will restrict their
applications on board a payload-limited NR satellite receiver.

In this letter, we propose a clustering-NN based CFO esti-
mation framework tailored for high-dynamic NTN scenarios
by utilizing RA preambles. First, we design the selection
principles of preamble root index to enable the relationship be-
tween power delay profile (PDP) of the received preamble and
CFO unaffected by timing advance (TA) compensation errors
and multipath effect. Then, by making full use of the sparsity
and regularity of PDP samples, an efficient and lightweight
CFO estimation model is further proposed. Specifically, a
semi-supervised K-means clustering (SSKC) algorithm with
initialization optimization is utilized for coarse estimation,
while a sparse matrix dimension reduction (SMDR) based
back propagation NN (BPNN) is constructed to achieve fine
estimation. Simulation results demonstrate that our scheme
can not only realize the estimation of both integral and

1In OFDM systems, the CFO normalized by the subcarrier spacing can be
divided into two parts, i.e. the integral CFO and the fractional CFO.
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fractional CFOs, but is also capable of achieving significantly
improved performance under various NTN channel models, in
comparison to the benchmark schemes.

II. SYSTEM MODEL

Due to the excellent correlation properties and low peak-to-
average ratio, the ZC sequence has been adopted in 5G RA to
generate preambles, which is defined as

s(n)
△
= e−jπun(n+1)/NZC , 0 ≤ n ≤ NZC − 1 (1)

where u ∈ {1, . . ., NZC − 1} is the root index and NZC is the
length of sequence. If a user attempts to access the network, it
will select one of the available preamble sequences to transmit
on the physical random access channel (PRACH). By passing
over a satellite multipath fading channel, the received form of
the preamble sequence is given as

y(n) =
L∑

l=1

hls(n− τ − τl)e
−j2πεn/NZC + w (n) , (2)

where L, τ , and w represent the number of arriving paths,
the round-trip delay, and the complex additive white Gaussian
noise (AWGN), respectively, while hl and τl are the gain and
relative delay of the lth path. Note that in (2), ε is the normal-
ized CFO, which can be expressed as ε = fd/△fRA, where
fd denotes the Doppler shift, △fRA denotes the subcarrier
spacing (i.e. the reciprocal of the PRACH symbol duration).
Also, it can be further given as ε = εI + εF, where εI = R(ε)
(R(·) denotes the rounding operation) and εF ∈ (−0.5, 0.5]
represent the integral and fractional parts of ε, respectively.

III. A ML-BASED CFO ESTIMATION SCHEME

In this section, we present a ML-based CFO estimation
scheme with assistance of RA preambles for NTNs. The pro-
posed estimation scheme is based primarily on two findings:
1) PDP matrix is sparse and regular under the influence of
CFO, and 2) using SMDR to remove redundant features can
reduce the complexity of the NN while improving the accuracy
of CFO estimation. Specifically, we describe the proposed
scheme from the aspects of a robust preamble design and a
clustering-NN based estimation model construction
A. Proposed RA Preamble Design

As a fundamental basis for user identification, PDP is
usually computed by a periodical correlation between the
received signal and each of available preamble sequences,
which is given as

p(m)=

∣∣∣∣∣ 1

NZC

NZC−1∑
n=0

s∗(n)y[(n+m)modNZC]

∣∣∣∣∣
2

, 0≤m≤NZC − 1

(3)
where (·)∗ denotes the complex conjugate operation. To intu-
itively reveal the impact of CFO on PDP, we assume that τ can
be effectively compensated before the preamble transmission,
and the satellite channel model only contains the line-of-sight
(LOS) path with gain h1 = 1 [12]. In this case, the received
signal in (2) can be expressed as

y(n) = s(n)e−j2πεn/NZC + w(n). (4)
By substituting (1) and (4) into (3) and neglecting the noisy
terms, p(m) can be derived as

p(m) =

∣∣∣∣∣ 1

NZC

NZC−1∑
n=0

e−j2π(um+ε)n/NZC

∣∣∣∣∣
2

=


1, (um+ ε)modNZC = 0

0, (um+ ε)modNZC = v

( 1
NZC

sin[jπ(um+ε)]
sin[jπ(um+ε)/NZC]

)2, otherwise
(5)

where v ∈ Z and v ̸=0. It can be found from (5) that when ε is
an integer, i.e. ε = εI, there exists only one correlation peak
at the time index of (−εI/u)modNZC in PDP. On the other
hand, if ε = εI + εF and εF ̸= 0, the maximum correlation
peak of PDP does not shift, but several false peaks appear
at the multiple times of (−1/u)modNZC. Hence, the PDP
vector is sparse and regular in the presence of CFO. Based
on this feature, an efficient feature extraction can be deployed
in advance of the NN design to project the PDP vector to a
low-dimensional one, which is conducive to simplifying the
number of nodes in the input layer of the NN.

However, due to the inaccurate TA compensation and mul-
tipath effect, namely time uncertainty, in the practical NTN
scenarios, the PDP peaks corresponding to different CFOs may
be indistinguishable from each other, resulting in an obvious
performance degradation of network prediction. To solve this
problem, we propose two principles for the root index selection
of preamble sequences, listed as follows:

1) u is a prime number.
2) For arbitrary ε1, ε2 ∈ E and R(ε1) ̸= R(ε2),

|(−R(ε1)/u)modNZC−(−R(ε2)/u)modNZC|>2Tmax.
Here, E = [−εmax, εmax] denotes the range of normalized
CFOs that can be determined in an actual NTN scenario and
εmax is the maximum value of normalized CFO, while Tmax

represents the maximum value of time uncertainty.
In order to demonstrate the necessity of the proposed

principles, we consider the scenario referred to as D2 from
the NTN reference scenarios provided by 3GPP [13], wherein
the LEO satellite is placed at an altitude of 1200 km. In this
scenario, the high-speed movement of satellite can lead to a
Doppler shift of up to 21 ppm, which is equivalent to 42
kHz at a carrier frequency of 2 GHz. Then, we adopt the
PRACH Format 3 [14] with △fRA = 5 kHz and NZC = 839
to construct RA preamble, thus εmax is calculated as 8.4 and
E = [−8.4, 8.4]. Given that the maximum time uncertainty
Tmax = 8, we can obtain all the root indexes that satisfy the
proposed principles, among which the minimum one is 17.
For clarity, we illustrate the PDPs under different normalized
CFOs in Fig. 1, where NTN-TDL-B [15] model is used as
the channel model, and the signal-to-noise ratio (SNR) is set
as 20 dB. It is notable that, for the root index u = 7 that
does not satisfy the second principle, the interval between
the peak positions of PDPs corresponding to ε = 3.3 and
ε = −4.3 is only one time lag, which may result in a
wrong estimation result by considering the delay spread of
the channel. Nevertheless, this problem can be resolved by
the constrained design of the root indexes in the proposed
principles, thereby guaranteeing the correspondence between
PDP and CFO unaffected by the time uncertainty. Furthermore,
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Fig. 1. PDPs under different normalized CFOs for u = 7.
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Fig. 2. Framework of proposed CFO estimation scheme.

by exploiting different root ZC sequences to generate all the
available preamble sequences, the access user identification
can be achieved under various NTN channel models.

B. Proposed Clustering-NN Based CFO Estimation Model

In the following, we further propose a clustering-NN based
model for accurate CFO estimation in high-dynamic NTN
scenarios, by using a SSKC algorithm and a SMDR-optimized
BPNN. The framework of the proposed scheme is shown in
Fig. 2, which includes two phases, namely offline training
phase and online testing phase. At the offline phase, PDP
samples are generated by using all the available preamble
sequences based on the proposed principles. Then, an esti-
mation model is constructed by SSKC-BPNN, wherein SSKC
performs coarse estimation to find out the nearest integer to
CFO, and BP module further extracts and learns the features
hidden in the samples to estimate the accurate value of CFO.
At the online phase, the valid root indexes are first determined
by the captured correlation peaks in PDP calculation, and the
offline trained model is subsequently used to realize the CFO
estimation online for each of root indexes.

1) Dataset: The dataset is created from the PDP samples
of available preamble sequences across the normalized CFO
range of E with resolution of η, which is expressed as

D = {(pg, εg)|g = 1, ..., G}, (6)
where pg denotes the gth PDP sample with NZC features,
εg denotes the label of pg, and G is the size of the dataset.
Specifically, we adopt the same scenario and preamble format
as in Fig. 1 to build the dataset, and η is set to be 0.001. In
this way, E becomes [−8.400,−8.399, ..., 0, ..., 8.399, 8.400]
with length of ((2× 8.4)/0.001 + 1 = 16801), featuring both
integral and fractional CFOs. To further enhance the feasibility
of network model in high-dynamic satellite environments,
PDP samples under different NTN channels are collected into

TABLE I
NTN-TDL-B CHANNEL MODEL

Tap # Normalized delay Power in [dB] Fading destributing

1 0 0 Rayleigh
2 0.7249 -1.973 Rayleigh
3 0.7410 -4.332 Rayleigh
4 5.7392 -11.914 Rayleigh

TABLE II
NTN-TDL-D CHANNEL MODEL

Tap # Normalized delay Power in [dB] Fading destributing

1 0 -0.284 LOS path
1 0 -11.991 Rayleigh
2 0.5596 -9.887 Rayleigh
3 7.3340 -16.771 Rayleigh

the dataset, including AWGN, NTN-TDL-B and NTN-TDL-D
[15] (as detailed in Table I and Table II). For each channel
model, we randomly create 100 PDP samples per CFO value
in E , resulting in a total of G = 5040300 samples in D. From
the dataset, 70% of the samples are used for training, while
the remaining 30% are used for testing. Moreover, in order
to accelerate the convergence of the model, we compress the
sample values of PDP into the range of [0, 1].

2) SSKC-Based Coarse Estimation: Next, we investigate
how to achieve a rough estimation of CFO for each PDP
sample in D. It can be found from Fig. 1 and (5) that, the
maximum peak of PDP decreases in the presence of εF, but its
position does not change. Hence, the features of PDP samples
possess similarity in a certain range of CFO, such that the
coarse CFO estimation can be converted into a clustering
problem. Given the regularity of PDP samples and for better
construction of NNs, we pursue that each data sample can
belong to only one cluster after clustering, and thus we adopt
the K-means clustering algorithm in this work. Note that, if the
initialization is randomly selected, the clustering performance
of K-means can not be always guaranteed [16]. Different from
the existing works that proceed initialization optimization at
the expense of complexity, e.g. K-medoids and kernel K-
means, we propose a SSKC algorithm based on the features
of input data, which takes the regularity of PDP as prior
knowledge to guide the clustering process, thus can lead to
a more reasonable data classification.

In particular, we set the number of integral CFOs in E as the
K-value, and take their PDP samples as the initial clustering
centers, and the clustering process will be completed until
the iteration termination condition is reached. At the online
stage, the target data cluster k̂ is obtained by calculating the
Euclidean distance of the positions of maximum peaks, i.e.

k̂ = argmin
k

√
(x1 − xk)2 + (n1 − nk)2, k ∈ [1,K] (7)

where (x1, n1) and (xk, nk) denote the positions correspond-
ing to maximum peaks of the target PDP and the kth clustering
center, respectively. After clustering, the coarse CFO estima-
tion for each of target samples can be implemented at the
online phase.

3) SDMR-BPNN Based Fine Estimation: On account of the
limited payload of satellite receiver, we further resolve the fine
CFO estimation problem with the aid of BPNN, which has the
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advantages of low complexity and fast model training [17].
According to the clustering results, the PDP samples in each
of categories are used to train a BPNN. Since a network with
fewer layers can realize arbitrary nonlinear mapping in case
of unrestricted number of nodes of the hidden layer [18], we
employ a one-hidden-layer BPNN in this work.

As shown in Fig. 2, each layer of BPNN consists of multiple
neurons, whose output is a nonlinear function of a weighted
sum of neurons of its preceding layer, which is described as

Zj = F j
(
WjZj−1 + bj

)
, (8)

where Zj , Wj , bj denote the output, weights, and thresholds
of the jth layer for j = 1, 2, 3, respectively. F j(·) denotes
the transfer function of the jth layer, and is uniformly set
to be F (x) = 2(1 + e−2x)−1 − 1 here. To adapt the weights
and thresholds to different inputs, the BPNN tries to find the
residual CFO, i.e. ε̂F, that minimizes the loss function E,
which is defined as

E =
1

Gk

Gk∑
i=1

(εF − ε̂F)
2
, (9)

where Gk is the number of samples in the kth cluster after the
clustering process. Based on the aforementioned settings, the
offline training is performed by using the BP algorithm and
Gk samples until E is below a certain threshold or the number
of iteration terminations is reached, and the trained BPNN can
be exploited for the fine CFO estimation at the online phase.

However, the BPNN is fully-connected between the adjacent
layers, and consequently its complexity is proportional to the
number of neurons in each layer. We denote the number
of nodes in the hidden layer as H , and adjust its value by
combining with the empirical formula, which is given by

H = ⌊
√
C +O⌋+A, (10)

where C represents the number of nodes in the input layer, i.e.
NZC, O is the number of nodes in the output layer and is equal
to 1, A is a constant in the range of [1, 10]. Note that in (10),
C and H depend on the number of features of data that is
an NZC-dimensional vector, however, such high-dimensional
feature vector increases the complexity of the network model
and the difficulty of training. Actually, only few features of a
PDP sample are affected by the CFO, the rest of features are
mostly noise related, which contribute nothing to the target
output and may even worsen the estimation performance of
the network. By considering this fact, we attempt to reduce
the feature space dimension by extracting a subset of non-
redundant features, so as to improve accuracy and training
time of the network model.

By utilizing the sparsity of PDP in (5), we propose to extract
the sensitive features at the multiple times of (−1/u)modNZC
from each of samples. Specifically, we construct an indicator
vector of peak position, denoted as qu ∈ RNZC×1, for each of
the available root indexes. If the position is the multiple times
of (−1/u)modNZC, the element at that position is recorded as
1, otherwise it is equal to 0. Then, Hadamard product operation
is performed by qu and each of PDP samples, i.e.

p′
g = qu ◦ pg, (11)

where p′
g is the converted sparse PDP sample. By leveraging

TABLE III
PARAMETERS AND SETTINGS

Parameters Values

Sequence length, NZC 839
PRACH subcarrier spacing, △f 5 kHz

Maximum time uncertainty, Tmax 8
Root index, u 17
Resolution, η 0.001

Range of normalized CFOs, E [-8.4, 8.4]
Number of clusters, K 17

Number of hidden nodes, H 5
Signal-to-noise ratio (SNR) 20 dB

Channel models {AWGN, NTN-TDL-B/D}

the non-zero values of p′
g to reconstruct sample, the dataset

can be correspondingly reduced to a low-dimensional matrix
through the above SMDR process. In this way, the impact
of redundant features on the original dataset is effectively
removed, allowing the proposed model to focus more on the
sensitive features and reduce the reliance on invalid informa-
tion. As a result, the enhanced BPNN can learn data features
faster and more accurately to establish the relationship be-
tween input and output, leading to a better fine CFO estimation
performance online.

IV. PERFORMANCE EVALUATION

In this section, computer simulations are conducted to
assess the performance of the proposed scheme, and the data
generation and SSKC-BPNN model parameters are listed in
Table III. Here, the channel models in the simulations are
consistent with those in the dataset, and one OFDM symbol in
PRACH preamble with Format 3 is used for CFO estimation.
According to the proposed design principles, we can obtain all
the available root indexes independent of the time uncertainty,
and choose one of them in the simulation for convenience.

We show the performance of coarse estimation with dif-
ferent clustering algorithms under AWGN channel in Fig. 3,
where success prediction probability (SPP) is adopted as the
criterion and εI are set as −3, 1, 3, respectively. Note that, the
SPP of K-means remains relatively small value under arbitrary
SNR conditions, while our proposed SSKC with initialization
optimization, which considers the regularity of input data,
achieves perfect prediction performance for various CFOs as
SNR ≥ −15 dB. This demonstrates that the adoption of data
features as the prior knowledge can effectively improve the
performance of clustering.

Fig. 4 depicts the mean square error (MSE) curves of
BPNN-based fine estimation under various normalized CFOs,
ε, wherein the SNR is set to be 20 dB. It is observed that
the BPNN-based schemes can obtain stable MSE performance
across the entire estimation range, which is attributed to
the fact that BPNN with the exceptional nonlinear fitting
capability is able to establish precise input-output relationship
by extracting features from extensive data. Furthermore, by
retaining valuable information and resisting interference of
redundant features during the dimension reduction process, the
proposed SMDR-BPNN apparently lowers network complex-
ity and enhances the accuracy of CFO estimation. Besides,
a better estimation performance can be achieved with the
expansion of the dataset. It is also shown that our scheme is
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capable of possessing the robustness to various timing offsets,
since the influence of time uncertainty has been eliminated by
the proposed principles.

To reveal the feasibility of the proposed scheme in high-
dynamic NTN scenarios, we show the impacts of different
channel models on CFO estimation performance of the pro-
posed scheme in Fig. 5, where the CSZC sequences-based
integral CFO estimation scheme [7] and CP-based fractional
CFO estimation scheme [9] are adopted as benchmarks for
comparison. It can be found that the proposed scheme can
have evidently enhanced estimation accuracies under various
channel conditions, and the performance gain becomes larger
with the degree of the channel dispersion. The significant
performance improvement comes from the elaborate root index
selection principles as well as the denoising and adaptive
capabilities of the proposed clustering-NN model, robustifying
our estimator against channel variations. Also, it is proven that
the proposed scheme can achieve the complete CFO estimation
when both integral and fractional CFOs exist, as compared to
the existing ones.

V. CONCLUSION

In this letter, we proposed a clustering-NN based CFO
estimation scheme for 5G NTNs. Since the proposed scheme
is able to optimize the performance with reduced complexity
by leveraging the unique characteristics of PDP samples, it is
suitable for payload-limited satellite receiver while ensuring a
high accuracy of CFO estimation. Simulation results revealed
the superiority of our scheme in terms of the MSE, SPP, and
the robustness to channel models, compared with the previous
ones. Furthermore, it can also be exploited for ZC sequences
based frequency synchronization of other OFDM systems. In
the future, we plan to extend our work to investigate the
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Fig. 5. Performance comparison of different estimation schemes under
various channel models.

impact of different network models on the accuracy of CFO
estimation, such as convolutional NN.
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