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Abstract—We consider a reconfigurable intelligent surface
(RIS) assisted multiple-input multiple-output (MIMO) system
in the presence of scattering objects. The MIMO transmitter
and receiver, the RIS, and the scattering objects are modeled as
mutually coupled thin wires connected to load impedances. We
introduce a novel numerical algorithm for optimizing the tunable
loads connected to the RIS, which does not utilize the Neumann
series approximation. The algorithm is provably convergent,
has polynomial complexity with the number of RIS elements,
and outperforms the most relevant benchmark algorithms while
requiring fewer iterations and converging in a shorter time.

Index Terms—Reconfigurable intelligent surface, mutual cou-
pling, scattering objects, loaded thin wires, optimization.

I. INTRODUCTION

THE reconfigurable intelligent surface (RIS) is an emerg-

ing technology that has the ability of smartly control-

ling the propagation environment without the need of power

amplifiers or digital signal processing units [1]. In RIS-aided

communications, it is essential to utilize scattering models that

are electromagnetically consistent [2] and hence account for

the mutual coupling caused by the sub-wavelength design [3].

To this end, a communication model for RIS-aided systems

that explicitly considers the mutual coupling was introduced

in [4]. The model relies on a loaded thin wire dipole ap-

proximation for the reconfigurable elements of the RIS [5].

Departing from [4], the authors of [6] proposed a framework

for optimizing the tunable impedances of an RIS-aided single-

input single-output (SISO) system. Then, the authors of [7]

generalized the algorithm in [6] for application to multi-

user and multi-RIS multiple-input multiple-output (MIMO)

systems. Recently, the authors of [8] generalized the model in

[4] by including, in an electromagnetically consistent manner,

the impact of scattering objects in the environment. Also, an

algorithm that optimizes the sum-rate was introduced.

The algorithms in [6]–[8] rely on Neumann’s series approx-

imation for optimizing the impedances of the RIS. The novelty

and contribution of this paper are to develop an algorithm for

RIS-aided MIMO systems that does not utilize any approx-

imation. The proposed approach optimizes the tunable load

impedances one by one and iteratively. At each iteration, a

closed-form solution is provided by applying Gram-Schmidt’s

orthogonalization method. Using numerical simulations, we

compare the proposed approach with those in [7], [8], and

show that it requires fewer iterations and less time to converge.
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Notation: Matrices/vectors are denoted by capital/small bold

fonts. j is the imaginary unit. |z|, z∗, Re{z}, Im{z} denote

the absolute value, conjugate, real, imaginary parts of z. E{·}
denotes the expectation. ‖·‖ denotes the l2-norm. diag(a) is

the square diagonal matrix with the elements of a on the main

diagonal. A−1, AT , AH , det(A), tr(A), rank(A) denote the

inverse, transpose, hermitian, determinant, trace, rank of A.

A(i, j) is the (i, j)th element of A. 〈a,b〉 is the inner product

between a and b. IN and 0N denote the identity and zero

matrices of size N ×N . O(·) stands for the big-O notation.

II. SYSTEM MODEL

We consider an RIS-aided MIMO system that comprises a

transmitter with M antennas, a receiver with L antennas, and

an RIS with NRIS tunable scattering elements, similar to [8,

Fig. 1]. Based on [4], the transmit and receive antennas, and

the scattering elements of the RIS are modeled as cylindrical

thin wire dipoles of perfectly conducting material whose

length is l and whose radius a ≪ l is finite but negligible.

The thin dipoles of the RIS are controlled by tunable complex-

valued impedances. The inter-distance between adjacent scat-

tering elements is denoted by d ≤ λ/2, where λ is the

wavelength. Similar to [8], we consider Ne scattering objects

that mimic multipath propagation. They are distributed in

clusters and are modeled as cylindrical thin wire dipoles of

perfectly conducting material and are connected to specified

impedances. The length of the wires and the impedances de-

pend on the electromagnetic properties of the material objects.

If the scattering object is a metal plate, e.g., the impedances

are equal to zero. Compared with the statistical multipath

channel utilized in [7], the multipath model introduced in [8]

is electromagntically consistent. Notably, the impact of the

scattering objects is not a pure additive term as in [7].

Based on [8], the end-to-end channel can be expressed as1

HE2E = ZRL [ZROT − ZROSZscaZSOT]ZTG (1)

where ZRL =
(

IL + ZRRZ
−1
L

)−1
, ZTG = (ZTT + ZG)

−1
,

and Zsca = (ZSS + ZSOS + ZRIS)
−1

. Specifically, ZG ∈
CM×M and ZL ∈ CL×L are diagonal matrices containing

the impedances of the voltage generators at the transmitter

and the load impedances at the receiver; ZTT ∈ CM×M and

ZRR ∈ CL×L are the matrices containing the self and mutual

impedances at the transmitter and receiver; ZROT ∈ CL×M ,

ZROS ∈ CL×NRIS , ZSOS ∈ CNRIS×NRIS and ZSOT ∈
CNRIS×M are the matrices containing the mutual impedances

between different network elements, with {T,R, S,O} denot-

ing the transmitter, receiver, RIS and scattering objects.

From [8, Eqs. (9)-(13)], we obtain ZROT = ZRT −
ZROZ̄

−1
OOZOT, ZROS = ZROZ̄

−1
OOZOS − ZRS, ZSOS =

1As detailed in [2], (1) is valid in the near field of the RIS. Thus, it provides
consistent results as the number of RIS elements increases without bound.
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−ZSOZ̄
−1
OOZOS, and ZSOT = ZSOZ̄

−1
OOZOT − ZST, where

Z̄OO = ZOO +ZUS ∈ C
Ne×Ne , with ZUS being the diagonal

matrix containing the material-dependent load impedances of

the scattering objects, which are assumed given and fixed.

The remaining matrices are the self and mutual impedances

between pairs of network elements. Also, ZSS ∈ CNRIS×NRIS

is the matrix of self and mutual impedances between pairs

of RIS elements. When the mutual coupling is negligible,

ZSS is a (dominant) diagonal matrix. The impedance matrices

in (1) can be computed by using either the framework in

[3] or full-wave simulations. The analytical solution in [3]

is typically preferable, especially if ZSS is an optimization

variable [9]. Finally, ZRIS ∈ CNRIS×NRIS is a diagonal

matrix whose entries are the tunable impedances of the RIS

elements, which are to be optimized. ZRIS can be expressed

as ZRIS = diag
(

{R0,k + jXk}
NRIS

k=1

)

, where R0,k ≥ 0 is the

parasitic resistance that models the internal losses of the kth

RIS element, which is assumed fixed, and Xk ∈ P is the

reactance of the kth load impedance, whose value lies in the

feasible set P = [Xℓb, Xub] ⊂ R and is to be optimized.

Let x ∈ CM×1 be the transmitted vector. The transmit

covariance matrix is Q = E{xxH} ∈ C
M×M , with Q a

positive semi-definite matrix, i.e., Q < 0. We consider the

average sum power constraint tr(Q) ≤ Pt, where Pt is the

total power. Thus, the received vector is y = HE2Ex + n,

where n ∼ CN (0, σ2IL) is the circularly symmetric complex

Gaussian noise vector with zero mean and variance σ2.

Therefore, the achievable data rate can be formulated as

R(Q,ZRIS) = log2

[

det

(

IL +
HE2EQHH

E2E

σ2

)]

(2)

III. PROBLEM FORMULATION AND SOLUTION

We aim to maximize the achievable rate in (2) as a function

of Q and ZRIS. Specifically, we have (k ∈ {1, . . . , NRIS})

(P0) max
Q,Z

RIS

R(Q,ZRIS) (3)

s.t. Re{ZRIS(k, k)} = R0,k ≥ 0, ∀k (4)

Im{ZRIS(k, k)} ∈ P , ∀k (5)

tr(Q) ≤ Pt, Q < 0 (6)

The formulated optimization problem is non-convex due

to the joint optimization of the transmit covariance matrix

Q and the matrix of tunable impedances ZRIS. To tackle it,

we introduce an iterative algorithm based on the alternating

optimization (AO) method, which decouples (P0) into two-

sub-problems. First, (P0) is solved with respect to Q while

keeping ZRIS fixed, and then (P0) is solved with respect to

ZRIS while keeping Q fixed. The details are given next.

A. Optimization of Q

By keeping ZRIS fixed, (P0) boils down to a conventional

MIMO optimization problem [10]. Specifically, let HE2E =
UHE2E

ΣHE2E
VH

HE2E
be the singular value decomposition of

HE2E, where VHE2E
∈ CM×D , UHE2E

∈ CL×D, and D =
rank(HE2E) ≤ min(L,M). Then, the optimal Q⋆ is

Q⋆ = VHE2E
diag(p⋆1, . . . , p

⋆
D)VH

HE2E
(7)

where p⋆i = max
((

1/α− σ2
/

ΣHE2E
(i, i)2

)

, 0
)

, with α sat-

isfying
∑D

i=1 p
⋆
i = Pt (water-filling power allocation).

B. Optimization of ZRIS

By keeping Q fixed, the resulting optimization problem with

respect to ZRIS simplifies to (k ∈ {1, . . . , NRIS})

(P1) max
ZRIS

log2

[

det

(

IL +
HE2EQHH

E2E

σ2

)]

(8)

s.t. Re{ZRIS(k, k)} = R0,k ≥ 0, ∀k (9)

Im{ZRIS(k, k)} ∈ P , ∀k (10)

In [6]–[8], (P1) is tackled by capitalizing on the Neumann

series approximation, which offers a first-order linear approxi-

mation for Zsca as a function of ZRIS. We circumvent the Neu-

mann series approximation by devising a new approach that

combines Sherman-Morrison’s inversion formula, Sylvester’s

determinant theorem, and, more importantly, Gram-Schmidt’s

orthogonalization method. Specifically, the proposed approach

exploits the block coordinate descent (BCD) method [11,

Subsec. 2.7], which, at the kth step, updates the kth tunable

impedance ZRIS(k, k), while keeping all the other impedances

fixed and setting them to their most recently updated values.

We depart from Zsca and decouple the kth tunable

impedance ZRIS(k, k) to be optimized from all the other

impedances that are kept fixed. Accordingly, we write

Zsca =
(

ZSS + ZSOS + ZRIS,k + ZRIS(k, k)eke
T
k

)−1
(11)

where ZRIS,k denotes the matrix ZRIS with ZRIS(k, k) = 0,

and ek denotes the vector whose entries are all zeros except

the kth entry that is set equal to one. We aim to optimize the

elements of ZRIS one by one, i.e., at the kth step, we optimize

ZRIS(k, k) and keep all the other elements in ZRIS,k fixed.

For ease of presentation, we introduce the notation

Ak = ZSS + ZSOS + ZRIS,k, zk = ZRIS(k, k) (12)

Also, Ak and Ak + zkeke
T
k are assumed to be invertible ma-

trices, which is ensured by the physical nature of the problem

and can be tested during the execution of the algorithm.

By applying the Sherman-Morrison formula [12, Subsec.

2.7.1] to (11), the matrix Zsca can be written as

Zsca = Zsca (zk) = A−1
k −

A−1
k eke

T
kA

−1
k

1 + zkeTkA
−1
k ek

zk (13)

For ease of writing, we introduce the shorthand notation

Ã−1
k =

A−1
k eke

T
kA

−1
k

eTkA
−1
k ek

(14)

Bk = ZRL

[

ZROT − ZROS

(

A−1
k − Ã−1

k

)

ZSOT

]

ZTG

(15)

Ck = −ZRL

[

ZROSÃ
−1
k ZSOT

]

ZTG (16)

X1 (zk) =
1

σ2

(

1

χk

CkQBH
k +

(

1

χk

CkQBH
k

)H
)

(17)

X2 (zk) =
1

σ2|χk|2
CkQCH

k (18)
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where χk = χk (zk) = 1 + akzk and ak = eTkA
−1
k ek.

Equations (14)-(18) can be applied if ak 6= 0 and χk 6= 0,

which is ensured by the physical nature of the problem at

hand, and can be tested during the execution of the algorithm.

Hence, the end-to-end channel in (1) can be expressed as

HE2E = Bk +Ck/χk (zk) (19)

and the achievable data rate in (2) can be expressed as

R(zk) = log2

[

det

(

IL +
BkQBH

k

σ2
+X1 (zk) +X2 (zk)

)]

(a)
= log2

[

det

([

IL +
BkQBH

k

σ2

]

Sk (zk)

)]

(20)

= log2

[

det

(

IL +
BkQBH

k

σ2

)]

+ log2 [det(Sk (zk))] (21)

where (a) is obtained by first applying the eigenvalue decom-

position IL + BkQBH
k /σ2 = UkΣkU

H
k , where Uk is the

unitary matrix of eigenvectors and Σk is the diagonal matrix of

eigenvalues, and (UkΣkU
H
k )−1 = UkΣ

−1
k UH

k , and by then

defining Sk (zk) = IL +UkΣ
−1
k UH

k (X1 (zk) +X2 (zk)).

In (21), only Sk = Sk (zk) depends on the kth tunable

impedance zk to be optimized. Therefore, maximizing the

achievable data rate boils down to maximizing det(Sk). By

applying Sylvester’s determinant theorem [13], we obtain

det(Sk (zk)) (22)

= det
(

IL +Σ
− 1

2

k UH
k (X1 (zk) +X2 (zk))UkΣ

− 1

2

k

)

Denote D1 = −ZRLZROSA
−1
k , D2 = A−1

k ZSOTZTG.

Then, Ck = D1eke
T
kD2/ak. By definition of rank,

rank (Ck) ≤ min
{

rank (D1) , rank
(

eke
T
k

)

, rank (D2)
}

.

Since rank
(

eke
T
k

)

= 1, we obtain rank (Ck) = 1. Without

loss of generality, we can then write Ck = ukv
H
k , where

uk = −ZRLZROSA
−1
k ek, vH

k = eTk
A−1

k

ak
ZSOTZTG (23)

For ease of writing, we introduce the vectors

ũk = Σ
− 1

2

k UH
k uk, ṽH

k = vH
k QBH

k UkΣ
− 1

2

k (24)

By inserting X1 (zk) in (17), X2 (zk) in (18) into Sk (zk),
and employing the shorthand notation in (24), we obtain

Sk (zk) = IL+
ũkṽ

H
k

σ2χk (zk)
+

ṽkũ
H
k

σ2χ∗
k (zk)

+
ũkũ

H
k vH

k Qvk

σ2|χk (zk) |2
(25)

In (25), we note that the optimization variable zk appears

only in χk (zk) = 1+ akzk, while the vectors and matrices in

(25) are independent of zk. The next step is the computation of

the determinant of (25). Since the determinant is invariant to

a change of basis functions, Sk can be expressed in terms of a

convenient orthonormal basis that facilitates the computation

of det(Sk (zk)). To this end, we apply the Gram-Schmidt

orthogonalization [12, Subsec. 2.6.5] to the vectors ũk and

ṽk in (24), since they determine Sk (zk) in (25). The new set

of vectors is denoted by t1 and t2, and they are constructed

for being orthogonal to each other and to have a unit norm.

In detail, the two vectors t1 and t2 are set to t1 = 1
||ũk||

ũk

and t2 = 1
||t||t, with t = ṽk −

〈ṽk,t1〉
〈t1,t1〉

t1 =
||ũk||

2ṽk−ũH

k
ṽkũk

||ũk||2
.

Accoridngly, ũk and ṽk in (24) can be expressed as

ũk = (t1 t2)

(

||ũk||
0

)

, ṽk = (t1 t2)

(

tH1 ṽk

tH2 ṽk

)

(26)

Also, the last three addends in (25) can be reformulated as

ũkṽ
H
k = (t1 t2)

(

||ũk||ṽH
k t1 ||ũk||ṽH

k t2
0 0

)(

tH1
tH2

)

(27)

ṽkũ
H
k = (t1 t2)

(

||ũk||tH1 ṽk 0
||ũk||t

H
2 ṽk 0

)(

tH1
tH2

)

(28)

ũkũ
H
k vH

k Qvk = (t1 t2)

(

||ũk||
2vH

k Qvk 0
0 0

)(

tH1
tH2

)

(29)

In addition, the identity matrix IL can be written as

IL = (t1 t2)

(

1 0
0 1

)(

tH1
tH2

)

(30)

Let sk be the complex scalar defined as

sk (zk) =
||ũk||ṽH

k t1

σ2χk (zk)
+

||ũk||tH1 ṽk

σ2χ∗
k (zk)

+
||ũk||2vH

k Qvk

σ2|χk (zk) |2
(31)

Accordingly, det(Sk (zk)) in (22) can be expressed as

det(Sk)= det



(t1 t2)





1 + sk (zk)
||ũk||ṽ

H

k
t2

σ2χk(zk)
||ũk||t

H

2
ṽk

σ2χ∗

k
(zk)

1





(

tH1
tH2

)





(b)
= det





1 + sk (zk)
||ũk||ṽ

H

k
t2

σ2χk(zk)
||ũk||t

H

2
ṽk

σ2χ∗

k
(zk)

1



 = det (W) (32)

where (b) follows by defining T = (t1 t2) and noting

that det
(

TWTH
)

= det
(

THTW
)

= det (W), since

det
(

THT
)

= I2 as T is a unitary matrix by construction.

Since W = W (zk) in (32) is a 2×2 matrix, the determinant

of Sk = Sk (zk) can be expressed in closed-form as

det(Sk (zk)) = 1 +
c1

χk (zk)
+

c∗1
χ∗
k (zk)

+
c2

|χk (zk) |2
(33)

where

c1 =
||ũk||ṽH

k t1

σ2
, c2 =

||ũk||2vH
k Qvk

σ2
−

||ũk||2|ṽH
k t2|2

σ4

In conclusion, since χk (zk) = 1+ akzk, with zk = R0,k +
jXk and R0,k is assumed known and fixed, (P1) boils down

to maximizing the single-variable (i.e., Xk) function

f(Xk) = 1 +
c1

1 + ak(R0,k + jXk)
+

c∗1
1 + a∗k(R0,k + jXk)∗

+
c2

|1 + ak(R0,k + jXk)|2
, Xk ∈ P (34)

The optimal solution is stated in the following Proposition.

Proposition 1. Consider the optimization problem

X⋆
k = argmaxXk∈[Xℓb,Xub]f(Xk) (35)
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with f(Xk) in (34). Also, let X1
k and X2

k be defined as

X1
k =

Im{ c1
a∗

k

}+ 2R0,k Im{c1}+ c2 Im{ 1
a∗

k

}

2 (Re{c1}+R0,kc1a∗k) + c2
(36)

X2
k =

Re{c1}+R0,k Re{c1a∗k}+
c2
2

Re{c1} Im{ak} − Re{ak} Im{c1}

−

∣

∣

∣
c1a

∗
k

(

Re{ak}
|ak|2

+R0,k

)

+ c2
2

∣

∣

∣

Re{c1} Im{ak} − Re{ak} Im{c1}
(37)

Define R̄(Xk) = R(R0,k + jXk), with R(·) given in (21).

Then, the optimal solution X⋆
k in (35) is the following.

• If c1a
∗
k = c∗1ak and (2Re{c1}+ 2R0,kc1a

∗
k + c2) > 0:

X⋆
k =











X1
k if X1

k ∈ (Xℓb, Xub)

Xℓb if X1
k ≤ Xℓb

Xub if X1
k ≥ Xub

• If c1a
∗
k = c∗1ak and (2Re{c1}+ 2R0,kc1a

∗
k + c2) < 0:

X⋆
k =



















Xℓb if X1
k ∈ (Xℓb, Xub) , R̄(Xℓb) ≥ R̄(Xub)

Xub if X1
k ∈ (Xℓb, Xub) , R̄(Xℓb) < R̄(Xub)

Xub if X1
k ≤ Xℓb

Xℓb if X1
k ≥ Xub

• If c1a
∗
k = c∗1ak and (2Re{c1}+ 2R0,kc1a

∗
k + c2) = 0:

X⋆
k =

{

Xℓb if R̄(Xℓb) ≥ R̄(Xub)

Xub if R̄(Xℓb) < R̄(Xub)

• If c1a
∗
k 6= c∗1ak and Re{c1} Im{ak} > Re{ak} Im{c1}:

X⋆
k =































X2
k if X2

k ∈ (Xℓb, Xub) , R̄(X2
k) ≥ R̄(Xub)

Xub if X2
k ∈ (Xℓb, Xub) , R̄(X2

k) < R̄(Xub)

Xℓb if X2
k ≤ Xℓb, R̄(Xℓb) ≥ R̄(Xub)

Xub if X2
k ≤ Xℓb, R̄(Xℓb) < R̄(Xub)

Xub if X2
k ≥ Xub

• If c1a
∗
k 6= c∗1ak and Re{c1} Im{ak} < Re{ak} Im{c1}:

X⋆
k =































X2
k if X2

k ∈ (Xℓb, Xub) , R̄(X2
k) ≥ R̄(Xℓb)

Xℓb if X2
k ∈ (Xℓb, Xub) , R̄(X2

k) < R̄(Xℓb)

Xub if X2
k ≥ Xub, R̄(Xub) ≥ R̄(Xℓb)

Xℓb if X2
k ≥ Xub, R̄(Xub) < R̄(Xℓb)

Xℓb if X2
k ≤ Xℓb

Proof. It follows by computing the first- and second-order

derivatives of f(Xk) as a function of Xk, and by analyzing

when the stationary points are maxima in the feasible set.
Based on Proposition 1, the proposed complete algorithm

for iteratively solving (P0) is given in Algorithm 1.

IV. COMPLEXITY AND CONVERGENCE

A. Computational Complexity

We evaluate the computational complexity per iteration (i.e.,

for one iteration of the while loop in Algorithm 1) in terms of

complex multiplications. The complexity is determined by the

number of multiplications needed to compute Q⋆ and by NRIS

times (because of the for loop) the number of multiplications

needed to compute X⋆
k . For simplicity, we assume L ≤ M ,

L ≪ NRIS, M ≪ NRIS. The complexity of Q⋆ is determined

by the computation of HE2E in (1), whose complexity is deter-

mined by the product ZROSZscaZSOT. Thus, the complexity

Algorithm 1 Proposed algorithm for solving (P0)

Input: Compute the impedance matrices from [3, Lemma 2];
Initialize: q = 0, ǫ ≥ 0, r0 = [R0,1, . . . , R0,NRIS

]T , x(0) =

[X
(0)
1 , . . . , X

(0)
NRIS

]T ∈ PNRIS , R(−1) = 0, R(0) = R(Q(0),Z(0))

with Z(0) = diag(r0) + j diag(x(0)) and R(·, ·) defined in (2);

while |R(q) − R(q−1)| > ǫ do

Compute Q⋆ from (7);
for k = 1, . . . , NRIS do

Compute X⋆
k

from Proposition 1;
Update Z⋆

RIS(k, k)← R0,k + jX⋆
k

;
end for

q = q + 1, R(q) = R(Q⋆ ,Z⋆
RIS);

end while

Return: Q⋆ and Z⋆
RIS.

is O(N3
RIS + N2

RISL). The complexity of X⋆
k is determined

by the computations of A−1
k , Bk, Ck, as per (14)-(18), whose

complexities are O(N3
RIS), O(N2

RISL), O(N2
RISL). Thus, the

complexity is O(N3
RIS+N2

RISL). In conclusion, the complex-

ity of Algorithm 1 is O
(

(NRIS + 1)(N3
RIS +N2

RISL)
)

.

With similar approximations, the complexities of the al-

gorithms in [7] and [8] are O(2N3
RIS + N2

RISL
3) and

O
(

2N3
RIS +N2

RIS(LM + L+M)
)

, respectively. Since Algo-

rithm 1 optimizes the RIS elements one by one iteratively,

the complexity scales as O
(

N4
RIS

)

. The complexities of [7]

and [8] scale as O
(

N3
RIS

)

, since all the RIS elements are

optimized at once. The overall complexity depends, however,

on the number of iterations to converge and the amount of

time (in seconds) that each algorithm needs per iteration. In

contrast to [7] and [8], X⋆
k is available in closed-form. In Sec.

V, we show that Algorithm 1 needs few iterations to converge.

B. Convergence

Algorithm 1 exploits the BCD method. Specifically, the

objective function and the constraints in (P1) are continu-

ous and differentiable, the constraints have a decomposable

(decoupled) structure in the optimization variables, and the

feasible set of each optimization variable is closed and convex.

Also, according to Proportion 1, the solution X⋆
k in (35) is

the unique optimum. Based on [11, Prop. 2.7.1], therefore,

Algorithm 1 converges to a stationary point of (P1) and (P0).

V. NUMERICAL RESULTS

The simulation setup and parameters are the same as in

[8] to facilitate comparison. Specifically, we consider a 4-

antenna transmitter whose center is located at (0, 0)λ, a single-

antenna receiver located at (9.6, 14.4)λ, and an RIS whose

center is located at (0, 24)λ where λ = 10 cm. The inter-

distance at the transmitter is λ/2. The transmit and receive

antennas, RIS elements, and scattering objects are identical

thin wires of length l = λ/2 and radius a = λ/500. All of

them are oriented as in [8, Fig. 1]. We set R0,k = 0.2 Ohm, ∀k,

Pt = 21 dBm, σ2 = −80 dBm, P = [−302.50,−19.66] Ohm,

ZG = ZL = 50IM Ohm, ZUS = 0Ne
Ohm. Also, we consider

the presence of 4 randomly distributed clusters each containing

Ne = 50 scattering objects. The direct link is ignored due

to the presence of obstacles. The results are averaged over

100 independent realizations for the locations of the scattering

objects. In Algorithm 1, x(0) is initialized at random in the

feasible set and Q(0) is computed from (7) given x(0).
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Fig. 1: Convergence of the algorithms (the size of the RIS is equal)

Table II: Comparison of the execution time [seconds]
d Algo. 1 (90%) [7]

λ/2 0.001 0.800

λ/4 0.004 0.770

λ/8 0.167 8.135

λ/16 16.530 213.128

d Algo. 1 (98%) [8]

λ/2 0.001 0.0154

λ/4 0.008 0.896

λ/8 0.834 27.686

λ/16 170.807 946.404

In Fig. 1, we illustrate the rate when the inter-distance and

the number of RIS elements are configured for ensuring that

the size of the RIS is the same. Specifically, we consider the

case study when the mutual coupling is taken into account at

the design stage (MCA). We see that Algorithm 1 provides

superior performance compared with the algorithms in [7]

and [8]. Specifically, Algorithm 1 (i) converges faster and (ii)

reaches a higher value of rate. Both benefits are attributed

to two features of Algorithm 1: avoiding the Neumann series

approximation and using closed-form expressions for Q⋆ and

Z⋆
RIS at each iteration. Similar to [7] and [8], we see the

benefits of reducing the inter-distance of the RIS elements and

considering the mutual coupling at the optimization stage.

To better evaluate the execution time of Algorithm 1 and

compare it against [7] and [8], Table I shows the time (in

seconds) that the algorithms need to converge. Specifically,

the algorithms are deemed to have converged if the increment

of the rate in two consecutive iterations is less than 10−4. First,

we note that the three algorithms never cross each other, even

at convergence: Algorithm 1 reaches always the highest value

of rate, whereas, at convergence, the algorithms in [7] and

[8] reach (on average with respect to d) the 90% and 98%
of the rate provided by Algorithm 1. In Table I, we report

the amount of time that the algorithms in [7] and [8] need to

reach convergence, and the amount of time that is required

for Algorithm 1 to reach the 90% and 98% of the rate that it

achieves at convergence. We see the superiority of Algorithm

1, especially for small values of the inter-distance d.

In Fig. 2, we show the rate when NRIS is kept fixed, and the

size of the RIS decreases when d decreases. We report only

the results for Algorithm 1, since the algorithms in [7] and [8]

provide similar trends as those shown in Fig. 1. We compare

the case study when the mutual coupling is disregarded (MCU)

against the case study MCA, similar to [6]. In the MCU

case, the rate decreases as the mutual coupling becomes more

significant (d decreases). In the MCA case, the rate has a non-

monotonic behavior with d. Notably, the setup with d = λ/2
(negligible mutual coupling) provides almost the same rate as

the setup with d = λ/16. Thus, the size of the RIS can be

reduced by a factor of eight while keeping NRIS fixed.
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Fig. 2: Convergence of the algorithms (the number of RIS elements is equal)

VI. CONCLUSION

By assuming a discrete thin wire dipole model, we have

proposed a novel and provably convergent algorithm for

optimizing RIS-assisted MIMO systems in the presence of

scattering objects in the environment and mutual coupling

among the RIS elements. As for the impact of mutual coupling,

three main conclusions can be drawn: (1) if the size of the RIS

is kept fixed and the number of RIS elements is increased, the

rate increases if the RIS is optimized by taking the mutual

coupling into account; (2) if the number of RIS elements is

kept fixed and the inter-distance is reduced, the physical size of

the RIS can be reduced with no performance degradation with

respect to the typical d = λ/2 configuration, provided that the

RIS is optimized by taking the mutual coupling into account;

(3) if the mutual coupling is ignored, the rate decreases. Thus,

it is important to model the mutual coupling accurately and to

duly take it into account when optimizing the RIS.

REFERENCES

[1] M. Di Renzo et al., “Smart radio environments empowered by reconfig-
urable intelligent surfaces: How it works, state of research, and the road
ahead,” IEEE J. Sel. Areas Commun., vol. 38, pp. 2450–2525, 2020.

[2] ——, “Communication models for reconfigurable intelligent surfaces:
From surface electromagnetics to wireless networks optimization,” Proc.

of the IEEE, vol. 110, no. 9, pp. 1164–1209, 2022.
[3] V. Galdi et al., “Modeling the mutual coupling of reconfigurable

metaurfaces,” in European Conf. Antennas and Propag. (EuCAP), 2023.
[4] G. Gradoni et al., “End-to-end mutual coupling aware communica-

tion model for reconfigurable intelligent surfaces: An electromagnetic-
compliant approach based on mutual impedances,” IEEE Wireless Com-

mun. Letters, vol. 10, no. 5, pp. 938–942, 2021.
[5] P. C. Chaumet, “The discrete dipole approximation: A review,” Mathe-

matics, vol. 10, no. 17, 2022.
[6] X. Qian et al., “Mutual coupling and unit cell aware optimization

for reconfigurable intelligent surfaces,” IEEE Wireless Commun. Lett.,
vol. 10, no. 6, pp. 1183–1187, 2021.

[7] A. Abrardo et al., “MIMO interference channels assisted by reconfig-
urable intelligent surfaces: Mutual coupling aware sum-rate optimization
based on a mutual impedance channel model,” IEEE Wireless Commun.

Lett., vol. 10, no. 12, pp. 2624–2628, 2021.
[8] P. Mursia et al., “SARIS: Scattering aware reconfigurable intelligent

surface model and optimization for complex propagation channels,”
arXiv preprint arXiv:2302.01739v2, 2023.

[9] R. I. Zelaya et al., “Towards 6G and beyond: Smarten everything with
metamorphic surfaces,” in HotNets 2021. ACM, 2021, pp. 155–162.

[10] S. Zhang et al., “Capacity characterization for intelligent reflecting
surface aided MIMO communication,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 8, pp. 1823–1838, 2020.

[11] D. P. Bertsekas, “Nonlinear programming,” J. Operational Research

Society, vol. 48, no. 3, pp. 334–334, 1997.
[12] W. H. Press et al., Numerical recipes 3rd edition: The art of scientific

computing. Cambridge university press, 2007.
[13] E. H. Bareiss, “Sylvester’s identity and multistep integer-preserving

gaussian elimination,” Mathematics of Computation, vol. 22, 1968.


	Introduction
	System Model
	Problem Formulation and Solution
	Optimization of Q
	Optimization of ZRIS

	Complexity and Convergence
	Computational Complexity
	Convergence

	Numerical Results
	Conclusion
	References

