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Passive Handwriting Tracking via Weak mmWave
Communication Signals

Chao Yu, Yan Luo, Renqi Chen and Rui Wang

Abstract—In this letter, a cooperative sensing framework
based on millimeter wave (mmWave) communication systems is
proposed to detect tiny motions with a millimeter-level resolution.
Particularly, the cooperative sensing framework is facilitated
with one transmitter and two receivers. There are two radio
frequency (RF) chains at each receiver. Hence, the Doppler effect
due to the tiny motions can be detected via passive sensing
respectively at the receivers, and the velocities of the motions
can be estimated by integrating the Doppler frequencies. It is
demonstrated that the proposed cooperative sensing system is
able to track the handwriting with 90% error below 6 mm.
Moreover, the proposed cooperative sensing is robust to the
strength of received signal. For example, it works even without
the line-of-sight paths from the transmitter to the receivers or the
sensing target, where the received signal strength is not sufficient
for timing synchronization or demodulation.

Index Terms—Passive sensing, mmWave, handwriting tracking.

I. INTRODUCTION

Device-free handwriting trajectory reconstruction is an
emerging scenario in the field of human-computer interaction
(HCI). The absence of wearable devices provide users a greater
level of freedom in usage. Wireless communication systems,
because of their wide deployment, have significant potential
to enable device-free handwriting tracking. In this paper,
the handwriting tracking based on mmWave communication
systems will be investigated.

There have been a number of works exploiting the channel
state information (CSI) estimated for wireless communications
in human motion tracking. For example, the Widar system
proposed in [1] enabled precise tracking of body motion
trajectories at the centimeter level by detecting the Doppler
frequencies via CSI, where at least 6 receive RF chains were
requested. The IndoTrack system in [2] leveraged the Doppler
frequency and Angle-of-Arrival (AoA) information from 6
receive RF chains to track the trajectory. It was shown that
the error margin was within 0.48 m. Furthermore, the CSI-
based methods were also extended to investigate the fine-
grained handwriting strokes in WiDraw [3], WiTrace [4] and
CentiTrack [5]. Particularly, WiDraw harnessed the AoA of in-
coming wireless signals at the mobile device to track the hand
trajectory, with a median error of 5 cm. WiTrace extracted
the phase of signals reflected off the hand, and calculated the
distance of movement based on phase shifts. The estimated
trajectory was with a median error of 2.09 cm. CentiTrack
estimated the initial position and motion speed of the target
hand via the AoAs and Doppler frequencies obtained from 6
receive RF chains, such that the error of trajectory tracking was
suppressed to 1.5 cm. All the above works were implemented

via the sub-6GHz WiFi system. The sensing performance was
constrained by the wavelength of signals. Moreover, the CSI-
based sensing methods exhibit high sensitivity to received
signal strength. This is because a high-quality estimation of
CSI is necessary. As a result, the experiments of handwriting
tracking in the above works were conducted close to both the
WiFi transmitter and receivers, where there were line-of-sight
(LoS) paths between each other.

Passive sensing is another promising approach for human
motion detection with half-duplexing data communication
transceivers. For example, it was shown in [6] that human
body movements behind a wall can be tracked by exploiting a
WiFi signal in passive sensing. It was further demonstrated in
[7] that human breathing could be detected by WiFi passive
sensing. In [8], a mmWave-based passive sensing system
was developed to distinguish different gestures with high
accuracy. A link blockage prediction system for mmWave
communication was proposed via estimating the trajectory of
blockers in [9].

In this paper, we continue to show that passive sensing
via mmWave communication signals is able to reconstruct
handwriting trajectories with weak received signals, where
90% reconstruction errors are below 6 mm. Particularly, the
integrated sensing and communication system is composed of
one transmitter and at least two receivers, working on the 60
GHz band. There are two RF chains at the each receiver to
facilitate the passive sensing. The handwriting trajectory can
be reconstructed by fusing the Doppler frequencies detected
at both receivers. In addition to the accurate reconstruction, it
is show that the handwriting tracking is even feasible when
there is no LoS path from the transmitter to the receivers
or the writing hand. To the best of our knowledge, the
handwriting tracking via communication signals in non-line-
of-sight (NLoS) scenario has not been demonstrated before.

The remainder of this paper is organized as follows. Section
II provides an overview of the system. The detection algorithm
for Doppler frequency is presented in Section III. Section IV
describes the handwriting tracking method. The experimental
results and error analysis are presented in Section V, and the
conclusion is drawn in Section VI.

II. ARCHITECTURE OF COOPERATIVE PASSIVE SENSING

The proposed system for handwriting tracking consists of
one mmWave transmitter and at least two receivers, where
each receiver is with two RF chains. The transmitter and
receivers can be the base station (BS) and user equipments
(UEs) of downlink communications. Thus, two UEs coop-
eratively detects the handwriting via the downlink signals.
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(a) LoS (b) NLoS
Fig. 1. Example scenarios of cooperative handwriting tracking

The localization techniques have been adopted such that the
locations of the transmitter and receivers have been detected.
Moreover, time synchronization between the receivers with a
maximum error of 10 ms is assumed for the purpose of data
fusion.

As shown in Fig. 1, the transmitter directs a beam to cover
the handwriting tracking zone, including the two receivers and
the writing area. The writing pen or finger in the writing area
is named as the sensing target in this paper. As a remark note
that the path from the transmitter to the handwriting tracking
zone can be line-of-sight(LoS) or non-line-of-sight(NLoS).
The two receivers align one of their receive beams with the
above LoS or NLoS ray from the transmitter as the ones
marked by the blue color in Fig. 1, such that the downlink
signal without Doppler effect can be received. The above
beams are referred to as the reference beams, and the signal
propagation paths are referred to as the reference channels,
which provide the baseline signals for handwriting tracking.
Meanwhile, each receiver directs the other receive beam to the
writing area, which is referred to as the surveillance beam. The
signal propagation paths from the transmitter to the receivers
scattered off the sensing target in the writing area are referred
to as the surveillance channels. Initially, each receiver can
rotate its surveillance beam, such that the direction of writing
area can be obtained by finding the beam direction with the
most significant Doppler effect.

The two receivers estimate the Doppler frequencies of their
surveillance channels by comparing the received signals of
both reference and surveillance channels locally and respec-
tively. The estimated time-varying Doppler frequencies are
then synchronized and fused at one of the receivers or the
transmitter for handwriting tracking.

III. PASSIVE DOPPLER FREQUENCY DETECTION

A. Signal Model

Let s(t) be the information-bearing signal generated at the
transmitter, the received signal via the reference beam at the
i-th receiver (i = 1, 2) can be written as

yr,i(t) = hr,is(t− τr,i) + nr,i(t), 0 ≤ t ≤ T, (1)

where hr,i and τr,i denote the complex gain and delay of
the reference channel respectively, nr,i(t) denotes the noise
and interference, T is the duration of the transmit signal.

The interference consists of the signals via the surrounding
scattering clusters, e.g., sensing target, the other receiver and
etc. Due to the loss of scattering, the interference power is
usually much weaker than the signal power in the reference
channel.

Moreover, the received signal of the surveillance beam at
the i-th receiver (i = 1, 2), denoted as ys,i(t), consists of
the echo signals scattered off the target and surrounding static
scattering clusters. Thus, it can be written as

ys,i(t) =htar
s,i (t)s

(
t− τ tars,i (t)

)
e−j2πftar

d,i (t)t

+

Li∑
l=1

hl
s,is(t− τ ls,i) + ns,i(t), 0 ≤ t ≤ T,

(2)

where htar
s,i (t), τ tars,i (t) and f tar

d,i (t) denote the time-varying
complex gain, delay and Doppler frequency of the scattered
path off the sensing target respectively, Li is the number of
paths from static scattering clusters, hl

s,i and τ ls,i denote the
complex gain and delay of the l-th static path respectively, and
ns,i(t) denotes the noise.

The received signals of both RF chains at the two receivers
are sampled at the baseband with a period Ts, which can be
expressed as

yr,i[n] = yr,i(nTs) and ys,i[n] = ys,i(nTs),

where n = 1, 2, ...,T/Ts and i = 1, 2. As a remark note
that the signal components with zero Doppler frequency in
ys,i might interfere the estimation of target Doppler frequency
f tar
d,i (t). The least-square-based (LS-based) clutter cancellation

elaborated in [10] is applied for suppressing the above inter-
ference, and the signal of surveillance channel after clutter
cancellation is denoted as ŷs,i[n].

B. Doppler Frequency Estimation
In order to estimate the time-varying Doppler frequencies

at both receivers, a sliding-window method based on the the
cross-ambiguity function (CAF) is adopted. Particularly, the
Doppler frequencies are estimated every N0 samples, and a
window of Nw samples (a.k.a. correlation integration time,
CIT) is considered in each estimation. We shall refer to the
time instance of the k-th Doppler estimation as the k-th
sensing time instance. Then, the CAF between the reference
signal and the surveillance signal of the i-th receiver at the
k-th sensing time instance is defined as

Ri(k, fd) = max
τi,k

kN0+Nw−1∑
n=kN0

ŷs,i[n]y
∗
r,i[n− τi,k]e

−j2πfdnTs

(3)
where (.)∗ is the complex conjugate. It can be observed
that a peak value of Ri(k, fd) will be detected around
fd = f tar

d,i (kN0Ts). Since we focus on the feature extraction
of Doppler frequencies in this work, the delay τi,k is not
considered as a parameter of the CAF.

In order to avoid false alarm, an adaptive-threshold-based
method is adopted to detect the Doppler frequency from the
CAF. Particularly, a Doppler frequency fd is detected at the
k-th sensing time instance and the i-th receiver, if

Ri(k, fd) ≥ βi(k, fd),
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where the threshold βi(k, fd) can be calculated according to
[7]. Thus,

βi(k, fd) =
γ

2W + 1

W∑
p=−W

Ri(k, fd + p∆f), (4)

where W is the half length of training cells, γ > 1 is a scaling
factor for detection threshold, and ∆f = 1

TsNw
is the resolu-

tion of Doppler frequency. In practice, the detected Doppler
frequency may not be unique. We can choose the following
strongest component as the detected Doppler frequency:

f̂i(k) = argmax
fd

Ri(k, fd)

s.t. Ri(k, fd) ≥ βi(k, fd).

IV. TRAJECTORY TRACKING

Given the Doppler frequency detection at both receivers,
the cooperative handwriting tracking method is elaborated in
this section. The tracking can be conduced at either receiver
or the transmitter, where the detected Doppler frequencies
{f̂i(k)|∀i, k} have been collected. In the following, we first
establish the relation between the trajectory of the sensing
target and the Doppler frequency, followed by the tracking
algorithm.

A. Motion Model

As shown in Fig. 2, locations of the transmitter and two
receivers are denoted as (d, 0), (0, 0) and (xR2, yR2), re-
spectively. In the NLoS scenario illustrated in Fig. 1, (d, 0)
represents the location of the virtual transmitter. It is assumed
that d and (xR2, yR2) have been estimated via the methods
in the existing literature. For example, the directions of the
second receiver and the transmitter with respect to the first
receiver can be estimated via the MUSIC algorithm [11], and
the distances can be estimated by multi-tone ranging [12].

Fig. 2. Illustration of AoAs, AoD, and target’s mobility.

Let (xk, yk) be the location of the target at the k-th sensing
time instance, ϕ1,k, ϕ2,k and φk be the corresponding AoAs
and AoD of the surveillance channel at the two receivers and
the transmitter respectively, we have

ϕ1,k = arctan
(

yk

xk

)
ϕ2,k = arctan

(
yk−yR2

xk−xR2

)
φk = arctan

(
yk

xk−d

)
.

(5)

Moreover, let vk and θk be the speed and direction of the
target’s motion, the Doppler frequencies of the target sensed

by the two receivers at the k-th sensing time instance, denoted
as f1,k and f2,k, are given byf1,k = − 2fc

c vk cos
(
θk − ϕ1,k+φk

2

)
cos

(
ϕ1,k−φk

2

)
f2,k = − 2fc

c vk cos
(
θk − ϕ2,k+φk

2

)
cos

(
ϕ2,k−φk

2

)
,

(6)

where fc and c denote carrier frequency and light speed,
respectively.

Finally, the location update of the target at the (k+1)-th
sensing time instances is given by{

xk+1 = xk + vkN0Ts cos θk

yk+1 = yk + vkN0Ts sin θk.
(7)

B. Handwriting Trajectory Estimation

Let ϕ1,1 and ϕ2,1 be the initial AoAs of the sensing target
with respect to the two receivers at the first sensing time
instance. They can be estimated by rotating the surveillance
beams and finding the beam directions with the strongest
Doppler effect. Hence, the initial position of the target, de-
noted as (x1, y1), can be obtained by solving the following
equations: {

tan(ϕ1,1) =
y1

x1

tan(ϕ2,1) =
y1−yR2

x1−xR2
,

(8)

As a result, the handwriting trajectory can be tracked itera-
tively via the following steps, where the iteration index k is
initialized with k = 1.

Step 1: velocity estimation. In (6), let f1,k ≈ f̂1(k) and
f1,k ≈ f̂2(k), the speed vk and direction θk of the target
motion can be solved according to (5) and the knowledge on
(xk, yk).

Step 2: location update. With the estimation of speed vk
and direction θk, the location of the sensing target at the (k+
1)-th sensing time instance can be obtained from (7). Let k =
k + 1, and jump to the Step 1 unless the iteration terminates.

V. EXPERIMENTS AND DISCUSSION

Fig. 3. Block diagram of system implementation

In the experiments, the implementation of the proposed
system is shown in Fig. 3. The transmitter is implemented
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with one NI USRP-2954R connected with one Sivers 60 GHz
phased array. The transmit signal with a bandwidth of 5 MHz
consists of a training sequence and an OFDM-modulated data
payload. At each receiver, two Sivers 60 GHz phased arrays
with a common clock (45 MHz) are connected to one NI
USRP-2954R. The beam widths of both receive phased arrays
are 10◦. The phased arrays are configured with 64 pre-defined
beambooks, providing a scanning range of up to 90◦ with an
minimum spacing of 1.5◦. At the receive USRPs, the sampling
rate fs is 10 MHz, the sliding window duration is NwTs = 0.1
s, and the interval between two sensing time instances is
N0Ts = 0.01 s.

The experiments are conducted in a laboratory environment
with rich scattering clusters, e.g., displays and metallic cab-
inets. The placement of the two receivers and the writing
platform is illustrated in Fig. 4, where one volunteer is writing
on a pad such that the ground truth of the writing trajectories
can be recorded. Both LoS and NLoS scenarios are considered
in the experiments. In the LoS scenario shown in Fig. 4 (a), the
transmitter is 2.5 m away from receiver 1, while there is 1m
separation between the two receivers. In the NLoS scenario
shown in Fig. 4 (b), the LoS paths from the transmitter to the
two receivers and the sensing target are all blocked. Hence,
the cooperative sensing relies on the NLoS signal reflected off
the display and wall.

(a) LoS (b) NLoS
Fig. 4. Experimental scenarios.

A. Tracking Results in LoS Scenario
The results of handwriting tracking in the LoS scenario are

presented in this part. First, the detected Doppler frequencies
versus time at the two receivers are illustrated in Fig. 5, where
the digit ”3” is written. It can be observed that the duration
of handwriting is from 0.6 s to 4.4 s. The Doppler frequency
differs at the two receivers. It reaches a maximum value of
50 Hz at 2.2 s at the first receiver; meanwhile, the measured
Doppler frequency is −50 Hz at the second receiver. Moreover,
zero Doppler frequency can be observed at both receivers at
the time instances 1.2 s, 1.8 s, 2.5 s and 3.2 s. This is because
of the temporary stops (turning points) of the writing.

The reconstructed trajectory is depicted in Fig. 6. It can be
observed that the digit can be clearly identified. Moreover, by
comparing Fig. 6 and 5, zero Doppler can be found at the
three turning points of the trajectory, as marked in the Fig. 6.

B. Tracking Results in NLoS Scenario
The potential of passive sensing in handwriting tracking is

further exploited in the NLoS scenario, where the received

(a) RX1 (b) RX2
Fig. 5. The measured time-Doppler spectrograms at the two receivers.

Fig. 6. Reconstruction of the handwriting trajectory of the digit 3 in LoS
scenario.

(a) Digit 3 (b) Star
Fig. 7. Handwriting trajectory tracking results in NLoS Scenario.

signal power is significantly degraded due to the loss in
scattering and reflection. In this scenario, the volunteer first
writes a digit ”3”, and then draws a more complicated shape,
i.e., a star. The reconstructed trajectories and the ground truths
are compared in Fig. 7. In order to show the reconstruction
error, all the trajectories are aligned at the same initial point.
Note that reconstructed trajectories depend on the detection of
initial point (x1, y1), the detection error may raise distortion of
the reconstructed trajectories. The trajectory marked by orange
uses the correct values of (x1, y1), and the trajectory marked
by blue uses the wrong values. It can be observed that (1)
even with error in the detection of (x1, y1), the reconstructed
trajectories are still sufficiently clear to identify the digit and
the shape; (2) the reconstruction can be very close to the
ground truth with the correct values of (x1, y1).

C. Robustness Analysis on received SNR

In this part, the robustness of the passive sensing versus the
received SNR is demonstrated. In Fig. 8, the power spectral
density (PSD) of both reference channel and surveillance chan-
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nel in the NLoS scenario is illustrated, where the handwriting
is successfully tracked. It can be observed that the average
PSD of the surveillance channel is approximately 20 dB lower
than that of the reference channel. The latter SNR level may
not be sufficient for the detection of synchronization sequence.
In fact, the data obtained from our experiments reveals that the
successful rate of packet synchronization in the surveillance
channel is less than 10%.

As a comparison, a high received SNR is required in the
existing literature of handwriting tracking via CSI. This is
because an accurate estimation of CSI is critical for capturing
the phase shift due to the finger motions. As a result, the
writing area should be placed close to both the transmitter
and receiver in these works. To the best of our knowledge,
the handwriting tracking in NLoS scenario has not been
demonstrated in the existing literature.

Fig. 8. Power spectral density of received signals in the reference channel
and surveillance channel.

D. Trajectory Tracking Accuracy
In this part, the trajectory tracking errors in all the collected

character strokes are compared. Fig. 9 illustrates the cumula-
tive distribution functions (CDFs) of these errors in (1) LoS
scenario with correct (x1, y1), (2) NLoS scenario with correct
(x1, y1), and (3) NLoS scenario with incorrect (x1, y1). It can
be observed from the first two CDFs that with correct (x1, y1),
90% of errors are below 6 mm and 7 mm for LoS and NLoS
scenarios, respectively.

Since the coordinates of the initial points (x1, y1) are
detected via exhaustive beam search, the maximum AoA
detection error is less than 10◦ (the beam width is 10◦). In the
third CDF marked by the orange dash curve, we conducted
a reconstruction with a 10◦ initial AoA measurement error. It
can be observed that when the initial AoA measurement error
is 10◦, the trajectory exhibits a median error of 4.5 mm, with
90% of errors below 11.5 mm.

VI. CONCLUSION
In this paper, the cooperative reconstruction of handwriting

via an integrated sensing and mmWave communication system
is proposed and demonstrated. The system consists of one
transmitter (BS) and at least two receivers (UEs), where
the handwriting is detected at the two receivers via passive
sensing. It is demonstrated that in the LoS scenario, 50% of the
trajectory errors are below 2 mm; while in the NLoS scenario,
50% of the trajectory errors is below 2.5 mm even with weak
received signal in the surveillance channel.

Fig. 9. The CDF of trajectory estimation error.
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