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Data Augmentation of Bridging the Delay Gap for
DL-based Massive MIMO CSI Feedback
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Abstract—In massive multiple-input multiple-output (MIMO)
systems under the frequency division duplexing (FDD) mode,
the user equipment (UE) needs to feed channel state information
(CSI) back to the base station (BS). Though deep learning ap-
proaches have made a hit in the CSI feedback problem, whether
they can remain excellent in actual environments needs to be
further investigated. In this letter, we point out that the real-time
dataset in application often has the domain gap from the training
dataset caused by the time delay. To bridge the gap, we propose
bubble-shift (B-S) data augmentation, which attempts to offset
performance degradation by changing the delay and remaining
the channel information as much as possible. Moreover, random-
generation (R-G) data augmentation is especially proposed for
outdoor scenarios due to the complex distribution of its channels.
It generalizes the characteristics of the channel matrix and alle-
viates the over-fitting problem. Simulation results show that the
proposed data augmentation boosts the robustness of networks
in both indoor and outdoor environments. The open source codes
are available at https://github.com/zhanghy23/CRNet-Aug.

Index Terms—Massive MIMO, CSI feedback, deep learning,
data augmentation.

I. INTRODUCTION

THE massive multiple-input multiple-output (MIMO) sys-
tem is crucial to 5G communication systems [1] [2].

Equipped with a large number of antennas, the base station
(BS) requires real-time channel state information (CSI) to
conduct beamforming for performance gain. In massive MIMO
systems under the frequency division duplexing (FDD) mode,
the user equipment (UE) needs to detect and feed CSI back to
BS, since uplink and downlink channels share no reciprocity.
However, a huge number of antennas result in enormous
overhead for direct transmission of CSI. Therefore, the CSI
matrix must be compressed before being transmitted. The
traditional methods based on compressed sensing (CS) exploit
the sparsity of the CSI matrix [3]. However, the practical
system can not completely satisfy this requirement with the
large ratio compression.

Deep learning (DL) approaches have been widely utilized
to compress the CSI matrix in recent years. CsiNet [4]
firstly employ the encoder-decoder network structure, setting
followers a benchmark. In [5], CRNet adopts multi-resolution
convolution kernels to extract features since the sparsity of CSI
varies in different scenes. CLNet introduced in [6] achieves

The authors are with the Department of Electronic Engineering,
Tsinghua University, Beijing 100084, China, and also with the
Beijing National Research Center for Information Science and
Technology (BNRist), Tsinghua University, Beijing 100084, China (e-
mail: zhanghen23@mails.tsinghua.edu.cn; luzl18@mails.tsinghua.edu.cn;
zxd22@mails.tsinghua.edu.cn; jintaowang@tsinghua.edu.cn). (Corresponding
author: Jintao Wang.)

excellent performance based on the attention mechanism with
less computational overhead.

To enhance DL approaches training for CSI feedback, some
research regard the CSI matrix as pictures to perform data
augmentation. Liu [7] develops a model-driven augmentation
approach by cyclically shifting the magnitude and selecting
the uniform distribution as the augmented phase distribution.
Ji [8] proposes a jigsaw puzzles aided training strategy (JPTS),
which aims to maximize the mutual information in local
regions by predicting the proper locations of puzzle fragments.
Xiao et al. [9] exploits noise injection, flipping, shift, and
rotation enhancement to alleviate the over-fitting problem.

Commonly, there exists a domain gap between the envi-
ronment where we train the network and scenarios in real
applications. However, most of the existing works and data
augmentation approaches are tested in ideal environments,
which means that the training dataset and testing dataset are
generated in the same scenario. Faced up with the domain gap
between the training dataset and testing dataset, whether these
networks can keep excellent performance and whether data
augmentation approaches above can bridge the gap remain to
be verified.

In this letter, we simulate two possible cases in reality to test
existing networks and data augmentation approaches. Specif-
ically, the training dataset and testing dataset are generated
under different UE moving modes or ranges in our cases.
Simulation results demonstrate a decline in the compression
accuracy of existing networks compared to the performance
when their training and testing scenarios are the same. Certain
data augmentation methods proposed in the literature exhibit
limited effectiveness in these scenarios, as they primarily focus
on enhancing the learning of features present in the training
dataset. To address the domain gap resulting from diverse
UE motion modes or ranges, we introduce the bubble-shift
(B-S) data augmentation technique. Besides, we acknowledge
the complexity of outdoor scenes and propose the random-
generation (R-G) data augmentation specifically tailored for
outdoor scenes. By leveraging our proposed data augmentation
techniques, the performance of existing networks is signifi-
cantly improved.

The main contributions of this letter are listed as follows.
• B-S data augmentation is proposed to make up for the

domain gap in terms of the time delay. It circularly shifts
the CSI matrix in the time delay domain and ensures the
integrity of channel characteristics through bubble sort.

• R-G data augmentation is designed for outdoor scenes,
which helps mitigate the problem of over-fitting by gen-
erating possible channel conditions randomly.
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• Scenarios closer to reality are considered in CSI feed-
back, where there is a domain gap between the testing
dataset and the training dataset. The open source datasets
are available at https://github.com/zhanghy23/CRNet-
Aug.

II. SYSTEM MODEL

We consider a single-cell massive MIMO system of FDD
mode with Nt antennas at the BS and Nr antennas at the UE.
For simplicity, we take Nr = 1. The number of orthogonal
frequency division multiplexing (OFDM) sub-carriers is Nc.
We can describe the received signal y ∈ CNc×1 as follows:

y = Ax+ z, (1)

where x, z ∈ CNc×1 indicate the transmitted signal and
additive Gaussian noise respectively. In addition, A =
diag(hH

1 p1, · · ·,hH
n pn) represents equivalent channel matrix

where hi ∈ CNt×1 indicates the downlink channel response
vector and pi ∈ CNt×1, i ∈ {1, · · ·, Nc} is the beamforming
vector at sub-carrier i.

The BS needs downlink channel matrix H = [h1 · · · hNc
]H

to decide its beamforming vectors. Due to the non-reciprocity
between uplink and downlink channels, the channel matrix H
with 2NcNt elements needs to be detected and fed back from
the UE. Direct transmission leads to unacceptable overhead
for the system. Therefore, DL approaches have been used to
compress the CSI matrix H.

Most methods utilize the Fourier transform, transferring H
in the spatial-frequency domain to H

′
in the angular-delay

domain since H
′

is sparse.

H
′
= FcHFH

t , (2)

where Fc ∈ Nc × Nc and Ft ∈ Nt × Nt are both discrete
Fourier transform (DFT) matrices. Since the delay in multipath
is in a limited range, the first Na rows of H

′
have large

enough values. The elements left are near zero values. We
finally truncate the first Na rows of the matrix H

′
and denote

it as Ha.
In [4]–[6], the proposed networks all follow the structure of

auto-encoder [10]. The UE uses the encoder to compress Ha

into a short feature vector v and only transfers short v to the
BS. The BS exploits the decoder to recover it into Ĥa. The
whole process can be described below.

Ĥa = D(E(Ha,ΘE),ΘD), (3)

where D and E represent the function of encoder and de-
coder respectively. ΘD and ΘE denote corresponding network
parameters. The network selects the proper loss function to
perform the gradient descent, aiming to minimize the distance
between Ha and Ĥa.

III. PROPOSED DATA AUGMENTATION APPROACHES

A. Domain Gap in Practical Environments

Serious domain gap exists in the practical environment
between the real-time dataset (testing dataset) and the training
dataset. Fig. 1 shows two possible cases in reality. Fig. 1

(a) scenario where users' 

motion mode changes

(b) scenario where users' 

motion range changes

Fig. 1. Two possible scenarios in reality. The area in green represents the
users’ motion range of the training dataset and users of the testing dataset
appear and move in the blue area.

(a) demonstrates the scenario where the users’ motion mode
changes. The BS is at the center of the area. Users in the
training dataset move on the green fixed path. However, UEs
of the testing dataset can move at any blue path, which means
they can not only move like UEs of the training dataset but
also have more diverse motion modes. Since different motion
modes may lead to different channel characteristics, this case
can pose a challenge to the network.

Another scenario where users’ motion range changes is
shown in Fig. 1 (b). Compared with the training dataset in
the green area, the UEs in the testing dataset can appear and
move in a broader blue area randomly. In this case, networks
can only learn the CSI matrix from samples in the training
dataset but are short of information of the different CSI in the
real employment scenarios.

B. Bubble-Shift Data Augmentation

Since the domain gap between the training dataset and the
testing dataset can cause a decline in performance for the
networks, we design the data augmentation approach to bridge
the gap. For Ha in the angular-delay domain, information
related to time delay has a clear physical meaning. Assuming
the domain gap is caused by time delay, we propose B-S data
augmentation to improve the robustness of networks under
varying time delay.

In Ha matrix, if elements with huge values are in the first
several rows, it means a short time delay. Oppositely, the time
delay can be longer if the first several rows are near zero.
Therefore, the B-S approach is to change the internal structure
of the matrix and shorten or lengthen the delay in the training
dataset, keeping as many original channel features as possible.

The Ha matrix is composed of complex numbers with the
corresponding channel information. Therefore, we first divide
the Ha matrix to the amplitude and phase matrix. The phase
matrix shows a certain continuity and circularity instead of
complete randomness. Meanwhile, the phase has no effect on
the time delay. As a result, we decide to remain the phase
matrix unchanged to reserve the channel information in the
training dataset and only operate on the amplitude matrix.

We classify our algorithm into B-S (Upward) and B-S
(Downward), which deal with the amplitude of Ha matrix
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Algorithm 1 B-S (Upward)
function B-S (Ha, S )

for i = 1, ..., Nt

step← 1
M ← argmax{Ha(:, i)}
while step ≤ min{S,M}

circularly shift Ha(:, i) upward for one step
K ← Na

while Ha(K, i) > Ha(K − 1, i)
exchange Ha(K, i) and Ha(K − 1, i)
K ← K − 1

end while
step← step+ 1

end while
end for
HA ← Ha

to change the delay. B-S (Upward) can shorten the time
delay of the training dataset shown in Algorithm 1 and B-
S (Downward) can lengthen the time delay demonstrated in
Algorithm 2.

In Algorithm 1, Ha ∈ Na ×Nt and HA ∈ Na ×Nt indi-
cate amplitudes of CSI matrix before and after augmentation
respectively. S ∈ C is the hyper-parameter which represents
the cyclic shifting step. Each column of Ha is transferred
separately. We circularly shift each column upward to shorten
the delay. After every cyclic shifting, we should bubble the
bottom or top element and shift its position to be consistent
with the channel characteristics. Fig. 2 demonstrates the B-
S of a one-step cyclic shifting upward. Due to the influence
of DFT, we find the value on both sides of the maximum
amplitude decrease in turn generally. After we make the cyclic
shifting for one step, the top element will reach the bottom
as Fig. 2 shows. To arrange the most proper position for the
bottom element, we compare it with the element above to
bubble gradually. Finally, we reset its position and conduct
the next cyclic shifting. B-S (Downward) is similar, which
can be acquired in Algorithm 2.

In the B-S algorithm, there is no new element generated.
We only change the delay and remain the channel information
as much as possible. It is worth mentioning that the decision
between B-S (Upward) and B-S (Downward) depends on
the actual situation. If the feedback precision of the CSI
matrix with a short time delay is poor, we can apply B-S
(Upward) to enhance the training dataset. Correspondingly,
B-S (Downward) can be employed to deal with the situation
where networks cannot recover the CSI matrix with a long
time delay accurately.

C. Random-Generation Data Augmentation

Since outdoor environments are more complex and chal-
lenging, it is more difficult for the network to extract enough
features in the CSI matrix. We design the R-G data augmen-
tation to enhance the channel characteristics. Fig. 3 describes
the procedure of R-G. Similarly, the algorithm only focuses
on the amplitude of the CSI matrix and the phase remains the
same.

Algorithm 2 B-S (Downward)
function B-S (Ha, S )

for i = 1, ..., Nt

step← 1
M ← argmax{Ha(:, i)}
while step ≤ min{S,Na −M}

circularly shift Ha(:, i) downward for one step
K ← Na

while Ha(1, i) < Ha(K, i) < Ha(2, i)
exchange Ha(K, i) and Ha(1, i)
K ← K − 1

end while
step← step+ 1

end while
end for
HA ← Ha

As shown in Fig. 3, the matrix picture in outdoor scenes
is colorful and rich of the channel information. Most of the
highlights appear in blocks due to the geographic adjacency.
However, it is difficult to summarize the law of specific
values and locations for these highlighted blocks due to the
complex outdoor channel environment. The training dataset
cannot include all the possible locations and values of these
highlighted blocks, in which case, networks may fall into the
trap of over-fitting. The goal of R-G is to generate more
possible highlighted blocks in possible locations, enabling
networks to extract more general features and mitigate the
over-fitting problem.

In the schematic of R-G, we first select the row on which the
maximum of the CSI matrix is located and randomly select one
element on this row. Then, we generate a k × k square block
centered on this element (k = 4 in Fig. 3). Each element in
this square block is generated randomly between the maximum
and the minimum in uniform distribution. In this case, the time
delay of the CSI matrix is not destroyed and more possible
channel features are added to the CSI matrix.

IV. SIMULATION RESULTS AND ANALYSIS

A. Experiment Setting
We use COST2100 [11] to generate the data in the indoor

environment at 5.3GHz and outdoor environment at 300MHz.
The two cases described in Fig. 1 are further concretized.

In the scenario where users’ motion mode changes, we set
UEs in the training dataset to move at the farthest vertical path
away from the BS. UEs in the testing dataset can move at any
vertical path. The indoor environment has a square area with
a 20m length and UEs move on the vertical path at a speed
of 0.1m/s. The outdoor environment shares a square length of
400m and UE’s speed is 2m/s.

In the scenario where users’ motion range changes, UEs
from the training dataset can randomly appear in a smaller
area compared with those from the testing dataset. The indoor
area widens the square from 10m for the training dataset to
40m for the testing dataset and the outdoor area from 200m
to 800m. All the left settings remain the same as the default
setting in [11].
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Phase of  Phase of  

CircshiftCircshift BubbleBubble ShiftShift

Remain Unchanged

Amplitude of  Amplitude of  aHAmplitude of  aH

aHaH

Amplitude of  Amplitude of  AHAmplitude of  AH

Phase of  
AHPhase of  
AH

Fig. 2. The procedure of B-S (Upward) with S = 1. Each column of the
amplitude needs to be circularly shifted and each element can bubble to find
its proper location. The phase of Ha remains unchanged.

(a) Select the row on which 

the max element is located

(b) Randomly select one column 

and generate a colourful square

Fig. 3. The schematic of R-G with k = 4.

The uniform linear array (ULA) model is utilized with
Nt = 32 transmitting antennas and Nc = 1024 subcarriers.
We also take Na = 32 to truncate Ha. The number of
samples in the training dataset is 50,000 and turns to 100,000
after offline augmentation. The testing dataset includes 10,000
samples. Besides, the epochs, learning rate, batch size, and
other training settings follow [5] for a fair comparison. The
evaluation of performance is the normalized mean square error
(NMSE) between Ha and Ĥa as shown below:

NMSE = E

{
∥Ha − Ĥa||22
||Ha||22

}
. (4)

B. Performance of The Proposed B-S and R-G

We introduce the model-driven augmentation approach in
[7] which also uses the cyclic shifting as a baseline for
reasonable comparison. In the scenario where users’ motion
mode changes, we use B-S (Upward) and R-G algorithms to
enhance the training dataset. S is set to 2 in B-S (Upward) and
k is set to 4 in R-G data augmentation. All the augmentation
approaches are tested with the CRNet structure to have a fair
comparison. The performances are listed in Table I, where
“No Aug”, “M-D” and “B-S” indicate CRNet with no data
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Fig. 4. MSE loss descending trends comparison between B-S and B-S&R-G.

enhancement, the model-driven augmentation approach in [7]
(S = 2 is also set.) and our proposed B-S, respectively. “B-
S&R-G” represents that both B-S and R-G augmentation are
employed with CRNet.

As shown in Table I, CRNet without any augmentation
suffers from a decline in accuracy compared with results in
[5], where the training dataset and the testing dataset share the
same distribution in the motion mode. That means there exists
a domain gap between the training dataset and the testing
dataset due to the different motion modes. Our proposed B-
S (Upward) has greatly improved the accuracy in the indoor
environment, which indicates that the domain gap is caused
by the time delay as our assumption. B-S (Upward) shortens
the time delay in the training dataset, narrowing the delay gap.

Though “M-D” gets close to “B-S” at the outdoor scene of
1/4 and 1/32 compression rate, the R-G algorithm highlights
the channel information and “B-S&R-G” is the most superior.
Although “B-S&R-G” has higher MSE loss in the training
procedure, it achieves a lower loss under test than “B-S” shown
in Fig. 4. With the help of R-G, CRNet learns more generalized
features and thus the overfitting problem is suppressed.

The impact of hyperparameter k in R-G is also tested, which
is demonstrated in Table III. When k = 3, the generated
area is small and the enhancement effect of CSI features is
not obvious. If we excessively enlarge the random generation
region setting k = 6, the picture of the CSI matrix can be
more complex and irregular. Excessively big or small settings
of k both cause performance deterioration.

In the scenario where users’ motion range changes, B-S
(Downward) is used because UEs in the testing dataset are
further away from the BS and the CSI matrix may have a
longer time delay. It is hard for the network to process these
samples with a longer time delay.

We set S = 1 for B-S (Downward) and “M-D”. Table II
shows that “B-S” outperforms “M-D” in all the compression
rates under both indoor and outdoor scenarios. It is worth
noting that the NMSE of CRNet is -5.66dB with η = 1/4
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TABLE I
NMSE(DB) OF CRNET WITH EXISTING AND OUR APPROACHES IN MOTION MODE CHANGING SCENARIO

η 1/4 1/8 1/16 1/32 1/64

Methods NMSE NMSE NMSE NMSE NMSE
Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

No Aug -22.26 -7.84 -11.20 -6.04 -9.56 -4.30 -7.37 -2.39 -4.55 -0.37
M-D [7] -26.09 -9.48 -16.05 -7.04 -10.98 -5.37 -8.93 -3.60 -5.32 -0.75

B-S -28.22 -9.41 -17.73 -7.10 -13.02 -5.45 -10.55 -3.43 -6.65 -1.28
B-S&R-G \ -9.76 \ -7.32 \ -5.56 \ -3.80 \ -1.45

TABLE II
NMSE(DB) OF CRNET WITH EXISTING AND OUR APPROACHES IN MOTION RANGE CHANGING SCENARIO

η 1/4 1/8 1/16 1/32 1/64

Methods NMSE NMSE NMSE NMSE NMSE
Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

No Aug -19.88 -5.66 -10.14 -3.25 -6.01 -1.62 -4.14 -0.87 -2.34 -0.57
M-D [7] -22.03 -6.21 -10.90 -4.46 -8.69 -1.84 -5.92 -1.16 -4.58 -0.65

B-S -26.97 -7.29 -16.10 -4.92 -9.52 -2.01 -8.37 -1.20 -5.03 -0.69

TABLE III
NMSE(DB) COMPARISON OF B-S&R-G WITH DIFFERENT k SETTING IN

MOTION MODE CHANGING OUTDOOR SCENARIO

k
η 1/4 1/8 1/16 1/32 1/64

3 -9.42 -7.33 -5.38 -3.79 -1.41
4 -9.76 -7.32 -5.56 -3.80 -1.45
5 -9.52 -7.46 -5.80 -3.68 -1.18
6 -9.36 -7.10 -5.14 -2.88 -0.70

outdoor, meaning that this scenario is exceedingly bad and
the features of the CSI matrix are quite uncertain. Therefore,
R-G is not added to the network since it may result in more
confusion about matrix features and lose the enhancement
ability.

The step of cyclic shifting has a significant influence on
the result. We demonstrate the decline of performance as
S increases in the indoor scenario of users’ motion range
changing in Table IV. Since the general delay in the indoor
environment is relatively short, elements of huge values are
mostly distributed on the first few rows of the matrix. As a
result, we must ensure S in a limited degree avoiding excessive
increase of time delay.

V. CONCLUSION

In this letter, we proposed the data enhancement approaches
for DL-based massive MIMO CSI feedback task. We intro-
duced B-S algorithm making up the time domain gap caused
by diverse motion modes and ranges between the training
dataset and the real-time dataset (testing dataset) in practical
use. Besides, R-G data augmentation was designed to enhance
features in the outdoor channel since the outdoor scene was
more complicated. Experiments showed that our augmentation
improved network robustness.
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