
NAVREN-RL: Learning to fly in real environment via end-to-end
deep reinforcement learning using monocular images

Malik Aqeel Anwar1, Arijit Raychowdhury2

Department of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA, USA

aqeel.anwar@gatech.edu1, arijit.raychowdhury@ece.gatech.edu2

Abstract—We present NAVREN-RL, an approach to NAVigate
an unmanned aerial vehicle in an indoor Real ENvironment
via end-to-end reinforcement learning (RL). A suitable reward
function is designed keeping in mind the cost and weight
constraints for micro drone with minimum number of sensing
modalities. Collection of small number of expert data and
knowledge based data aggregation is integrated into the RL
process to aid convergence. Experimentation is carried out on
a Parrot AR drone in different indoor arenas and the results
are compared with other baseline technologies. We demonstrate
how the drone successfully avoids obstacles and navigates across
different arenas. Video of the drone navigating using the proposed
approach can be seen at https://youtu.be/yOTkTHUPNVY

I. INTRODUCTION

Over the past decade, there has been considerable success
in using Unmanned Aerial Vehicles (UAVs) or drones in var-
ied applications such as reconnaissance, surveying, rescuing
and mapping. Irrespective of the application, navigating au-
tonomously is one of the key desirable features of UAVs both
indoors and outdoors. Several solutions have been proposed
to make drones autonomous in an indoor environment. There
has been significant work towards using additional dedicated
sensing modalities such as RADAR [1] and LIDAR [2], which
provide high accuracy in navigation and obstacle avoidance
thus enabling autonomous flights possible. But when the pay-
load and the cost is taken into account, such systems are heavy
and expensive, making them almost impossible to be used in
low cost Micro Aerial Vehicles (MAV). Ultrasonic SONAR
is a cheap alternative but suffers from lack of accuracy and
reduced field of view (FOV). Hence for MAVs, using the on-
board and relatively cheap sensors, in particular cameras, is
an attractive option for autonomous indoor navigation.

In recent years, RL has been extensively explored for
different type of robotic tasks. The model-free nature of RL
makes it suitable in the problems where little or nothing
is known about the environment. RL has been successfully
implemented in games and has shown beyond human level
performance [3], [4]. However, RL is a data-hungry method
and often requires more data compared to other supervised
techniques to generate comparable results. The requirement
of a large training data-size is often addressed by training
in a simulated environment. However, if the environment is
unknown, off-line training presents low accuracy and higher
crash rates. So far, limited success has been achieved training
in real environments. Further, ensuring safety of the agent
during training is also challenging.

In this paper we explore a single-camera-based autonomous
navigation and obstacle avoidance for MAVs in real envi-
ronments. Traditional systems employ handcrafted sensing
and control algorithms to allow navigation and has led to
significant progress in this field [5], [6]. Recently, the success
of deep neural networks have enticed researchers to study
neuromorphic models of autonomous navigation [7]–[9]. In
spite of the success of such machine learning models, we also
recognize that true autonomy in intelligent agents will only
emerge when bio-mimetic systems can perform continuous
learning through interactions with the environment.

The main contributions of the paper are as follows:
• Demonstration of end-to-end Deep RL for collision

avoidance using monocular images only and without the
use of any other sensing modality.

• Overcoming the issues associated with the implementa-
tion of RL in real environments by designing a suitable
reward function that takes into account both the safety
and sensor constraints.

• Using expert data and knowledge based data aggregation
to improve the RL convergence in real time.

II. RELATED WORK

Our principal goal is to enable the UAV to fly by itself in
a real environment, without incurring any additional hardware
or sensor cost. Most of the low-cost MAVs come equipped
with an on-board camera and Inertial Measuring Unit (IMU).
So the use of image frames for navigation is an area of active
research. We have studied supervised learning for drone nav-
igation. [10] collects a data-set of 11,500 videos of crashing
and learns a neural network that classifies an image as “crash”
or “no crash”. Based on that knowledge, the authors use a
handcrafted algorithm to steer and navigate the drone away
from obstacles. [11] uses an indoor data-set and classifies
the images according to the action taken by the drone. They
define a set of five actions in the action space of the drone,
hence posing the problem as a classification problem with five
classes. A supervised image classifier with three classes is used
in [12] to train a deep neural network for forest navigation. The
data-set is collected by mounting three cameras on a hiker’s
head facing forward, left and right. [13] uses RL as the online
learning mechanism to navigate a drone in a forest. A camera
frame is taken and is pre-processed before it is fed to the
RL system. This pre-processing uses handcrafted algorithms
to extract lower dimensional features from the camera image.

ar
X

iv
:1

80
7.

08
24

1v
1

 [
cs

.L
G

]
 2

2
Ju

l 2
01

8

Environment

Training data
generation

st st+1

at

Camera Frames

Functional blocks

Convolutional
Neural Network

Training Update

st+1
st

rt

st (st ,yt)

RL Network

Depth Network

Reward
Calculation

Reward Generated

Training Data

Fig. 1. Block diagram of the key algorithmic components that enable end-
to-end RL for obstacle avoidance and autonomous flight in a drone.

[14] uses simulated environments with a larger set of action
space (1681 actions). The agent is trained for a deep neural
network in 9 simulated environments and the performance is
reported. The neural network trained in the simulations is then
also tested in the real environment without any fine-tuning and
has shown to perform well. Unfortunately, the performance
of this approach greatly depends upon the correlation of the
simulated and real environment. For the cases of unknown
environments which has limited similarity with the simulated
training environments, the agent is expected to behave poorly.

All of these previous demonstrations and approaches, in
spite of their many successes, either require considerable
human/expert intervention, handcrafted algorithms or are im-
plemented offline in simulations, where the simulated and the
real endowments need to be nearly identical.

III. DEEP REINFORCEMENT LEARNING (DRL)
A. Background on Reinforcement Learning (RL)

The idea of RL is to learn a control policy by interacting
with the environment. In this paper, the goal achieved through
RL is to take actions that lead to a collision free flight of the
drone in a real environment. There is no goal position and
the objective is to navigate through the arena safely. Consider
the task of obstacle avoidance where the drone interacts with
the environment in a sequence of actions, observations and
reward calculations. At each time instant, the drone observes
the current camera frame s. It takes an action a from an action
space A and implements it. Implementing the action moves the
drone to a new position where it observes a new camera frame
s′. This new camera frame along with the action taken will
quantify a reward r. The goal of the system is to take actions
maximizing the long term reward, i.e. at each time step t, we
need to take an action that eventually leads us to a sequence
of states si with rewards ri for i∈ {t+1, t+2, ...} such that the
future discounted return Rt = ∑T

i=t γ i−tri is maximized, where
γ ∈ [0,1] is the discount factor. Each of the state-action pair
is assigned a Q value Q(s,a). During the learning phase these
Q values are updated according to the Bellman optimality
equation as follows

Q(s,a) = r+ γmaxa′Q(s′,a′) (1)

Bellman equation update ensures that in a given state st se-
lecting an action at = maxa′Q(st ,a′) will result in maximizing
the future discounted reward Rt . These Q values are stored as
an approximation of a function with states as input. In Deep
Reinforcement Learning (DRL) the function to estimate these
Q values is a deep neural network.

B. Challenges of implementing DRL in real environments

RL in real environments for collision avoidance is challeng-
ing, as listed below. The methodologies adopted in this paper
to address them are described in the next section.

1) Reward generation: In real environments, the position of
the agent and its distance from obstacles is not known. Hence
extra sensing capabilities need to be added to the agent giving
it a notion of depth which not only adds to the computation
cost but also to the weight of the agent. In this paper, we
demonstrate DRL using a single monocular camera.

2) Safety issues: RL works via a trial and error method. It
is designed to learn from mistakes. For the task of collision
avoidance, it means that the agent has to collide into the
obstacles to learn. This collision can not only harm the agent,
but also the environment. We propose a method of virtual
crash and a crash reward to address this issue.

3) Resetting the agent to a suitable initial position: RL
requires that the agent must be placed at proper initial position
(usually the same) every time it crashes with an obstacle. In
simulations, it is trivially achieved while in real environments
it poses a challenge. We demonstrate a method of un-doing
the drone’s actions to achieve the same effect as resetting the
drone’s position.

4) Large online data-set requirement: The amount of data
required for implementing RL is large. Such training data
requirement stems from the fact that the agent starts with little
knowledge of the environment and takes random actions to
explore it. As opposed to simulations where you can easily
collect a large number of data-points, the data-set that can
be collected in a real environment is limited. We use several
techniques to address this issue, as described in the next
section.

IV. NAVIGATION IN REAL ENVIRONMENTS VIA RL
(NAVREN-RL)

We propose an end-to-end drone navigation methodology
using expert data aided deep reinforcement learning on images
acquired by a single camera. The end-to-end approach has
been summarized in the block diagram shown in Figure 1. We
limit the action space to three actions A= {aF ,aL,aR} where
under the action aF the drone moves forward (by 0.25m), aL
the drone turns left (45o) and aR the drone turns right (45o). To
address the issues of real-time DRL, we explore the following
solutions keeping in mind the agent’s weight, cost, limited
sensing capabilities, and environmental constraints.

A. Reward generation

Since we are not using any external sensing modalities, the
reward needs to be generated from the image frame itself.

Fig. 2. Depth-based dynamic windowing

We use the depth map of the state towards the generation of
the reward. A depth map of a frame is an image of the same
dimension with pixels intensities corresponding to the depth of
the pixel in the input image. In the last few years various off-
line learning algorithms have been explored to generate depth
maps using a single image [15]–[17]. Due to its superior test
accuracy, we use the approach proposed in [16].

In order for the reward to be simple and meaningful, we use
parts of the depth map towards reward generation. The depth
map generated is divided into three windows. The depth in the
windows is used to generate a notion of the distance to the
closest obstacle in each of the three (left, center and right) di-
rections. This distance is calculated by averaging the smallest
n% pixel depth values. The value of n depends on the nature of
the environment. If the environment is expected to have narrow
(wide) obstacles, the value of n is relatively smaller (larger).
We note that changing the window size dynamically with the
global depth in the scene aids reward generation and improves
accuracy. If the global depth of the image is greater, then the
objects being seen in the frame are farther apart. We choose
the relationship between the global depth and window size
empirically to be [H, W]/(0.75×global depth+0.5) where
[H,W] are the dimensions of the input frame from camera.
This global depth based dynamic windowing can be seen in
Figure 2. The three local distances to the closest obstacle in
corresponding directions are then put to use towards reward
generation according to Algorithm 1 where α ∈ [0,1] is a
parametric weight and is taken to be 1/3; dthresh is used to
mark the completion of an episode as explained in the next
section.

B. Addressing safety issues

If at any point, the center window shows the distance to the
nearest obstacle dc to be below some threshold value dthresh,
the agent stops and considers to have “virtually crashed”. This
virtual crashing marks the end of an episode. Thus the agent
does not physically collide with obstacles and significantly
reduces the risk of damaging itself or the environment. Once
the agent virtually crashes, a penalizing reward rcrash is
provided to the state-action pair leading to the crash.

Algorithm 1 Reward generation using the depth map
function fr(st ,at ,s′t)

d(st)← depth map of st
d(s′t)← depth map of s′t
dl(st),dc(st),dr(st) = DepthValues(d(st))
dl(s′t), dc(s′t), dr(s′t) = DepthValues(d(s′t))
if at = aF then rt = dc(s′t)
else if at = aL then rt = dc(s′t)+α(dl(st)−dr(st))
else rt = dc(s′t)+α(dr(st)−dl(st))

if dc(s′t)< dthresh then rt = rcrash
return rt

C. Resetting the agent to a suitable initial position

In our approach, the agent does not reset to its initial
position, rather a new initial position is selected after the end
of every episode. The new initial position is chosen in an
autonomous way making use of the knowledge of the “virtual
crash” state-action pair. The action that led to the collision is
un-done. The agent accomplishes this by taking the opposite
actions (for e.g. if the forward action led to virtual crash, the
agent after marking it the end of an episode, moves backward)
until dc is at least drecover; a threshold set for recovering from
the crash. A new episode starts from the recovered state and
the policy prevents the agent from selecting the “virtual crash”
action for that initial state.

D. Large online data

a) Expert Data DE: We address the requirement of a
large training data set by making the use of Learning from
Demonstration (LfD) [18]. At the onset, a human expert
navigates the agent across the arena and collects a limited
set of expert data-points. The idea of collecting expert data-
points is to help the agent through guided exploration. This
expert data set is used towards learning in the following two
ways.

• Pre-training phase: The neural network is trained for this
small set of expert data DE and the weights learned θE
are used as initial weights for the online learning phase.
This preserves some knowledge about the environment
and gives the agent a good starting point for exploration.

• Expert data as a part of experience replay: The expert data
is also used as a part of the replay memory Dreplay from
which the batches of data-points are sampled for training.
Making expert data a persistent part of the experience
replay helps avoid the neural network from forgetting
what it had learned in the pre-training phase.

b) Knowledge based Data aggregation: The data aggre-
gation is carried out in the following two ways:

• When the agent virtually crashes, going forward from that
state will lead to a crash too. If the agent which is in state
st moves to the next state s′t by taking an action at and
virtually crashes, then the data-point (s′t ,aF ,s′t ,rcrash) will
be aggregated to the current data points.

• Since opposite actions are selected to recover from
crashes, the intermediate states will lead to a crash as
well. For example, the agent in state st moves to next state
st+1 by taking an action at and virtually crashes. Let a′t
be the opposite action to at . If at ∈ {aR,aL} then the data-
points (st+i,a′t ,st+i−1,rcrash) and (st+i,aF ,st+i,rcrash) for
i = {1,2,3, ...,nrecover} is aggregated to current data-
points where nrecover is the number of steps required to
recover from the crash. Since going backward does not
belong to our defined action space A, the data-points are
not aggregated if at = aF

E. Convergence of Deep RL algorithm

The basic RL algorithm often suffers from limited conver-
gence, which mainly emerges because the Bellman equation
tends to over-estimate the Q-values due to its non-linear nature.
Also, the aggregating nature of the Bellman equation might
lead to diverging Q-values. So, in order to avoid these issues
the following solutions are implemented.

1) Restricting the range of rewards: The distances to the
nearest obstacle {dl ,dc,dr} ∈ R+ is the estimated distances
in meters. These distances are scaled down to have values
between [0, 1

α+1] where α is the weight constant used in
the reward function. When scaled down, the reward function
generates the reward within the limited range of [−1,1]

2) Clipping Q values in Bellman equation: This ensures
that the Q-value updates do not diverge. Let Qtarget

θ (s,a) =
r+ γ maxa Q(s′,a;θ) be the normal Q-value update where θ
is the weights of the neural network, then the clipped Bellman
equation is

Q̂target
θ (s,a) = clip(Qtarget

θ (s,a),−1,1) (2)

where the function clip(a,n1,n2) clips the value to n1 or
n2 if a is less than n1 or greater than n2 respectively. The
updated equation ensures that Qtarget

θ (s,a) ∈ [−1,1] and does
not diverge.

3) Use of Double DQN: We address the overestimation of
the Q value by using a Double Deep Q Network (DDQN) [19].
In DDQN two different copies of neural network are used. One
of the neural networks (the behaviour network, θ) is used for
training, while the other network (the target network,θ ′) is
used towards the Bellman equation update. The target network
is updated with the weights of the behaviour network after
every ntarget intervals. The updated Bellman equation looks
like

Qtarget
θ ′ (s,a) = r+ γ max

a′
Q(s′,a′;θ ′) (3)

Combining both clipping and DDQN, the updated Bellman
equation is:

Q̂target
θ ′ (s,a) = clip(r+ γmaxaQ(s′,a;θ ′),−1,1) (4)

F. Network Architecture

We use a modified AlexNet [20] network to estimate the
Q values for the states. The input to the network is the re-
sized camera frame st . The network consists of 5 convolutional
layers and 3 fully-connected layers.

Algorithm 2 NAVREN-RL Algorithm
Input: Expert data-points: DE

Initialization: Behaviour network: Qθ (s) = N(s;θ), Target
network: Qθ ′(s) =N(s;θ ′), m: Number of pre-training up-
dates, ntarget : Target network update interval, bε :ε annealing
coefficient, nbatch: mini-batch size for training
for i ∈ {1,2,3, ...,m} do

Sample a mini-batch of size nbatch from DE

Evaluate the loss Jθ ′(θ)
Perform gradient descent to minimize Jθ ′(θ) w.r.t θ

Initialize the replay memory Dreplay← DE

for t ∈ {1,2,3, ...} do
st ← Camera image, Q(st)←N(st ;θ)
Sample an action from behaviour policy at ∼ πbε Q(ε)
Implement the action at on the agent
s′t ← Camera image, Q(s′t)←N(s′t ;θ)
Generate the reward rt ← fr(st ,at ,s′t)
Store the tuple (st ,at ,s′t ,rt) in Dreplay
if virtual crash then

while not recover from crash do
Aggregate data-points to Dreplay

Sample a mini-batch of size nbatch from Dreplay
Evaluate the loss Jθ ′(θ)
Perform gradient descent to minimize Jθ ′(θ) w.r.t. θ
if t mod ntarget = 0 then θ ← θ ′

G. Online Learning

Before the learning process begins, an expert user navigates
the agent in the selected environment for a certain number
of steps nexpert . The data tuple (si,ai,s′i,ri) for each of the
steps i∈ {1,2,3, ...,nexpert} is generated and saved in DE. Next
comes the pre-training phase where random mini-batches of
size nbatch are selected from the expert data DE and a neural
network Qθ (s) =N(s;θ) is trained minimizing

Jθ ′(θ) =
nbatch

∑
i=1

J(si,ai,θ ,θ ′)+βJreg(θ) (5)

where J(si,ai,θ ,θ ′) is the TD loss for ith data-point dictated
by the Bellman equation and Jreg(θ) is regularization loss to
help prevent over-fitting the network for the smaller amount
of expert data, and β is a regularization weight. These losses
are given by:

J(si,ai,θ ,θ ′) = ||Q̂target
θ ′ (si,ai)−Q(si,ai;θ)||2 (6)

Jreg(θ) = ||θ ||2 (7)

where Q̂target
θ ′ (st ,at) is given by equation 4

After the pre-training phase, the online training phase be-
gins. The agent is placed in the environment, and follows a ε-
greedy policy for actions. with bε as the annealing coefficient.
ε is varied linearly from 0.1 to 0.9 as the number of data-
points varies from 1 to bε . At every time step t, the drone saves

TABLE I
LIST OF HYPER PARAMETERS USED FOR TRAINING

Learning rate 1e-6 ntarget 200 nbatch 32
β 0.001 dthresh 0.02 rcrash -1

visi

vi
si

Fig. 3. Snapshots and the layouts of the arenas used. Top row: A1 Hallway,
Bottom row: A2 SC-room

the data points (st ,at ,s′t ,rt) in Dreplay. A mini-batch of size
nbatch is randomly sampled from the replay memory Dreplay
and used to minimize the loss defined in equation 5 through
gradient descent. Algorithm 2 shows the complete algorithm,
while table I lists the hyper parameters used.

V. EXPERIMENTAL RESULTS

Real-time experimentation are carried out to validate the
proposed approach for drone navigation.

A. Hardware specifications

We use a low cost Parrot AR drone 2.0 which does not have
the computational power to carry out the required processing
on-board. Hence, the drone sends the camera frames to a
workstation/cloud equipped with a core i7 processor and
GTX1080 GPUs. Control actions are communicated back to
the drone. We use Tensorflow to carry out the neural network
computation on the workstation.

B. Testing environments

We use the following two arenas to carry out the experi-
mentation for successful navigation.

1) Arena A1: Open Hallway: This is a hallway in an engi-
neering building with glass walls. The drone has to navigate
through the narrow hallways (minimum width of ≈ 1.5m).
There are no extra obstacles between the hallway path except
for water dispenser, benches and trashcans.

2) Arena A2: SC Room: This arena is a cluttered break-out
room with couches, chairs, tables and bar-stools with narrow
passages in between (≈ 1m).

The layout and floor plans of these arenas can be seen in
the Figure 3

C. Baseline Algorithms for Comparison

We compare our method with the following baseline algo-
rithms.

0

20

40

60

0 4000 8000

DQN with no clipping

0

10

20

30

40

0 1500 3000

DDQN with no clipping

0

0.2

0.4

0.6

0 500 1000

DDQN with clipping

R
L

lo
ss

Number of iterations

Fig. 4. Convergence of RL with and without DDQN and clipping

vi
si

vi
si

A
1
 :

H
al

lw
ay

A
2
 :

SC
-R

o
o

m

SL LRS SS E2E-RL

Fig. 5. Trajectories followed by the baselines and NAVREN-RL for 5 different
initial locations

1) Straight-line controller: This controller always predicts
the forward action hence moving the agent in a straight line
in a manner described in [14]. This controller provides a good
comparison of the complexity of the arena.

2) Left-Right-Straight (LRS) controller: This baseline is
based on the work in [13] where a supervised approach is used
to classify images with respect to the actions required to be
taken. A human expert roams around the arena and collects the
images using left, right and forward facing cameras. Images
collected from left (right) facing camera are labeled with the
target action of right (left) while the ones collected from
forward facing camera are labeled with the target action of
forward. These labeled images are then used to train a neural
network offline in a supervised manner.

3) Self-supervised (SS) controller: This controller uses the
work proposed in [10] where a large data-set of crash and
safe images are collected over various indoor environments.
These labeled images are then used to train a neural network
to classify each image as either safe or crash. In the inference
phase, the input camera frame is then divided into three
windows and the probability of crash in each of the sub-frames
is calculated. Based on these probabilities, a handcrafted
controller is designed, following [10] to take suitable actions.

D. Performance

Figure 4 shows the comparison of RL convergence with and
without DDQN and clipping of the Bellman equation. It can
be seen that the DDQN with clipping of Bellman equation
shows good convergence.

We assess the performance of NAVREN-RL by comparing it
against the baselines mentioned above. 3000 (700 expert+2300

Fig. 6. Safe flight (in meters) comparison across baselines

TABLE II
ARENA STATS

Arena Method Total Di-
stance(m)

Safe
Flight(m)

Impro-
vement

Hallway

SL 80.7 16.1 4.45x
LRS [13] 162.9 32.6 2.21x
SS [10] 324.9 65.0 1.11x

NAVREN-RL (ours) 359.5 71.9 −

SC-room

SL 6.3 1.3 4.55x
LRS [13] 10.9 2.2 2.65x
SS [10] 24.9 5.0 1.16 x

NAVREN-RL (ours) 28.8 5.8 −

online) data-points are collected in the Hallway arena, while
2000 (600 expert+1400 online) data-points are collected in
the SC-room arena. In each of the arenas, all the 4 techniques
are separately used to learn a neural network. The agent is
initialized by the learned neural network and the performance
is evaluated by placing the drone at 5 different initial locations.
To keep the comparison fair, the agent is placed precisely the
same way across all the techniques. In each of the cases,
the trajectory followed by the agent is recorded until the
agent is no longer able to navigate. This loss of navigation
is considered if

• The agent collides into an obstacle
• The agent keeps hovering, being stuck in a repetitive

pattern of left/right actions, and does not move forward
for 10 iterations

The trajectories can be seen in Figure 5. The distance cov-
ered by the agent before crash is taken to be the performance
metric and can be seen in the table II. The total distance
covered is the sum of the individual distances covered by the
drone from each of the initial locations. The safe flight for
any technique is the average distance covered by the drone
from the different initial locations. In most of the cases the
proposed NAVREN-RL method outperforms the baselines, i.e
the safe flight (m) for the proposed RL method is the highest
among the baselines. This can be seen in Figure 6.

VI. CONCLUSIONS

This paper provides an end-to-end reinforcement learning
algorithm for autonomous navigation of drones in indoor real
environments by addressing the problems associated with the
RL implementation. Experimentation is carried out in different
arenas and the performance is compared to other base-lines.
The results show that the agent is able to navigate in the indoor

arena with limited sensing capabilities and data-points with
comparable performance.

ACKNOWLEDGMENTS

This work was supported in part by C-BRIC, one of
six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

REFERENCES

[1] Y. K. Kwag and J. W. Kang, “Obstacle awareness and collision avoid-
ance radar sensor system for low-altitude flying smart uav,” in Digital
Avionics Systems Conference, 2004. DASC 04. The 23rd, vol. 2. IEEE,
2004, pp. 12–D.

[2] A. S. L. Raimundo et al., “Autonomous obstacle collision avoidance
system for uavs in rescue operations,” Ph.D. dissertation, 2016.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[5] D. O. Sales, P. Shinzato, G. Pessin, D. F. Wolf, and F. S. Osorio, “Vision-
based autonomous navigation system using ann and fsm control,” in
Robotics Symposium and Intelligent Robotic Meeting (LARS), 2010 Latin
American. IEEE, 2010, pp. 85–90.

[6] R. Huang, P. Tan, and B. M. Chen, “Monocular vision-based autonomous
navigation system on a toy quadcopter in unknown environments,” in
Unmanned Aircraft Systems (ICUAS), 2015 International Conference on.
IEEE, 2015, pp. 1260–1269.

[7] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[8] C. Richter and N. Roy, “Safe visual navigation via deep learning
and novelty detection,” in Proc. of the Robotics: Science and Systems
Conference, 2017.

[9] L. Tai, S. Li, and M. Liu, “Autonomous exploration of mobile robots
through deep neural networks,” International Journal of Advanced
Robotic Systems, vol. 14, no. 4, p. 1729881417703571, 2017.

[10] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” arXiv
preprint arXiv:1704.05588, 2017.

[11] D. K. Kim and T. Chen, “Deep neural network for real-time autonomous
indoor navigation,” arXiv preprint arXiv:1511.04668, 2015.

[12] A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodrı́guez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. Di Caro et al., “A machine
learning approach to visual perception of forest trails for mobile robots,”
IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 661–667, 2016.

[13] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive uav control
in cluttered natural environments,” in Robotics and Automation (ICRA),
2013 IEEE International Conference on. IEEE, 2013, pp. 1765–1772.

[14] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” arXiv preprint arXiv:1611.04201, 2016.

[15] A. Saxena, S. H. Chung, and A. Y. Ng, “3-d depth reconstruction from
a single still image,” International journal of computer vision, vol. 76,
no. 1, pp. 53–69, 2008.

[16] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3D Vision (3DV), 2016 Fourth International Conference on. IEEE,
2016, pp. 239–248.

[17] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in CVPR, vol. 2, no. 6,
2017, p. 7.

[18] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, G. Dulac-Arnold et al., “Deep q-
learning from demonstrations,” arXiv preprint arXiv:1704.03732, 2017.

[19] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.” in AAAI, vol. 2. Phoenix, AZ, 2016, p. 5.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

