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Abstract—Digital planning of manufacturing processes be-
comes standard industrial practice. It implies the creation of
detailed digital plant models, providing opportunities for the
automated transition from the digital model of a system to a soft-
ware implementation. This enhances the development efficiency
and software quality, helps enforce programming standards, and
facilitates reuse of the information from the design phase. The
paper introduces a novel technique of software generation using
declarative metaprogramming in the template-based approach
that interprets both the model and the software as graph
structures. It is applied to generate software in the graphical
and textual languages of IEC 61131-3 from a plant model
and templates that are developed in the native development
environment of a programmable logic controller.

Index Terms—Programmable logic controllers, code genera-
tion, metaprogramming, graphs, IEC 61131-3

I. INTRODUCTION

Digital planning of manufacturing processes becomes stan-
dard industrial practice. The motivation of this paper is to
smooth the transition from the digital planning to a working
plant by automatically translating the digital model into a
functioning software.

Automatic code generation helps to enforce design patterns
and company standards. It also facilitates reuse of the data
collected in the design phase directly in the implementation
phase [1].

A practical method for the automated generation of the pro-
grammable logic controller (PLC) software directly from the
design data reduces manual work and, consequently, reduces
the number of defects, minimizes required effort, and increases
code quality.

This work proposes a novel original technique based
on principles of the declarative metaprogramming [2] and
template-based code generation [3] for automatic generation
of PLC software reflecting the model structure in all lan-
guages of IEC 61131-3 [4] from templates in native integrated
development environment (IDE) without using additional vi-
sual editing software. To the best of knowledge, no existing
methods are able to provide such possibility. The technique is
implemented in commercially available software and evaluated
on various projects.

This work was supported by the Ministry of Economy, Science and
Digitalisation of Sachsen-Anhalt and European Regional Development Fund.

VINCENT1 developed by Fraunhofer IFF, allows reusing
the data generated in the planning phase of an automation
project during complete engineering cycle, including virtual
commissioning and operation of a digital twin. VINCENT sup-
ports the development of kinematic 3D models for mechatronic
plants and a description of the plant behavior using a flowchart
utilizing abstract kinematic notions for axes and sensors.
Without specifying engineering or programming details, a
functioning model of the machine can be created through
teach-in (the motion sequence is recorded by example) and
verified on the 3D model. Motion sequences can be speci-
fied directly in the model using axis movements, instead of
implementing them in the software with actor commands and
combined with logic to produce complex behavior description.

VINCENT provides abstract-level plant description in the
machine-readable eXtensible Markup Language (XML) [5]
format. TIA Portal is used as a code generation target platform.
The Openness [6] API supports import and export of the
SIMATIC STEP7 PLC software projects using an own XML
format or source code.

Section II considers related work; section III describes the
applied methods and techniques; section IV describes the
evaluation of the proposed technique; section V presents the
discussion and future work.

II. RELATED WORK

Code generation, in general, is well-established as a pro-
gramming tool for accelerating mundane tasks. It is applied to
create a design of desktop application graphically and automat-
ically translate it to code (for example, NetBeans [7] and Win-
dowBuilder [8]). The developer is then able to concentrate on
the logic of the application. Other tools automatically generate
code from XML descriptions of data structures and services
(e.g, Apache Axis2 [9]). Parser generators [10] produce code
from declarative language definitions. These are only a few of
the notable applications.

An overview of the software engineering applications in the
industrial automation domain is available in [11] and [3]. The
work [3] identified three approaches to the code configuration
of the PLC software: the modular approach, the parameter-
based approach, and the template-based approach. The latter
being most flexible of them.

1https://www.vincent.engineering/
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The existing template-based approaches include [12], [13],
[14] and [15]. In [16] the authors propose a parameter-based
software configuration method. In [17] the authors present
modular approach. In [1] the authors present a case study
describing application of a commercial tool that is capable of
template-based and parameter-based code generation.

Software synthesis was demonstrated for example in [18],
[19], and [20]. The synthesis problem requires generating
software satisfying the high-level requirements. The synthesis
might still be used to generate plant model in combination
with the proposed technique for PLC code generation, but it
is a formidable challenge by itself and is therefore out of the
scope of this work.

Further, we will present a short comparison of our technique
to a selection of existing methods.

In [12] the authors propose an approach to automatic code
generation using XSLT technology. Profound knowledge of
this technology would be required to achieve similar results
as in our case.

The methods proposed in [12], [16], and [15] use code
generation templates prepared in the external text editor. In
this work, the PLC project designed in native IDE serves as
a template. This ensures that all usual syntactic checks and
productivity tools are available during the template develop-
ment, and that template definition for visual languages is easily
possible.

The techniques of the model-driven engineering, including
[13], [14], consider multi-level modeling down to the program
organization units. This allows automatic generation of tests,
requirements tracing, and validation. The current technique,
however, does not require to include the complete implemen-
tation details in the model, sacrificing some guarantees to
achieve flexibility and simplicity.

Similar to [1], the proposed technique exploits the hierarchi-
cal data structure for model and software. A notable difference
is that it creates cross-references between program elements
automatically, whereas in [1] the connections are specified in
special visual editing software.

The recent works [15] and [17] have some parallels to our
technique. The work [15] proposes using embedded language
in templates and the dependency tree for model specification. It
allows including logic in the templates, which is only possible
to some degree with our technique. However, application for
the graphical languages as well as the possibility of template
development in native IDE was not considered. The work [17]
also utilizes TIA Portal Openness interface, modular machine
and software definition using graph representation, but does
not allow for finer granularity in the contents of the modules
allowed by template-based approaches.

Several methods listed above also consider automatic hard-
ware configuration, which will not be considered in this
work. There are also some commercial and open-source tools
available for code and hardware configuration (for instance
[21], [15]).

Existing methods are often overlooked [3], partly, because
companies have prescribed hardware and software standards

Fig. 1. Technique overview.

(e.g., in German automotive industry often the use of the
graphical languages is required) which imposes significant
flexibility requirement on the code generation method. Sum-
ming up, the existing methods either require knowledge of
the high-level programming languages to define the code
generation logic in a template, support only text-based lan-
guages, or otherwise are not fully automatic due to inherent
code generation architecture. The motivation for this work is
addressing these challenges.

III. METHODS

A. Overview

The goals of the proposed technique are: to produce the
program written in IEC 61131-3 according to an arbitrary
software architecture defined in the code template developed in
native PLC IDE and reflecting the model structure; and to gen-
erate the control logic consistent with the software architecture
from the behavior model. The very definition of the software
architecture suggests that a graph is an appropriate way of its
description [22], therefore it is used for both the model and
the template. Fig. 1 shows an overview of the technique.

In the first step, the template and plant model are accessed
via a programmatic or file-based interface. In the second step,
both the template and the plant model are parsed into the graph
data structures.

We propose the notion and structures for basis graphs,
which possess certain properties described in section III-C and
are used as intermediate representation. The graph transforma-
tions from parsed graphs to basis graphs are made in the third
step to prepare the data structures for the code generation.

Then the proposed graph product transformation (GPT)
as described in section III-D is applied. The proposed name
relates to the similarity of the algorithm output to the product
of two graphs [23]: the template graph and the model graph.

The produced basis graph is then transformed back into
the original graph structure, the code is generated from the
produced graph structure, and the generated code is imported
back into the IDE.
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B. Preliminaries

A graph is a tuple 𝐺 = (𝑉𝐺, 𝐸𝐺) [23] with a set of
vertices or nodes 𝑉𝐺 = {𝑣1 . . . 𝑣𝑛} and a set of edges
𝐸𝐺 = {𝑒1 . . . 𝑒𝑚} ⊆ (𝑉𝐺 × 𝑉𝐺). Further, a node 𝑣𝑗 of a
directed graph is called a direct successor of a node 𝑣𝑖, and 𝑣𝑖
is called a direct predecessor of a node 𝑣𝑗 , 𝑖, 𝑗 ∈ 1 . . . 𝑛 if and
only if (𝑣𝑖, 𝑣𝑗) ∈ 𝐸. The vertices reachable from a node 𝑣𝑖
are called its successors. A tree is a connected acyclic graph.
A spanning tree 𝐺(𝑡) = (𝑉,𝐸(𝑡)) of a graph 𝐺 = (𝑉,𝐸),
𝐸(𝑡) ⊆ 𝐸, is a subgraph with the same vertex set as 𝐺 that is
a tree. A connected graph may have multiple spanning trees.

In further, the typed attribute graph is defined informally,
inspired by the [24]. A typed graph is defined by a tuple
𝑇𝐷𝐺 = (𝑇𝐺,𝐺, 𝑑), where 𝑇𝐺 = (𝐷,𝐸𝑇𝐺) is a type graph
with type nodes 𝐷 and type edges 𝐸𝑇𝐺, and 𝐺 = (𝑉𝐺, 𝐸𝐺)
is an instance graph. The typed graph has following properties:
a) for all vertices 𝑉𝐺 there is a mapping 𝑑 : 𝑉𝐺 → 𝐷 from
the instance graph nodes to the type graph nodes; b) if there
is an edge 𝑒 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸𝐺, then there is a corresponding
edge in the type graph: (𝑑(𝑣𝑖), 𝑑(𝑣𝑗)) ∈ 𝐸𝑇𝐺.

An attribute graph is a tuple 𝐴𝐺 = (𝐺, 𝑎𝑡𝑡𝑟), where 𝐺 is a
graph, 𝑆 is the set of all strings of letters and 𝑎𝑡𝑡𝑟 : 𝑉𝐺×𝑆 →
𝑆 is a labeled mapping from graph nodes to attribute values.

A data graph is defined here as a typed attribute graph with
a root node:

𝐺 = (𝑉,𝐸, 𝑣0, 𝐷,𝐸𝑇𝐺, 𝑑,𝐴, 𝑎𝑡𝑡𝑟, 𝑖𝑑),

where the nodes 𝑉 are connected by the edge relationships
𝐸 ⊆ 𝑉 × 𝑉 and 𝑣0 ∈ 𝑉 is a root node. A node possesses
a class, defined by the mapping 𝑑 : 𝑉 → 𝐷 that determines
item type – for instance, axis, sensor, etc. Other properties of
the typed graph also hold: (𝑑(𝑣𝑖), 𝑑(𝑣𝑗)) ∈ 𝐸𝑇𝐺 ⊆ 𝐷 × 𝐷.
The function 𝑎𝑡𝑡𝑟 : 𝑉 × 𝐴 → 𝑆 defines attribute values of a
node for each attribute 𝑎𝑖 ∈ 𝐴 ⊆ 𝐷 × 𝑆 defined in the type
graph. A function 𝑖𝑑 : (𝐷 → 𝑆) ⊆ 𝐴 provides a name of an
attribute that has semantic meaning of a node identifier – e.g.,
𝑎𝑡𝑡𝑟(𝑣𝑖, 𝑖𝑑(𝑑(𝑣𝑖))) may be a variable identifier, name, or title
of a node 𝑣𝑖.

For example, a machine axis 𝑎 with the name “M1”
may be represented by the node with functions of the data
graph defined as 𝑑(𝑎) := 𝐴𝑥𝑖𝑠, 𝑖𝑑(𝐴𝑥𝑖𝑠) := ”𝑛𝑎𝑚𝑒” and
𝑎𝑡𝑡𝑟(𝑎, ”𝑛𝑎𝑚𝑒”) := ”𝑀1”.

C. Basis Graph

We define a basis graph as a data graph with the following
properties:

a The direct successor nodes of a node can be described
by “belongs to,” “referenced by,” or “is part of” semantic
relationship.

b The graph transformation from a parsed graph to a basis
graph is deterministic and semantically reversible – that
is it produces same basis graphs for two parsed graphs
if and only if they have the same semantics.

c The nodes that correspond to multiple nodes in the
generated graph have string identifier attributes derived
from the parsed graph.

Additionally, for the template basis graph:

d A spanning tree is specified.
e All semantic dependencies of the nodes that correspond

to multiple nodes in the generated graph to other nodes
are represented explicitly by the edges or implicitly by
the equality of an attribute of the referencing node and
the identifier of the referenced node.

Regarding the property “d”, a graph with its spanning tree
effectively define a bare bigraph [25] which was applied
previously for modeling of the spatially distributed systems.
This separation was also performed in the graph package
system framework [26].

Regarding the property “e”, the template basis graph nodes
are not allowed, for instance, to have numeric identifiers which
reference other nodes by the identity of attributes.

D. Algorithm

1) Input Data: The GPT algorithm takes a template graph
and a model graph and produces a target graph. The template
graph 𝐺𝑡 with the nodes 𝑉𝑡 is a basis data graph that serves as
a template for the transformation. The model graph 𝐺𝑠 with
the nodes 𝑉𝑠 is a basis data graph representation of the model
that is mapped onto the architecture specified by the template
graph during transformation. In following, the subscripts 𝑡, 𝑠,
and 𝑟 always refer to the template, model, and target graph
respectively.

The proposed algorithm performs recursion on the template
graph. The template graph is not a tree in the general case.
Therefore, it is required that a spanning tree for the template
graph is specified by providing its edges 𝐸

(𝑡)
𝑡 ⊆ 𝐸𝑡. The

edges included in the selected tree must have the semantic
meaning “contains” and graph edges that are not included –
“references.”

The nodes of the model graph may have tags. The tags
are employed to generate different code for the nodes of the
same type. For instance, the specific PLC code to control an
axis depends on the chosen hardware. The function 𝑡𝑎𝑔𝑠 :
𝑉𝑠 → 𝒫(𝑇 ) returns the set of node tags, where 𝑇 ⊆ 𝑆, and
𝒫(𝑋) = {𝑥 ∣ 𝑥 ⊆ 𝑋} denotes a power set.

Typically, in the programming language, the semantics is
specified by means of the string identifiers or symbols. The
program components with the same identifiers inside the same
scope are deemed to be referring to the same object.

The GPT is based on the special strings of letters, called
markers, which are syntactically allowed as substrings in the
identifiers of the target language. The metalanguage syntax is
defined by a mapping from the template graph attribute value
to the marker list: 𝑚𝑎𝑟𝑘𝑒𝑟𝑠 : 𝑆 → 𝒫(𝑀), where 𝑀 is the set
of all markers, which finds the marker substrings. A marker
refers to a specific model graph node by its type defined by a
mapping 𝑑𝑚 :𝑀 → 𝐷𝑠.

Important part of the algorithm is the notion of context. A
context is a subset of nodes from the model graph 𝑐 ⊆ 𝑉𝑠.
The context contains maximum one node of a given type

∕ ∃𝑣𝑠𝑖, 𝑣𝑠𝑗 ∈ 𝑐 : 𝑑𝑠(𝑣𝑠𝑖) = 𝑑𝑠(𝑣𝑠𝑗).
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The function 𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑠, 𝑐) : 𝑆 × 𝒫(𝑉𝑠) → 𝑆 replaces the
markers in the string of letters 𝑠 with the current context-
based values from the context 𝑐. It has following properties:
a) ∀ 𝑐, 𝑠 : 𝑚𝑎𝑟𝑘𝑒𝑟𝑠(𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑠, 𝑐)) = ∅ – the resulting string
produced by 𝑟𝑒𝑤𝑟𝑖𝑡𝑒 function does not contain any markers;
b) two rewritten result strings produced by 𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑠, 𝑐1)
and 𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑠, 𝑐2) should be equal even when 𝑐1 ∕= 𝑐2 if
all objects of the types referenced by markers are same in
both contexts. This ensures that the semantic relationship is
established in the target graph.

2) Markers: The markers are classified into the structural,
attribute, assignment, value, and definition markers, which
form a partition of the set 𝑀 .

The structural markers 𝑀𝑠 ⊆𝑀 are mainly used to define
relationships between the template graph structure and the
model graph structure. The structural marker selects a subset
of model graph nodes depending on the context using some
predicate. A structural marker 𝑚𝑠 ∈ 𝑀𝑠 also has a tag
𝑡(𝑚𝑠) ∈ 𝑇 . The marker is replaced with the identifier attribute
value of the referenced node by the 𝑟𝑒𝑤𝑟𝑖𝑡𝑒 function.

The attribute, value, and assignment markers only affect the
generated node and do not change the context. The attribute
markers are rewritten with a value of a predefined attribute of
the model node from the current context with a predefined
type. The assignment markers set the predefined generated
node attribute(s) to the value of the predefined model node
attribute(s) from the current context - e.g., the axis velocity
assignment marker sets the initial value of the variable to
the axis velocity limit in the generated code. The assignment
markers are rewritten with an empty string. The value markers
replace the subtree of the template spanning tree consisting of
the node and its descendants with another subgraph.

The definition markers allow specifying the semantic ref-
erences in the subgraphs generated by the value markers.
They create entries in the symbol table maintained by the
transformation algorithm, which are then used by the value
markers. The definition markers are rewritten with an empty
string.

3) GPT: The recursive algorithm, shown in Fig. 2, traverses
the template tree top-down depth-first. The algorithm consists
of the three stages, which are delimited by the comments
inside curly brackets in Fig. 2. The first stage selects model
graph nodes, the second stage iterates the selection results
producing subtrees in the target graph and the last stage
reconstructs subgraphs from the subtrees.

If the template graph does not contain markers it is simply
copied to the target graph. The structural markers change a
number of the produced copies of the template subtree and
their contexts, and the markers in attributes of the copied nodes
are replaced using these contexts.

a) Context expansion: The algorithm is called with a
context 𝑐 and a template graph node 𝑣𝑡. The first stage
processes only structural markers found in the identifier of 𝑣𝑡
and iterates them in the order they were found in the string,
maintaining the current context list 𝐶 after expansion.

Input: Data graphs 𝐺𝑡, 𝐺𝑠, template node 𝑣𝑡 ∈ 𝑉𝑡, context
𝑐 ⊆ 𝑉𝑠, the spanning tree edges 𝐸(𝑡)

𝑡

Output: The subgraph of target graph 𝐺𝑟 produced from
subtree of 𝑣𝑡, target node to template node mapping 𝑔 ⊆
𝑉𝑡 × 𝑉𝑟, target node to context mapping 𝑐𝑟 : 𝑉𝑟 → 𝒫(𝑉𝑠),
unresolved upward edges 𝑢𝑝 ⊆ 𝐸𝑠, nodes 𝑉𝑡𝑡 of a subtree
𝐶 ← {𝑐}, 𝑔 ← {}, 𝑐𝑟 ← {}, 𝑢𝑝 ← {}, 𝐺𝑟 ← empty graph,
𝑉𝑡𝑡 ← {}
{Context expansion}
for 𝑚𝑖 ∈ 𝑚𝑎𝑟𝑘𝑒𝑟(𝑎𝑡𝑡𝑟(𝑣𝑡, 𝑖𝑑(𝑑𝑡(𝑣𝑡)))) do

if 𝑚𝑖 ∈𝑀𝑠 ∧ ∕ ∃𝑣 ∈ 𝑐 : 𝑑𝑠(𝑣) = 𝑑𝑚(𝑚𝑖) then
𝐶 ′ ← {}
for 𝑐𝑖 ∈ 𝐶, 𝑣′ ∈ 𝑉𝑠: 𝑃𝑚(𝑚𝑖, 𝑐, 𝑣

′) do
𝐶 ′ ← 𝐶 ′ ∪ {𝑐𝑖 ∪ {𝑣′}}

end for
𝐶 ← 𝐶 ′

end if
end for
{Node rewriting}
for 𝑐𝑖 ∈ 𝐶 do

if Node has value marker then
𝑣′𝑖 ← rewrite value marker and get root node
Add 𝑣′𝑖 to 𝑉𝑟

else
𝑣′𝑖 ← new node
𝑎𝑡𝑡𝑟𝑟(𝑣

′
𝑖, 𝑠) ← 𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑎𝑡𝑡𝑟𝑡(𝑣𝑡, 𝑠), 𝑐𝑖)∀𝑠 ∈ 𝑆 :

(𝑑𝑡(𝑣𝑡), 𝑠) ∈ 𝐴𝑡

Apply assignment markers
Add 𝑣′𝑖 to 𝑉𝑟
for 𝑣𝑑 ∈ 𝑉𝑡 : (𝑣𝑡, 𝑣𝑑) ∈ 𝐸

(𝑡)
𝑡 do

(𝐺′
𝑟, 𝑔

′, 𝑐′𝑟, 𝑢𝑝
′, 𝑉 ′

𝑡𝑡) ← recursion with 𝑣𝑑 and 𝑐𝑖
Add {(𝑣′𝑖, 𝑣′𝑑) ∣ (𝑣, 𝑣′𝑑) ∈ 𝑔′ ∧ 𝑣 = 𝑣𝑑} to 𝐸𝑟

𝐺𝑟 ← 𝐺𝑟 ∪𝐺′
𝑟, 𝑔 ← 𝑔 ∪ 𝑔′, 𝑉𝑡𝑡 ← 𝑉𝑡𝑡 ∪ 𝑉 ′

𝑡𝑡

𝑐𝑟 ← 𝑐𝑟 ∪ 𝑐′𝑟, 𝑢𝑝← 𝑢𝑝 ∪ 𝑢𝑝′
end for

end if
Add (𝑣′𝑖, 𝑐𝑖) to 𝑐𝑟

end for
𝑢𝑝← 𝑢𝑝 ∪ {(𝑣, 𝑣𝑖) ∈ 𝐸𝑡 ∖ 𝐸(𝑡)

𝑡 ∣ 𝑣 = 𝑣𝑡}
𝑔 ← 𝑔 ∪ {𝑣𝑡} × {𝑣′1, .., 𝑣′𝑖}, 𝑉𝑡𝑡 ← 𝑉𝑡𝑡 ∪ {𝑣𝑡}
{Edge resolution}
for 𝑒 = (𝑣𝑎, 𝑣𝑏) ∈ 𝑢𝑝 : 𝑣𝑏 ∈ 𝑉𝑡𝑡 do

for ((𝑣, 𝑣′𝑎) ∈ 𝑔 : 𝑣 = 𝑣𝑎), ((𝑣, 𝑣
′
𝑏) ∈ 𝑔 : 𝑣 = 𝑣𝑏) do

if ∀(𝑣𝑐1, 𝑣𝑐2) ∈ 𝑐𝑖𝑛𝑡(𝑐𝑟(𝑣
′
𝑎), 𝑐𝑟(𝑣

′
𝑏)) : 𝑣𝑐1 = 𝑣𝑐2 then

Add (𝑣′𝑎, 𝑣
′
𝑏) to 𝐸𝑟

end if
end for
𝑢𝑝← 𝑢𝑝 ∖ {𝑒}

end for

Fig. 2. Graph product transformation algorithm.
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For each structural marker 𝑚𝑖 and every context 𝑐𝑖 ∈ 𝐶
the operation of the structural marker depends on the 𝑐𝑖. If
the node of the type filtered by the marker is not already
included in the context ∕ ∃𝑣 ∈ 𝑐𝑖 : 𝑑𝑠(𝑣) = 𝑑𝑚(𝑚𝑖), then the
common successors of all nodes in the 𝑐𝑖 (preferring direct
successors) are filtered using the predicate 𝑃𝑚(𝑚𝑖, 𝑐, 𝑣

′) =
[
⋀

𝑣𝑠∈𝑐(((𝑣𝑠, 𝑣
′) ∈ 𝐸𝑠 ∧ (𝑑𝑠(𝑣𝑠), 𝑑𝑠(𝑣

′)) ∈ 𝐸𝑇𝐺𝑠) ∨
(𝑣′ is reachable from 𝑣𝑠 ∧ (𝑑𝑠(𝑣𝑠), 𝑑𝑠(𝑣

′)) /∈ 𝐸𝑇𝐺𝑠))] ∧
𝑑𝑠(𝑣

′) = 𝑑𝑚(𝑚𝑖) ∧ 𝑡(𝑚𝑖) ∈ 𝑡𝑎𝑔𝑠(𝑣′) and for each
filtered node a new context is derived by including the
node in the new context. The negated predicate may be
used for some markers 𝑃𝑚(𝑚𝑖, 𝑐, 𝑣

′) = [
⋀

𝑣𝑠∈𝑐(((𝑣𝑠, 𝑣
′) /∈

𝐸𝑠 ∧ (𝑑𝑠(𝑣𝑠), 𝑑𝑠(𝑣
′)) ∈ 𝐸𝑇𝐺𝑠) ∨ (𝑣′ is reachable from 𝑣𝑠 ∧

(𝑑𝑠(𝑣𝑠), 𝑑𝑠(𝑣
′)) /∈ 𝐸𝑇𝐺𝑠))] ∧ 𝑑𝑠(𝑣

′) = 𝑑𝑚(𝑚𝑖) ∧ 𝑡(𝑚𝑖) ∈
𝑡𝑎𝑔𝑠(𝑣′).

b) Node rewriting: The second stage creates a new node
𝑣′𝑖 in the target graph for each context 𝑐𝑖 in 𝐶 based on the
node 𝑣𝑡 by rewriting its attributes using the context 𝑐𝑖. The
value, assignment and definition markers are applied at this
point. Then, for each created node the algorithm is called
recursively for every descendant node 𝑣𝑑 in the template graph
spanning tree and the result is merged into the current state.
The edges from 𝑣′𝑖 to the nodes created during the recursive
call based on the node 𝑣𝑑 are appended into the target graph.
The context 𝑐𝑖 is saved as the one used to produce 𝑣′𝑖.

The edges that are not a part of the spanning tree 𝐸𝑡 ∖
𝐸

(𝑡)
𝑡 are called upward edges henceforth because they are built

by traversing the tree bottom-up. The upward edges outgoing
from the node 𝑣𝑡 and all nodes that were created from the
node 𝑣𝑡 are saved in the current state.

c) Edge resolution: The resolution of upward edges is
performed after the complete subtree of 𝑣𝑡 was built in the
target graph. At this point, the 𝑢𝑝 contains all the upward edges
that could not be reconstructed in the descendant subtrees. The
upward edge 𝑒 = (𝑣𝑎, 𝑣𝑏) ∈ 𝑢𝑝 is reconstructed in the target
graph as soon as the node 𝑣𝑏 was processed in the subtree (the
node 𝑣𝑎 always is) at the closest common ancestor node of 𝑣𝑎
and 𝑣𝑏 in the template spanning tree.

Initially, the edges outgoing from all nodes created from
𝑣𝑎 to all nodes created from 𝑣𝑏 are considered. They are
filtered semantically, analogous to how the identifier rewriting
works in the algorithm. This is done by computing the
common set of two contexts 𝑐1 and 𝑐2, which is defined as
the set of pairs nodes of the same type from both contexts,
𝑐𝑖𝑛𝑡(𝑐1, 𝑐2) := {(𝑣𝑐1, 𝑣𝑐2) ∈ 𝑐1 × 𝑐2 ∣ 𝑑𝑠(𝑣𝑐1) = 𝑑𝑠(𝑣𝑐2)}.
Only when ∀(𝑣𝑐1, 𝑣𝑐2) ∈ 𝑐𝑖𝑛𝑡(𝑐1, 𝑐2) : 𝑣𝑐1 = 𝑣𝑐2 for the
contexts that were used to generate the two nodes, the upward
edge is created in the target graph.

E. Example

Fig. 3 shows a highly simplified, but motivating example.
The goal is to generate the code for every machine axis
and every operation and set the variable Var_Move of the
axis referenced by the operation to TRUE (e.g., to start an
operation or activate a frequency inverter of a motor). The tags
have intuitive meaning in this case, they may define motion

Fig. 3. GPT example. (a) Model graph. (b) Template graph. (c) Target graph.

system vendor, intended axis use (e.g., constant velocity or
absolute positioning), and other parameters to choose different
implementation.

The plant graph has two axes A1, A2, and two operations
Operation 1, Operation 2. The _$x$_ is a structural
marker with the type 𝑑𝑚(_$x$_) = 𝑥. The marker set is 𝑀 =
𝑀𝑠 = {_$Axis$_, _$Behavior$_, _$Operation$_}
and function 𝑚𝑎𝑟𝑘𝑒𝑟𝑠 returns the found marker substrings.
The function 𝑟𝑒𝑤𝑟𝑖𝑡𝑒 replaces the markers with the corre-
sponding model node identifiers, which are shown as node
labels in Fig. 3. The dashed lines indicate upward edges. The
template graph nodes may have descendant subtrees without
upward edges (denoted by “...”), which do not affect the result.

1) The algorithm is called for the root node Template
with an empty context 𝑐𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 = {} and copies it
without changes as it does not contain any markers.

2) The algorithm is called recursively for
the descendant node in the template tree
FB__$Behavior$_ from step 1). The context
expansion produces context 𝑐𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 =
{Behavior}. The identifier attribute is rewritten
𝑟𝑒𝑤𝑟𝑖𝑡𝑒(FB__$Behavior$_, {Behavior}) =
FB_Behavior.

3) The algorithm is called for the node _$Operation$_
from 2) and the context expansion produces two contexts
for each operation. The node rewriting stage produces
nodes Operation 1 and Operation 2.

4) The algorithm is called from 3) for
DB__$Axis$_.Var_Move := TRUE with
the context {Behavior,Operation 1} that
does not contain an axis. The only axis node
reachable from Operation 1 is A1, which
is added to the single context after context
expansion. The template graph contains upward
edge outgoing from the node. The 𝑢𝑝 set is
extended with the edge (DB__$Axis$_.Var_Move
:= TRUE, Var_Move), and the context of the
node DB_A1.Var_Move := TRUE is saved as
{Behavior, Operation 1, A1}

5) Similarly the node DB_A2.Var_Move := TRUE is
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Fig. 4. SFC transformation. a) SFC. b) Corresponding basis graph.

created.
6) The algorithm is called from step 1) for the node

DB__$Axis$_ with the same context. The context does
not contain an axis node. The filtered nodes of the
model graph are A1 and A2. The contexts produced
during context expansion are 𝑐𝐷𝐵 𝐴1 = {A1} and
𝑐𝐷𝐵 𝐴2 = {A2}, and for each context a subtree is
created in the target graph.

7) In the edge resolution phase of the Template node,
the upward edge is resolved with an edge between
DB_A1.Var_Move := TRUE and Var_Move node
of DB_A1 with the common set {(A1, A1)}. Similarly,
the second edge is created.

This example also shows that the upward edges resemble the
resolution of the variables in the target programming language.

F. Template Basis Graphs

An IEC 61131-3 program [4] consists of the program
organization units (POUs): functions (FC), function blocks
(FB), and programs (PRG). The blocks may be written in
the two graphical languages: function block diagram (FBD),
ladder diagram (LD) or two textual languages: instruction list
(IL), structured text (ST). The FBs and PRGs can be structured
as sequential function charts (SFC). We further propose and
illustrate informally the structures of the template basis graphs
with properties defined in III-C.

1) SFC: Nodes of the basis graph (Fig. 4) contain at most
one transition followed by at most one step, but at least one of
both. The transition names are used as the node identifiers. If
there is no transition in a node, then it has an empty identifier
attribute value and, therefore, does not contain markers.

The basis graph is built starting from the top (or initial) step,
the first child of the root node, downwards for each transition
and step pair. When an end of a branch is encountered, the
following elements start a new basis graph branch from the
common ancestor node of all nodes immediately preceding the
branch end. The processing ends at the transitions to already
processed steps. The links connecting the steps and transitions
that are not a part of the built tree are added in the graph
as upward edges. The step-step and transition-transition links

Fig. 5. LD basis graph transformation.

Fig. 6. FBD basis graph transformation.

(e.g., “A - F”) are not generated in reverse transformation.
The parallel and alternative branches can be unambiguously
represented by the proposed basis graph.

2) LD: LD is transformed into an abstract syntax tree
structure consisting of the disjunction (∣∣) and conjunction (&)
operations (Fig. 5). Variable names in contacts are used as the
identifiers. A contact is then repeated if the context expansion
produced multiple contexts, implementing conjunction opera-
tion.

The disjunction is possible using an additional marker
available in the LD – the parallel marker. Parallel markers
are processed during the transformation to the template basis
graph. A single contact branch with the contact identifier
containing the parallel marker is deleted and its identifier is
assigned to all conjunction nodes on the same level.

3) FBD: FBD is transformed (Fig. 6) analogous to LD.
The labeled nodes are part inputs and repeated by GPT. The
parallel marker input is deleted and its label is assigned to the
part. This allows repeating the part.

4) Textual Languages: ST and IL code may be transformed
into the tree structure by including markers within comments
(Fig. 7).

G. Value Markers

1) SFC Behavior: The behavior is generated from a plant
model flowchart by using a special value marker in the tran-
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Fig. 7. Textual basis graph transformation.

Fig. 8. SFC behavior generation. (a) Graph template. (b) Behavior model.
(c) Result.

sition name. The template includes specially named networks
that define templates for elementary flowchart operations, such
as moving the axis or making a decision. The operation
template networks start with a step and end with a jump
transition back to the starting step. This jump transition is
used to glue the operation templates together.

The flowchart is transformed by replacing its nodes with
the graphs for elementary operations that are transformed by
the GPT starting with the context that includes the flowchart
operation node. The generated graph is then glued into the
target graph replacing the original node.

Fig. 8 shows an example. The code template (Fig. 8a)
defines two operation templates and the overall template. The
behavior flowchart (Fig. 8b) makes use of these operations.
Fig. 8c shows the produced graph.

2) LD and FBD Expressions: The node and its descendants
are replaced by an expression tree that is obtained from an
abstract syntax tree (AST) of a plant model formula (e.g., a
condition in the decision block of the flowchart). As it can
be intuitively seen from Fig. 5 and Fig. 6, the branch node
of the LD and FBD tree is a part or a component performing
some operation and therefore is a concrete implementation of
an AST operation node. The leaves are the variable identifiers
of the operands and are obtained from the AST by replacing
the model variables with references to the nodes marked by

definition markers.
3) ST Expressions: Expressions are generated using the

context-free language translation [27]. There are three textual
languages: IL, ST, and SFC actions.

IV. RESULTS

The code generation tool for TIA Portal V14SP1 / V15
PLC IDE was implemented and integrated as a part of the
commercially available VINCENT software, including the
basis graph transformations for S7-Graph (STEP7 SFC) and
LD, the GPT algorithm, and the markers.

The code generator takes a model and a syntactically
correct TIA Portal template project. Most attributes, including
names, comments, and titles in the template project may con-
tain markers. The markers have the form _$<Marker>$_.
There were 37 marker types defined. For example, structural:
_$Axis_Motor$_ – finds all machine axes with the tag
“Motor,” value: _$Expression$_ – is replaced by the
current decision condition, assignment: _$EQ_AxisPos$_
– assigns the axis position value as the initial value of the
variable. The PLC project is accessed via TIA Portal Openness
using an additionally developed tool implemented in C#,
which exports and imports XML files for the blocks in FBD,
LD, and S7-Graph (the STEP7 SFC), and source code for
AWL (the STEP7 IL) and SCL (the STEP7 ST language).

The plant model was represented by a graph starting with
the root plant node, which represents a graph of axes, sensors,
control sequences, etc. An axis, for instance, has a list of
positions, which are used as motion targets in the behav-
ior description. A sequence has sequence variables and a
flowchart. The blocks of a flowchart may contain machine
motion definitions, which in turn, also reference axes, axes
positions, and sensors. The nodes (such as axes and sensors)
have names which serve as unique identifiers.

The template graph has a root project group node, con-
taining other groups, blocks, variable tables, and user-defined
types, which themselves are root nodes of the graphs obtained
from the corresponding exported files.

The technique was successfully evaluated on projects with
varying complexity and structure. The machine that sorts
parcels between two conveyors inspired by [28] was modeled
in VINCENT. The template project in LD and S7-Graph was
created and the code generation tool was applied (execution
time 300ms, CPU Intel Xeon E5-1630 v3, 3.70 GHz, generated
23 POUs, 82 contacts in LD, 43 steps, and 44 transitions in
S7-Graph).

The hardware configuration, consisting of a technology
object drive, 2 cylinders with end position sensors, and a
light barrier sensor, was created manually with naming, that is
consistent with the plant model and template. The generated
software was imported into the project (import time 12.7s) and
could be compiled without change. The resulting project was
tested using virtual commissioning and was fully functional.
This case was also evaluated experimentally from the usability
standpoint by three subjects with PLC development back-
ground without previous knowledge of the proposed technique.
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They all were able to complete this project from scratch in
under 3 hours.

A more complex case is another machine with 19 axes:
code generation produced 53 POUs, 1006 contacts, 557 steps,
663 transitions, code generation took 1144ms, import in TIA
Portal 43.1s.

The obtained transformation is deterministic. When the
process is repeated, the generated code is compared to the pre-
vious version and only the changed code blocks are required to
be updated. If the appropriate modular architecture and design
patterns (loose coupling, design for reusable components, etc.)
are used to avoid the manual editing of the generated code, it
is possible to simplify the iterative development process and
improve maintainability.

V. DISCUSSION

The current technique does not explicitly include any
mechanisms to verify the semantics and functionality of the
generated program. But at the syntax level, sanity checks are
done during transformation, strict XML validation is executed
by TIA Portal Openness before import, and afterward, the
absence of syntactic errors is ensured by IDE build process.

Future work includes a more thorough practical evaluation
from maintainability and usability view; complete implemen-
tation of the technique for FBD, ST, and IL; research of
other marker and upward edge resolution policies; extension
of the formal approach; and research towards improving the
maintainability aspect. We also plan to extend the technique
to a more general solution supporting more PLC vendors.
Significant effort is devoted to the standardization of the XML
representation of the IEC 61131-3 code [29]. The IEC 61131-
10 standard based on the PLCOpen XML format for languages
defined in the IEC 61131-3 is expected to appear in the near
future.
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