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Electromyography-based Adaptive Cooperative Control for a Wrist

Orthosis

Yihui Zhao, Abbas A. Dehghani-Sanij and Shengquan Xie

Abstract— This paper proposes an adaptive cooperative con-
trol method for a wrist orthosis, consisting of a trajectory
tracking controller, an admittance controller integrated with
an electromyography (EMG)-driven musculoskeletal model-
based approach. The admittance controller adaptively alters
the reference trajectory based on the estimated joint torque
by the EMG-driven musculoskeletal model. The admittance
parameters are regulated by accessing the wrist joint condition
in real-time. Three experiments are conducted including, trajec-
tory tracking control (TTC), fixed cooperative control (FCC),
adaptive cooperative control (ACC) with two cooperative ratios
of 0.3 and 0.6 respectively. Preliminary results demonstrate
that the cooperative control strategies have smaller root-mean-
square-errors compared with the TTC when the subject’s
intention is detected. The proposed method can modify the
wrist orthosis’s compliance in real-time in response to the wrist
joint stiffness changes, which shows its potential to improve the
efficiency and safety in rehabilitation.

I. INTRODUCTION

Rehabilitation robots hold promising advantages to de-

liver high-intensive and precise training scheme for stroke

patients [1]–[3]. It has proven that the patient’s active par-

ticipation can improve the muscle function and neural-motor

skills during robot-aided rehabilitation [4]. Estimation of the

patient’s intention and related control strategies have played

important roles in interactive training schemes.

Electromyography (EMG) signal has been broadly adopted

for estimating the patient’s intention, due to the fact that

neural pulse can be detected ahead of actual motion [5].

Major attentions of EMG-based intention estimation for

upper limb rehabilitation are concerned with the regres-

sion methods, such as linear/non-linear regression [6] and

NARX model [7]. Nevertheless, regression methods map

EMG signal inputs to the desired intention through the

numerical functions. However, the methods cannot describe

the musculoskeletal states during motion tasks [8]. In con-

trast, musculoskeletal model-based approaches are alternative

method for intention estimation. They explicitly interpret the

relationships from the EMG signal to the user’s intention by

imitating the interactive effects among muscular and skeletal

systems [9]. Besides, the underlying musculoskeletal states,
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i.e., muscle force and joint stiffness, can be obtained from the

model-based approaches [10]. These musculoskeletal states

facilitate the design of the control strategies for interactive

training schemes [11].

To provide the interactive training, impedance control

and admittance control strategies are commonly utilized in

rehabilitation robots. The impedance control strategy asks

the robots to render particular mass, spring and damping

properties to compensate for the torque generated by pa-

tients [12]. For example, Squeriet al., proposed an impedance

controller for a wrist robot [13]. The impedance control

scheme increases/decreases the supported torque by the

robot as the patient’s interactive torque decreases/increases.

In this manner, the patient is encouraged to participate

in the rehabilitation training. The admittance control is

another control strategy used for the interactive training

scheme, which provides the desired position according to

patients’ interaction torque. For instance, Chiaradia et al.,

proposed an admittance control for a wrist exosuit, which

generates the desired motion when the interaction torque is

sensed [14]. However, the constant stiffness and damping

parameters may limit the design of the interactive control

strategies, as the joint condition changes varies patient to

patient. The variation of these parameters in rehabilitation

robots should take the patient’s limb impedance property

into account [15]. It was suggested that regulating these

parameters according to the stiffness property of the joint can

improve the performance of human-robot interaction [16].

Nevertheless, it is a challenging task to estimate the joint

stiffness property, which is determined through experimental

measurement of the torque-motion relationship under differ-

ent maximum voluntary contraction [17]. The model-based

approach provides a promising solution, in which the joint

stiffness can be directly obtained by differentiating the model

dynamic equations [10].

The aim of this paper is to develop an interactive training

scheme for our a wrist orthosis developed by the intelligent

Rehabilitation Robotics Center at Leeds [18]. The wrist

orthosis is driven by two pneumatic muscles. To improve

the training effectiveness and safety, an adaptive cooperative

control strategy is developed. In this manner, the wrist

orthosis adaptively alters the reference trajectory based on

the estimated joint torque, in which the patient’s intention

(joint torque) is obtained directly by coupling the EMG-

driven model-based approach. The admittance parameters are

regulated to change the compliance of the wrist orthosis,

depending on the real-time estimated joint stiffness. Three

experiments are conducted to validate the performance of



the proposed control strategy, including trajectory tracking

control (TTC), fixed cooperative control (FCC) and adaptive

cooperative control (ACC) with two cooperative ratios (0.3

and 0.6 respectively).

II. METHODS

A. Wrist orthosis

The wrist orthosis [18] consists of two Festo Fluidic Mus-

cles as the antagonistic actuators. Each muscle is attached to

a mechanical hinge through a steel wire, of which the hinges

are placed coaxial with the biological wrist joint. The wires

are guided around the cylindrical hinges in clock/counter-

clockwise setup and ball bearings are used to reduce the

friction in the hinge. Two load cells are connected in series

with the pneumatic muscles respectively. A potentiometer

is utilized as an angle sensor, which is also aligned with

rotation centre. Two proportional pressure regulators are

used for pressure control of two muscles. EMG signal are

collected through wireless electrodes (Delsys TrignoTM). All

sensors are communicated with the NI-myRIO controller.

A LabVIEW program is designed to process and store the

sensing information and generate the desired trajectory for

the wrist orthosis.

B. EMG-driven musculoskeletal model-based approach

The EMG-driven musculoskeletal model-based approach

is used to compute the wrist flexion/extension joint torque.

It transforms the muscle activities to the joint torque based

on the input sEMG signal and joint angles during motion

task, which comprises a muscle activation model, a muscle-

tendon model and a musculoskeletal model. The EMG signal

of four wrist muscles are recorded in this study (i = 4).

In the muscle activation model, the envelop of the sEMG

signals are first obtained by filtering the raw signal using a

4th order Butterworth band-pass filter (pass band at 20Hz
and 450Hz). The filtered signals are fully rectified and low-

pass filtered by a 4th order Butterworth low-pass filter at a

corner frequency of 4 Hz. The low-pass filtered signal are

normalized by the maximum voluntary contraction, results

the enveloped signal ei(t) between 0 and 1. Then a non-

linear equation is used to obtain the muscle activation ai(t)
from the enveloped signal, which can be written as [19]

ai(t) =
eAui(t) − 1

eA − 1
(1)

where A is the non-linear shape factor that has the range

between 0.001 and -3.

The muscle-tendon model is modelled as an elastic tendon

connected in series with a muscle fibre [20]. The muscle fibre

contains the contractile element (CE) and parallel element

(PE). The relationship between muscle fibre and tendon is

written as

lmi = (lmt
i − lti)cos

−1φi (2)

where lmi , lmt
i and lti represent the muscle fibre length,

muscle-tendon length and tendon length. φi is the pennation

angle between muscle fibre and tendon. The tendon strain is

omitted for real-time computation.

The muscle-tendon length lmt
i is obtained by regressing

equations according to upper limb model [21]. With the

muscle activation ai(t) and states of the muscle-tendon

length lmt
i as inputs, the muscle-tendon force Fmt

i can be

computed by the following equations

Fmt
i = (FCE,i + FPE,i) cosφi (3)

FCE,i = Fm
o,ifa(l

m

i,a)f(vi)ai(t) (4)

FPE,i = Fm
o,ifp(l

m

i ) (5)

φi = sin−1(
lmo,i sinφo,i

lmi
) (6)

where FCE,i is the active force generated by the contractile

element, which is the function of the active force-length

relationship fa(l
m

i,a) and force-velocity relationship f(vi).

In specific, Fm
o,i is the maximum isometric force. l

m

i,a is

normalization of muscle fibre length lmi with respect to the

muscle activation and optimal music fibre length lmo,i, which

is given as

l
m

i,a = lmi /(lmo,i(λ(1− ai(t)) + 1) (7)

where λ is set to 0.15 [22],

The passive force FPE,i is generated by the PE in the

muscle fibre. fp(l
m

i ) denotes the passive force-length rela-

tionship when the muscle fibre length exceeds lmo,i. l
m

i is

the normalization of muscle fibre length with respect to

lmo,i. Pennation angle φi changes as the muscle contraction

(Equation (6)). Furthermore, fa(l
m

i,a), f(vi) and fp(l
m

i ) are

expressed as

fa(l
m

i,a) = e−(l
m

i,a−1)2k−1

0 (8)

f(vi) =
0.1433

0.1074 + exp(−1.409sinh(3.2vi + 1.6))
(9)

fp(l
m

i ) =
e10(l

m

i −1)

e5
(10)

where the coefficient k0 is used to approximate the force-

length relationship, which is set to 0.45 [23]. vi is the

normalization of the muscle velocity vi of the maximum

velocity vo,i, which is equal to 10 lmo,i/sec [20], of which vi
is the derivative of the muscle fibre length with respect to

time.

Moment arm of each muscle is determined by the partial

derivative of muscle-tendon length with respect to the wrist

joint angle

ri =
∂lmt

i

∂θ
(11)

where ri represents the moment arm of ith muscle with

respect to the flexion/extension joint angle. Thus, the wrist

joint torque can be computed by

τ̂ =

4∑

i=1

riF
mt
i (12)



Fig. 1. The block diagram of the proposed adaptive cooperative control strategy for the wrist orthosis.

where τ̂ represents the estimated joint torque during mo-

tion task. The parameters in the muscle-tendon model that

characterizes the properties of musculoskeletal system of

each individual, including the optimal muscle fibre length

lmo,i, tendon length lti , maximum isometric force Fm
o,i and

optimal pennation angle φo,i, the non-linear factor A and

scale coefficient ki. Thus, these parameters are optimized by

the following objective function

f(χ) =
1

N

N∑

n=1

(τ − τ̂) (13)

χ = [Fm
o,i, l

m
o,i, l

t
i , ki, A]

where τ is the reference joint torque and τ̂ is the joint torque

estimated by the musculoskeletal model-based approach. N
represents the number of samples. Initial value of these

parameters are assigned based on the upper limb extremity

model [21]. The parameters are optimized by minimizing

the objective function using genetic algorithm in MATLAB

offline.

C. Adaptive cooperative control

To improve the training efficiency and engage participants

in the rehabilitation, an admittance controller is developed to

modify the reference trajectory according to the participant’s

active involvement [24]. The joint position and joint torque is

defined as positive when wrist is flexed. The transfer function

of the admittance controller is written as

θd(s) = θr(s) +
Cr τ̂(s)

Ms2 +Bs+K
(14)

where θd and θr are the desired trajectory and reference

trajectory respectively. Cr is the cooperative ratio. τ̂ is the

estimated joint torque form the sEMG signal. The M,B
and K are the mass, damping and stiffness parameters

of the admittance controller. As the wrist joint stiffness

varies depending on the PE of muscle as well as active

muscle activities. An adaptation method for the admittance

parameters is derived based on the estimated joint stiffness

Kjoint, which can be calculated by

K = −

1

2
Kjoint + 10 (15)

where joint stiffness Kjoint is obtained by [10]

Kjoint =
4∑

i=1

(r2iK
mt
i +

∂ri
∂θ

Fmt
i ) (16)

in which Kmt
i represents the stiffness of muscle-tendon

model. It is modelled as the contractile element stiffness in

parallel with stiffness of PE,

Kmt
i = KCE

i +KPE
i (17)

and KCE
i is equal to

KCE
i =

γai(t)F
m
o,ifa(l

m

i,a)

lmo,i
(18)

where γ is set to 23.4 [25]. The KPE
i is calculated by the

slope of the passive force-length relationship to account for

the muscle fibre stiffness in absence of the muscle activation

ai(t) [10]. The damping parameter B is determined by [16]

B = 0.2
√

K. (19)

A boundaries function of the stiffness parameter K is

used to prevent the instability of the control system, where

the Kmax and Kmin are set based on the measurement.

Fig. 1 illustrates a block diagram of the proposed adaptive

cooperative control strategy. With a predefined reference

trajectory, the wrist orthosis operates in passive training

mode when no subject’s intentions are detected, whereas the

reference trajectory is altered when the subject’s intentions

are measured. The admittance parameters are regulated ac-

cording to estimated joint impedance property in real-time.



III. EXPERIMENT

Three healthy subjects (S1-S3) have participated in this

test in the lab environment. All subjects have no wrist mus-

cular disorder and can perform the wrist flexion/extension

in full range of motion (RoM). During the experiment, the

subject is asked to wear the wrist orthosis. Electrodes are

attached over four wrist primary muscles, including Flexor

Carpi Radialis (FCR), Flexor Carpi Ulnaris (FCU), Extensor

Carpi Radialis Longus (ECRL), Extensor Carpi Radialis

Brevis (ECRB). The placement of electrodes are according

SENIAM recommendation and palpation [26]. The processed

EMG signals are downsampled to 200Hz. All sensor data are

synchronized and stored in customized LabVIEW program

for offline analysis.

Fig. 2. Experiment setup.

To validate the performance of the proposed adaptive

cooperative control strategy, three experiments, namely, tra-

jectory tracking control (TTC), fixed cooperative control

(FCC), adaptive cooperative control (ACC) with two dif-

ferent cooperative ratios are conducted for each subject.

The cooperative control strategies can used in both passive

and active training exercise, i.e., wrist orthosis is under

passive mode if there is no active torque and switch to

the cooperative control model when muscle activities are

detected [27]. In all experiments, the reference trajectory

is set as a sine-wave with the amplitude of 0.25 rad and

frequency of 0.05Hz.

The first experiment (TTC) is conducted without the

cooperative control strategy. A proportional-integral (PI)

controller is implemented to minimize the tracking errors, in

which the parameters of the PI controller are tuned to 4.55

and 0.0105 for the KP and KI respectively. The second

experiment (FCC) is conducted with the fixed admittance

parameters, where the M , K and B are set to 0.15, 10

and 0.63. The cooperative ratio is set to 0.6 in FCC.

The desired trajectory is determined by the estimated joint

torque only. Lastly, the third experiment (ACC) is used to

validate that the proposed adaptive control strategy is able to

change the robot’s compliance. The admittance parameters

(K and B) are regulated according to equation (16) and (19)

respectively. In addition, two cooperative ratios, 0.3 and 0.6

are set in the ACC.

Fig. 3. Representative example of the tracking performance in the TTC.

IV. RESULTS AND DISCUSSION

In this study, three performance indexes are utilized. The

root-mean-square-error (rmse) between the desired trajec-

tory (reference trajectory for TTC) and measured trajectory

is calculated. The root-mean-square of estimated joint torque

(rmsτ ) and the deviation (rmsdev) between the desired

trajectory and reference trajectory are calculated to evaluate

the performance of cooperative control strategies.

Fig 3 shows one representative example of the trajectory

tracking response for the TTC over 70 seconds training,

along with the estimated joint torque and muscle activations

ai(t). In the top figure, the black solid line indicates the

reference trajectory and the red dotted line is the measured

trajectory. The rmse is 0.0314 rad. The result shows that the

measured trajectory deviates significantly when the subject’s

intention is presented. This is caused by the backdrivability

of the wrist orthosis, which ensures safety in rehabilitation

but leads to more tracking errors [28]. Moreover, it may

cause discomfort or injury to the wrist joint if the robot still

follows the reference trajectory.

The representative example of tracking response for the

second experiment (FCC) is shown in Fig 4. The green line

represents the desired trajectory which is generated according

to the estimated joint torque. The rmse between the desired

trajectory and measured trajectory is 0.0273 rad. The rmsτ
and rmsdev are 0.3693Nm and 0.0216 rad, respectively.

In the FCC, the deviation of the reference trajectory is in

line with the estimated joint torque. For instance, in the

span of 30 seconds and 50 seconds, the wrist orthosis gives



TABLE I

rmse (rad), rmsτ (Nm) AND rmsdev (rad) FOR ALL EXPERIMENTS AND ACROSS ALL SUBJECTS. TTC = Trajectory tracking control; FCC = Fixed

cooperative control; ACC = Adaptive cooperative control; Cr = Cooperative ratio.

TTC FCC (Cr = 0.6) ACC (Cr = 0.3) ACC (Cr = 0.6)

rmse rmsτ rmse rmsτ rmsdev rmse rmsτ rmsdev rmse rmsτ rmsdev

S1 0.031 0.356 0.027 0.369 0.022 0.027 0.488 0.023 0.032 0.443 0.029
S2 0.038 0.169 0.026 0.371 0.022 0.029 0.588 0.020 0.029 0.350 0.024
S3 0.037 0.118 0.029 0.248 0.015 0.023 0.328 0.016 0.030 0.318 0.026

Mean 0.035 0.214 0.028 0.329 0.020 0.026 0.468 0.020 0.030 0.371 0.026
std 0.004 0.125 0.001 0.07 0.004 0.003 0.131 0.004 0.001 0.065 0.003

Fig. 4. Representative example of tracking response in the FCC. The M ,
K and B are set to 0.15, 10 and 0.63 in admittance controller.

more RoM toward wrist flexion when the joint torque is

positive. Furthermore, the robot reduces the RoM in the

extension as the joint torque is positive between 50 seconds
and 60 seconds.

Fig 5 and Fig 6 illustrate the tracking responses of the

ACC with two different cooperative ratios for the repre-

sentative subject. The rmse are 0.027 rad and 0.0317 rad
when the cooperative ratio is set to 0.3 and 0.6 respectively.

In addition, the real-time changes of admittance parameters

are also presented. Results show that the robot can measure

the subject’s intention. The robot modifies the reference

trajectory when the admittance parameters are small in both

cases. For instance, at 40 seconds of fig 6, the reference

trajectory deviates more in extension when the admittance

parameters are small. In addition, it shows the robot’s

compliance is influenced by the co-contraction of the wrist

muscles. For example, in Fig 5, the stiffness and damping

are large between 10 and 20 seconds when wrist extensors

are activated. The stiffness is small in the span of 30

and 40 seconds due to the co-contraction of wrist muscle.

Table I summarises the performance indexes of four exper-

iments for all three subjects. Preliminary results show that the

Fig. 5. Representative example of tracking response in ACC with 0.3 Cr .

cooperative control strategies improve training safety. This

is because that the mean rmse of TTC (0.035 rad) is larger

than FCC and ACC, while the rmsτ is smaller (0.214Nm).

This indicates that the cooperative control strategies have the

capability to follow the subject’s intention. The cooperative

ratio is introduced to scale the compliance of the wrist

orthosis. The mean rmsτ of 0.3 Cr is larger than 0.6

Cr, but results in smaller rmsdev . This indicates that the

wrist orthosis can more easily change the wrist orthosis’s

compliance with higher Cr. For the FCC and ACC with 0.6

Cr, both control strategies have similar performance indexes.

Further studies will recruit more subjects, including stroke

patients, to provide the statistical analysis.

V. CONCLUSION

In this paper, an adaptive cooperative control strategy

incorporating the EMG-driven musculoskeletal model is im-

plemented for the pneumatic-driven wrist orthosis to improve

training effectiveness and safety. The EMG model-based ap-

proach is used to compute the joint torque in FCC and ACC,



Fig. 6. Representative example of tracking response in ACC with 0.6 Cr .

while the joint stiffness is used to regulate the admittance

parameters in ACC.

Preliminary results demonstrate that FCC and ACC can

improve safety when the subject’s intention takes place.

TTC has higher rmse and lower rmsτ than cooperative

control strategies. Meanwhile, the proposed ACC has shown

the capability to adjust the wrist orthosis’s compliance in

real-time by accessing the wrist joint stiffness through the

musculoskeletal model-based approach. The results show the

potential to enhance the efficacy and safety of robot-assisted

therapy. Future studies will be carried out on more subjects,

including stroke patients, to obtain the statistical analysis.
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