
STF: Spatial Temporal Fusion for Trajectory
Prediction

Pengqian Han,1 Partha Roop, 1 Jiamou Liu, 1 Tianzhe Bao, 2 Yifei Wang, 1

1 The University of Auckland, Auckland, New Zealand
2 University of Health and Rehabilitation Sciences, Qingdao, China
phan635@aucklanduni.ac.nz, {p.roop, jiamou.liu}@auckland.ac.nz,

tianzhe.bao@uor.edu.cn, wany107@aucklanduni.ac.nz

Abstract—Trajectory prediction is a challenging task that aims
to predict the future trajectory of vehicles or pedestrians over
a short time horizon based on their historical positions. The
main reason is that the trajectory is a kind of complex data,
including spatial and temporal information, which is crucial
for accurate prediction. Intuitively, the more information the
model can capture, the more precise the future trajectory
can be predicted. However, previous works based on deep
learning methods processed spatial and temporal information
separately, leading to inadequate spatial information capture,
which means they failed to capture the complete spatial infor-
mation. Therefore, it is of significance to capture information
more fully and effectively on vehicle interactions. In this study,
we introduced an integrated 3D graph that incorporates both
spatial and temporal edges. Based on this, we proposed the
integrated 3D graph, which considers the cross-time interaction
information. In specific, we design a Spatial-Temporal Fusion
(STF) model including Multi-layer perceptions (MLP) and Graph
Attention (GAT) to capture the spatial and temporal infor-
mation historical trajectories simultaneously on the 3D graph.
Our experiment on the ApolloScape Trajectory Datasets shows
that the proposed STF outperforms several baseline methods,
especially on the long-time-horizon trajectory prediction. Our
code is available at https://github.com/pengqianhan/STF-Spatial-
Temporal-Fusion-for-Trajectory-Prediction

Index Terms—Graph Neural Network, Trajectory Prediction,
Spatial-Temporal Data Mining

I. INTRODUCTION

The trajectory prediction is to accurately predict the future
path of an object based on its historical position. Trajectory
data is a type of spatio-temporal data that contains both
spatial and temporal information. Spatial information pertains
to the interaction between objects due to their relative position,
movement tendency, or relative velocity. Besides physical in-
teraction, there is social interaction between vehicles. Because
traffic can not consider all the driving behavior and the drivers
do not always follow the traffic rules, sometimes they prefer
to reach their destination in the shortest time [1]. Temporal
information refers to the time at which the object is at a
specific location or moving from one location to another.

The prediction of the trajectories of surrounding vehicles
and pedestrians is vital for an autonomous vehicle, enabling it
to make informed decisions to avoid collisions. On-board and
off-board sensors are used to detect other vehicles, lanes, and
crosswalks and generate large amounts of data that can be used

to train high-performance deep learning models. These models
can predict feasible and efficient trajectories, improving safety
and traffic conditions. Machine learning methods such as
Hidden Markov Models (HMMs), Support Vector Machines
(SVMs), and Dynamic Bayesian Networks (DBNs) have been
used to address this problem. However, these approaches
are limited to short time horizons, like 2 seconds, and their
prediction performance is unsatisfactory. Deep learning is a
subfield of machine learning that utilizes multiple layers in
its neural networks and has demonstrated significant efficacy
with the increase in data volume [2]. It enables computers to
recognize objects from images or translate languages. When
applied to trajectory prediction, deep learning methods have
proven to outperform conventional machine learning methods.
In addition, some work based on deep learning methods
like [3]–[7] have demonstrated exceptional performance in
long-term trajectory prediction tasks. However, these works
process the spatial and temporal separately. As depicted in
Fig. 1, certain studies, such as CS LSTM [8], only consider
spatial information at the final time step. On the other hand,
GRIP++ [9] employs graph neural networks (GNNs) to cap-
ture spatial information and subsequently utilize customized
convolutional neural networks (CNNs) to capture temporal
information. Additionally, Social LSTM [4] and Starnet [10]
adopt pooling methods to capture the spatial characteristics
of historical trajectories before employing LSTM [11] for
capturing temporal information. All of these methods missed
the interaction information across the time frames during
history time. The vehicles on the road interact with each
other, occurring within the same time step and across multiple
time steps. Previous research has focused on the interaction
between agents. However, they have often treated spatial
and temporal information in isolation, resulting in a lack
of consideration for interaction related to agents at different
time intervals. In this work, we define an integrated 3D
graph with spatial edges between the nodes at the same time
stamp and temporal edges across the time stamp illustrated
in Fig. 2. After defining the 3D graph, all kinds of vehicle
interactions are considered, enhancing the model to capture
more information from the historical trajectory. Finally, we
propose a Spatial-Temporal Fusion (STF) model to predict
the future trajectory. Our approach effectively captures more

ar
X

iv
:2

31
1.

18
14

9v
1

 [
cs

.C
V

]
 2

9
N

ov
 2

02
3

historical trajectory data information than previous models. We
conducted several experiments that demonstrated significantly
improved performance over existing methods. The code is
available on https://github.com/. The main contribution of this
work can be summarized as follows:

• This study introduces an integrated 3D graph that in-
corporates both spatial and temporal edges. The spatial
edges represent the spatial interaction between vehicles
within the same time frames, while the temporal edges
indicate cross-time frame interactions, referred to as
spatial-temporal interactions.

• A high-performance trajectory prediction model called
STF is proposed in this work. This model effectively
captures a wider range of information from historical tra-
jectories, including not only spatial interactions but also
spatial-temporal interactions. Additionally, it successfully
incorporates temporal information into its predictions.

• Several experiments are conducted to evaluate the perfor-
mance of the proposed approach, demonstrating superior
results compared to previous research papers.

B

C

D

A

A
C

D

B

t0 t1

B

C

D
A

t2

history time

RNNs(like LSTM or GRU)

historical trajectory
representation

spatial
embedding

spatial
embedding

spatial
embedding

Fig. 1. 2D graph in previous works

B0

C0

D0

A0

A1

C1

D1

B1

t0 t1

B2

C2

D2
A2

t2

history time

spatial
edge

temporal
edge

S-T embedding

S-T
fusion

Fig. 2. Integrated 3D graph in S-T
Fusion

II. RELATED WORKS

The methods in previous works are very similar for cap-
turing the temporal information, most of them choosing the
RNNs-based models, including LSTM and GRU. However,
they apply various algorithms to capture the spatial informa-
tion of trajectory. These deep learning methods for trajectory
prediction can be classified into three categories.

A. Pooling and CNNs based method

To capture information regarding pedestrian interaction,
Social LSTM [4] implemented a grid-based social pooling
technique between LSTM cells. Although social pooling ad-
dresses the issue of varied numbers of neighboring pedestrians,
it does not consider different weights assigned to neighbor
agents. TraPHic [12] also utilizes social pooling to capture
interaction information. The operation regions in TraPHic’s
social pooling consist of a Horizon map and a Neighbor Map,
which enable TraPHic to assign different weights to different

agents via social pooling in two maps. It improves the Social
LSTM but still misses the cross-time interaction. In CS LSTM
[8], shared weights LSTM encoder output is used to make
a social tensor, which is put through Convolutional Social
Pooling. The Convolutional Social Pooling captures interaction
at the last time of the encoder, but it ignores long-range
interactions. Social GAN [3] designs a Pooling Module to
capture the interaction of all pedestrians in a scene, whereas
Social Pooling [4] can only handle people in an m× n grid.
The relative positions between the target pedestrian and others
are fed into an MLP whose output is concatenated with the
target’s hidden states. The resulting tensor is then processed
by another MLP following a max pooling layer.

B. GNNs based method
The Social-STGCNN model [5] utilizes Graph Convolu-

tional Networks (GCNs) to capture spatial information and
model pedestrian interactions based on a graph defined at each
historical frame. Similarly, GRIP++ [9] defines graphs that are
then processed by GCNs and 2D temporal convolution layers
to capture spatial and temporal information from observed
tracks. GSTCN [13] defines a complete graph with weighted
edges based on reciprocal distances between nodes to model
vehicle interactions. ReCoG [14] uses a directed graph where
edges connect vehicles and the target if their distance is below
20 meters. RSBG [15] trains a Recursive Social Behavior
Generator to output weighted edges representing latent social
relationships, which are then fed into GCN layers. SGCN [16]
addresses the issue of superfluous edges by first defining a
dense undirected graph and then converting it into a sparse
directed graph to model pedestrian interactions. The Social-
BiGAT model [17] employs GAT and a latent encoder to
process hidden states and generate latent noise, enhancing
model multimodality. All the graph-based deep learning meth-
ods miss the traffic participants’ interaction cross time because
they define the graph at every frame, not the whole historical
time.

C. Attention based method
LaneGCN [18] utilizes attention mechanisms to learn inter-

actions among lanes, actors, and actors themselves. VectorNet
[19] employs a hierarchical graph, with subgraphs representing
agent trajectories and road features, which are processed using
an attention mechanism. HiVT [20] adopts a hierarchical
approach by capturing local interactions based on relative
positions using an attention mechanism. It then applies a
temporal transformer to generate spatial and temporal features
of the central agent. Another attention mechanism encodes
lane information into keys and values using an MLP and
calculates pairwise global interaction. These papers treated
temporal information and social interaction separately. The
ignorance of cross-time interaction leads to reduced model
performance.

III. PROBLEM FORMULATION
Let N denote the number of traffic agents, This represent

the history time, and Tpred indicate the prediction time. The

S-T GCN

S-T Fusion

history trajectory

+ Encoder
GRU

Decoder
GRU

predicted
trajectory

Lossreal future
trajectory

when training

Trajectory prediction block2D graph

3D graph

Fig. 3. Scheme of ST fusion model. The 2D graph is defined on all historical
time stamps, while the 3D graph is defined based on the entire historical time
stamps, including spatial edges and temporal edges

input history trajectories set of agents is denoted by X =
[x1,x2, ...,xThis], where xt represents the coordinates of N
agents at time t, i.e., xt = [xt

0, y
t
0, x

t
1, y

t
1, ..., x

t
N−1, y

t
N−1].

The prediction trajectories are defined as Y, which includes
future positions from time (This + 1) to (This + Tpred), i.e.,
Y = [yThis+1,yThis+2, ...,yThis+Tpred].

IV. SPATIAL TEMPORAL FUSION MODEL

A. Scheme of model

Fig. 3 illustrates the architecture of the proposed model,
which utilizes the historical trajectory of traffic agents, includ-
ing cars, bikes, and pedestrians, as input. The S-T fusion block
extracts both spatial and temporal information simultaneously
from this input. Meanwhile, the ST-GCN block separately
captures spatial and temporal information. These two blocks’
outputs are concatenated before being fed into the Seq2Seq
network [21] for predicting future trajectories within a time
period of Tpred.

B. Integrated 3D graph definition

In order to process the spatial and temporal information
simultaneously, this work creates a big graph where each node
represents a traffic agent, such as bikes, cars, and pedestrians.
An edge is created between two nodes at each time stamp if
their distance is shorter than the threshold Dclose. These edges
are considered spatial edges. Additionally, edges between
nodes at adjacent time stamps are defined as temporal edges
used to capture interactions across different time stamps. Fig. 2
displays the spatial and temporal edges. Although other nodes’
temporal edges are comparable, they are not depicted in the
illustration. Once the historical trajectories are compiled into
an integrated 3D graph, an adjacency matrix can be generated,
shown in Table I.

C. Spatial-Temporal Fusion block

The model takes the location (xt
i, y

t
i) of traffic agents during

a historical period This as input. To better represent this input,
two layers of MLP are utilized to increase its dimension.
This results in an output dimension of 16 for the MLP, as
demonstrated in Equation (1).

eti = MLP (xt
i, y

t
i), where eti ∈ RF , F = 16 (1)

TABLE I
ADJACENT MATRIX OF BIGGRAPH

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2
A0 0 1 1 1 1 1 1 1 0 0 0 0
B0 1 0 1 0 1 1 1 1 0 0 0 0
C0 1 1 0 0 1 1 1 1 0 0 0 0
D0 1 0 0 0 1 1 1 1 0 0 0 0
A1 1 1 1 1 0 0 1 1 1 1 1 1
B1 1 1 1 1 0 0 0 0 1 1 1 1
C1 1 1 1 1 1 0 0 1 1 1 1 1
D1 1 1 1 1 1 0 1 0 1 1 1 1
A2 0 0 0 0 1 1 1 1 0 1 0 1
B2 0 0 0 0 1 1 1 1 1 0 0 1
C2 0 0 0 0 1 1 1 1 0 0 0 0
D2 0 0 0 0 1 1 1 1 1 1 0 0

...

Fig. 4. An illustration of graph attention layer. It allows a node to assign
different importance to different nodes within the threshold and in the adjacent
time stamps. The new feature of nodes is aggregated from them.

The output of the MLP is provided as input of two layers of
GAT, allowing for simultaneous capture of both spatial and
temporal information. The input of graph attention layers is
Equation (2)

h =
{
e11, e

1
2, ..., e

1
N , e21, e

2
2, ..., e

2
N ,, eThis

1 , eThis
2 , ..., eThis

N

}
(2)

where etn is the embedding of nth node at time t.

αi,j
u,v =

exp
(

LeakyRelu
(
aT

[
Weiu

⊕
Wejv

]))
∑

k∈N(u)
∑

l∈{i−1,i,i+1} exp
(
LeakyRelu

(
aT

[
Weiu

⊕
Welk

]))
(3)

where αi,j
u,v is the attention weights between node u at time i

and node v at time j. W ∈ RF ′×F is a shared trainable matrix
for linear mapping. F ′ is the output feature dimension, and F
is the input feature dimension.

⊕
denotes the concatenation

operation. N(u) means the neighbor nodes of u within a
threshold at the same time. a ∈ R2F ′

is a weight vector.
The updated representation of node u at time i, denoted as

ei
′

u , is obtained by computing the attention weights of adjacent
nodes on target nodes, as specified in Equation (4).

ei
′

u =
∑

k∈N(u)

∑
l∈{i−1,i,i+1}

αi,j
u,vWeiu (4)

D. Spatial-Tempotal GCN block

The block records the historical x, y coordinates of N
traffic agents and processes spatial and temporal information
separately. To capture interactions, input data is first fed into
a GCN layer, followed by a temporal CNN layer to capture
time information. The Spatial-Temporal GCN block consists
of three ST-GCN layers, as illustrated in Fig. (6).

GAT
position

embedding

2 layers
MLP

S-T
embeddings

fusion
embedding3D graph

2 layers
MLP

Fig. 5. Spatial-Temporal fusion block

GCN Temporal
CNN GCN Temporal

CNN+ + GCN Temporal
CNN +

Fig. 6. Spatial-Tempotal GCN block

E. Trjectory prediction block

The trajectory prediction block is a conventional sequence-
to-sequence (seq2seq) model comprising GRUs as its compo-
nents. The seq2seq model excels at processing sequence data
and has been widely utilized in prior studies such as [4] and
[22]. Previous experiments have demonstrated that the seq2seq
model exhibits high performance in trajectory prediction tasks.
Furthermore, trajectory prediction belongs to the domain of
autoregressive tasks, which are well-suited for LSTMs and
GRUs. In this study, we employ the seq2seq model to forecast
future trajectories, building upon existing research.

V. EXPERIMENTS

We trained our model on a Linux server running Ubuntu
22.04.1 LTS with AMD Ryzen Threadripper PRO 3995WX
64-Cores, 512GB RAM, and one NVIDIA GeForce RTX
3090.

A. Dataset

We train and test our model on the ApolloScape Trajectory
Dataset [12], whose framerate are two frames per second. The
training sequence lasts for 53 minutes, while the test sequence
lasts for 50 minutes. The dataset contains two files, one for
training and one for testing. In the training zip file, each file
is a 1-minute sequence, and each line in the file contains
frame identification, object identification, object type, position
x, position y, position z, object length, object width, object
height, and heading. The traffic in the dataset is classified
into five categories: small vehicles, large vehicles, pedestrians,
motorcyclists, bicyclists, and others. The location is based on
global coordinates. For the Apollo challenge, the observation
time was set to 2 seconds. However, some studies [9] [23]
have extended the observation time to 3 seconds, along with a
prediction time of 3 seconds. The testing files have the same
data structure as the training files, which are used to evaluate
the performance of the model.

B. Metrics

TABLE II
COMPETITION RESULTS ON APOLLOSCAPE TRAJECTORY DATASET.

Method WSADE ADEv ADEp ADEb WSFDE FDEv FDEp FDEb

TafficPredict [12] 8.5881 7.9467 7.1811 12.8805 24.2262 12.7757 11.1210 22.7912
GRIP++ [9] 2.514 3.948 1.746 3.233 4.026 6.080 2.981 4.913
S2TNet [24] 1.1679 1.9874 0.6834 1.700 2.1798 3.5783 1.3048 3.2151

STF 1.384 2.403 0.799 2.001 1.707 2.972 1.012 2.392

Root Mean Square Error (RMSE): measures the distance
between the predictor and the ground truth at time t [22].

RMSEt =

√∑
n∈N (ŷtn − ytn)

2

N
(5)

The Apollo Scape Trajectory dataset provides a weighted sum
formula for RMSE, given by Equation (6).

RMSEw = Dv ∗RMSEv +Dp ∗RMSEp +Db ∗RMSEb

(6)
where Dv = 0.20,Dp = 0.58, and Db = 0.22. ApolloScape
Trajectory Dataset provides these values and points out that
they are computed based on the velocity information available
in the dataset. RMSEv represents the RMSE value for ve-
hicles, RMSEp represents the RMSE value for pedestrians,
and RMSEb represents the RMSE value for bikes.

Average Displacement Error (ADE): calculates the distance
between the predicted location of N agents and ground truth
in Tpred time steps, which measures the average prediction
performance along the trajectory [8]

ADE =

∑
t∈T

∑
n∈N ∥ŷtn − ytn∥2

N × Tpred
(7)

where ŷtn is the prediction location of nth vehicle at time step
t, ytn is the true location of nth vehicle at time step t. T =
{This + 1, This + 2, ..., This + Tpred} and N = {1, 2, ..., N}.
ADEv ,ADEp and ADEb are computed separately.

Final Displacement Error (FDE): only computes the dis-
tance between the predicted final location and the true final
location at the end of final prediction time step Tpred [8]

FDE =

∑
n∈N ∥ŷTpred

n − y
Tpred
n ∥2

N
(8)

where ŷ
Tpred
n is the prediction location of nth vehicle at the

last prediction time step Tpred, yTpred
n is the true location of

nth traffic participant at the last prediction time step Tpred.
FDEv , FDEp and FDEb are computed separately. The
WSADE and WSFDE can be computed through Equation (9)
and Equation (10).

WSADE = Dc ∗ADEv +Dp ∗ADEp +Db ∗ADEb (9)

WSFDE = Dc ∗FDEv +Dp ∗FDEp +Db ∗FDEb (10)

where the Dv = 0.20,Dp = 0.58, and Db = 0.22 which is the
same as them in Equation (6) provided by the ApolloScape
Trajectory Dataset.

TABLE III
RMSE FOR TRAJECTORY PREDICTION ON APOLLO SCAPE TRAJECTORY

Object type RMSE
0.5s 1s 1.5s 2s 2.5s 3s

vehicle 1.744 2.577 3.513 4.440 5.335 6.080
pedestrian 0.515 1.002 1.522 2.022 2.436 2.981

GRIP++ bike 1.101 2.145 2.924 3.779 4.535 4.913
weighted RMSE 0.890 1.569 2.228 2.892 3.478 4.026

all objects 1.384 2.218 3.033 3.919 4.722 5.425
vehicle 1.972 2.0 2.311 2.517 2.649 2.972

pedestrian 0.50 0.653 0.773 0.887 0.971 1.012
STF bike 1.366 1.833 1.925 2.207 2.282 2.392

weighted RMSE 0.985 1.182 1.334 1.503 1.595 1.707
all objects 1.586 1.792 2.029 2.265 2.363 2.612

C. Experiments on the ApolloScape Trajectory Datasets

Table II shows the competition results of TafficPre-
dict, GRIP++, S2TNet, and STF. The metrics reported in-
clude WSADE, ADEv , ADEp, ADEb, WSFDE, FDEv ,
FDEp, and FDEb. Among the listed methods, it is evident
that the STF model demonstrates competitive performance
across several metrics. For the WSADE metric, STF achieves
a value of 1.384, which is lower than TafficPredict (8.5881)
and GRIP++ (2.514), indicating improved accuracy. Similarly,
for the ADEv , ADEp, and ADEb metrics, the STF model
outperforms TafficPredict and GRIP++, showing lower values
and better accuracy in trajectory prediction. But the higher
values than the result of S2TNet, which means the S2TNet has
better performance than STF in short-time prediction. Moving
on to the WSFDE, FDEv , FDEp, and FDEb metrics, the
STF model excels, demonstrating the lowest values among
the listed methods. Specifically, STF achieves an impressive
WSFDE of 1.707, an FDEv of 2.972, an FDEp of 1.012,
and an FDEb of 2.392. These results indicate that the STF
model can predict long-term trajectories with greater precision
and accuracy compared to TafficPredict, GRIP++, and S2TNet.

In summary, the STF model stands out as the best-
performing method in trajectory prediction based on the
competition results. It surpasses TafficPredict, GRIP++, and
S2TNet in terms of FDE metrics, demonstrating superior
accuracy and precision in trajectory prediction on long-time
trajectory prediction.

Due to the lack of RMSE values at every frame in the
TafficPredic and S2TNet models, we evaluate our model by
comparing it with GRIP++ based on the RMSE at each pre-
diction frame. Furthermore, our model incorporates GRIP++
as its backbone. The outcomes derived from GRIP++ can be
regarded as an ablation experiment. The experiment results,
as shown in Table III, compare the RMSE for trajectory
prediction on the Apollo Scape Trajectory dataset between the
GRIP++ model and the STF. The RMSE values are reported
for different prediction time intervals, ranging from 0.5s to 3s.

Overall, the STF outperforms the GRIP++ model in terms of
trajectory prediction accuracy. Specifically, the STF achieves
lower RMSE values for most object types and prediction
time intervals compared to GRIP++. For the car object type,
the STF obtains slightly higher RMSE values at shorter
prediction time intervals (0.5s) but achieves better performance

Fig. 7. Weighted RMSE in prediction time

at longer prediction time intervals (1s, 1.5s, 2s, 2.5s, and 3s).
For pedestrians, the STF consistently exhibits lower RMSE
values across all prediction time intervals, especially for long-
term prediction. For the bike object type, the STF achieves
better results at longer prediction time intervals (1s, 1.5s, 2s,
2.5s, and 3s), while the RMSE values are comparable or
slightly higher at shorter intervals (0.5s). For the weighted
sum of these three kinds of objects computed according to
Equation (6), the STF shows much better on the long-term (1s,
1.5s, 2s, 2.5s, and 3s) trajectory prediction. The STF model
demonstrates superior performance compared to the GRIP++
model in terms of all object types. This includes vehicles,
pedestrians, bikes, and other objects. The STF consistently
achieves lower RMSE values across long prediction time in-
tervals (1s, 1.5s, 2s, 2.5s, and 3s). Fig. 7 displays the plot of the
Weighted RMSE for GRIP++ and STF at various predicted
times. This figure highlights the superior performance of STF
in accurately predicting future trajectories over an extended
period.

VI. CONCLUSION

This paper presents the STF model, designed to capture
spatial and temporal information from historical trajectory data
simultaneously. The model addresses the information missing
problem in previous works while mitigating the issue of error
accumulation. Experiments are conducted on the ApolloScape
Trajectory Datasets. The results demonstrate superior perfor-
mance compared to previous models. Our model exhibits
a significant advantage, particularly in long-term trajectory
prediction performance. Accurate long-term predictions ensure
that autonomous vehicles and robotics can proactively avoid
potential collisions, providing them with more time to respond,
ultimately resulting in enhanced safety.

REFERENCES

[1] W. Wang, L. Wang, C. Zhang, C. Liu, L. Sun et al., “Social interactions
for autonomous driving: A review and perspectives,” Foundations and
Trends® in Robotics, vol. 10, no. 3-4, pp. 198–376, 2022.

[2] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep
learning,” arXiv preprint arXiv:2106.11342, 2021.

[3] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan:
Socially acceptable trajectories with generative adversarial networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 2255–2264.

[4] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human Trajectory Prediction in Crowded
Spaces,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 961–
971.

[5] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn:
A social spatio-temporal graph convolutional neural network for human
trajectory prediction,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 14 424–14 432.

[6] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph
transformer networks for pedestrian trajectory prediction,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XII 16. Springer, 2020, pp. 507–523.

[7] M. Mendieta and H. Tabkhi, “Carpe posterum: A convolutional approach
for real-time pedestrian path prediction.” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 3, p. 2346–2354, Sep
2022. [Online]. Available: http://dx.doi.org/10.1609/aaai.v35i3.16335

[8] N. Deo and M. M. Trivedi, “Convolutional Social Pooling for Vehicle
Trajectory Prediction,” May 2018.

[9] X. Li, X. Ying, and M. C. Chuah, “Grip++: Enhanced graph-based
interaction-aware trajectory prediction for autonomous driving,” arXiv
preprint arXiv:1907.07792, 2019.

[10] Y. Zhu, D. Qian, D. Ren, and H. Xia, “Starnet: Pedestrian trajectory pre-
diction using deep neural network in star topology,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 8075–8080.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[12] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha,
“Trafficpredict: Trajectory prediction for heterogeneous traffic-agents,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 6120–6127.

[13] Z. Sheng, Y. Xu, S. Xue, and D. Li, “Graph-based spatial-temporal
convolutional network for vehicle trajectory prediction in autonomous
driving,” IEEE Transactions on Intelligent Transportation Systems, 2022.

[14] X. Mo, Y. Xing, and C. Lv, “Recog: A deep learning framework with
heterogeneous graph for interaction-aware trajectory prediction,” arXiv
preprint arXiv:2012.05032, 2020.

[15] J. Sun, Q. Jiang, and C. Lu, “Recursive social behavior graph for
trajectory prediction,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 660–669.

[16] L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, “Sgcn:
Sparse graph convolution network for pedestrian trajectory prediction,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 8994–9003.

[17] V. Kosaraju, A. Sadeghian, R. Martı́n-Martı́n, I. Reid, H. Rezatofighi,
and S. Savarese, “Social-bigat: Multimodal trajectory forecasting using
bicycle-gan and graph attention networks,” Advances in Neural Infor-
mation Processing Systems, vol. 32, 2019.

[18] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun,
“Learning lane graph representations for motion forecasting,” in Euro-
pean Conference on Computer Vision. Springer, 2020, pp. 541–556.

[19] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,
“Vectornet: Encoding hd maps and agent dynamics from vectorized rep-
resentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 11 525–11 533.

[20] Z. Zhou, L. Ye, J. Wang, K. Wu, and K. Lu, “Hivt: Hierarchical vector
transformer for multi-agent motion prediction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 8823–8833.

[21] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[22] H. Song, W. Ding, Y. Chen, S. Shen, M. Y. Wang, and Q. Chen,
“Pip: Planning-informed trajectory prediction for autonomous driving,”
in European Conference on Computer Vision. Springer, 2020, pp. 598–
614.

[23] X. Li, X. Ying, and M. C. Chuah, “Grip: Graph-based interaction-aware
trajectory prediction,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC). IEEE, 2019, pp. 3960–3966.

[24] W. Chen, F. Wang, and H. Sun, “S2tnet: Spatio-temporal transformer
networks for trajectory prediction in autonomous driving,” in Asian
Conference on Machine Learning. PMLR, 2021, pp. 454–469.

http://dx.doi.org/10.1609/aaai.v35i3.16335

	Introduction
	Related works
	Pooling and CNNs based method
	GNNs based method
	Attention based method

	PROBLEM FORMULATION
	Spatial temporal fusion model
	Scheme of model
	Integrated 3D graph definition
	Spatial-Temporal Fusion block
	Spatial-Tempotal GCN block
	Trjectory prediction block

	Experiments
	Dataset
	Metrics
	Experiments on the ApolloScape Trajectory Datasets

	Conclusion
	References

