
Oral History of Alan
Cooper
Hansen Hsu
Petaluma, CA

Hsu: The date is March 13th, 2017, and I’m

Hansen Hsu, curator, Center for Software His-

tory, and today, we are here with Alan Cooper.

Cooper: I was born in San Francisco, Califor-

nia. I like to say I was born in Frisco, just to drive

people crazy, in 1952, and right smack in the

middle of the century. And I lived there for a few

years and my mom wanted to move to Marin

County. She wanted to move to the suburbs. My

dad, who worked as an electrician in the city

was kind of content, I think, with the city life, but

my mom had this vision of, you know, the post-

age stamp lawn and the little house. And so

when I was about four years old, we moved to

Marin, and that’s—I grew up in a little, tiny town

called Kentfield, really a bedroom community.

Hsu: Can you tell us a bit more about your

childhood?

Cooper: Well, I’m sure I was just insufferable

as a child, because I’m very sort of self-centered

and self-indulgent, and critical, kind of a creative

design type. And those are all the things that get

you punched out in the schoolyard, you know.

And so I was not really a happy kid, and I strug-

gled for a long, long time, and it was—in many

ways, it was marijuana that rescued me, because

number one, it was a different way of thinking,

but it was a counterculture that I could partici-

pate in, you know, so it became my peer group,

and I had a peer group for the first time. I wasn’t

actually interested that much in pot, and I

stopped using it pretty quickly, but I had a

group, we had long hair, and, you know, I had an

attitude, and I did psychedelic light shows, and I

hung out with musicians and artists, and it gave

a center to my life. Everyone needs a center.

Hsu: So what did your mother and father do?

What were their occupations?

Cooper: Well, my mother was a homemaker,

you know. That was back in the day, andmy father

was an electrician. He loved that. He loved the con-

struction trades, all of them. Even though electric-

ity was his thing, he loved to use his hands to

make things. Hemade stuff out of wood, andmetal,

and he knew all the trades, and he could plumb,

and tile, and everything. And he became after a

while, while I was still a teenager, he became an

inspector, an electrical inspector. He worked for

San Francisco, and so he kind of graduated to a

more white collar job. And he also taught. He

Digital Object Identifier 10.1109/MAHC.2020.3033744

Date of current version 15 November 2020.

Department: InterviewsDepartment: Interviews
Editor: Dag Spicer, dspicer@computerhistory.org

100
1058-6180 � 2020 IEEE Published by the IEEE Computer Society IEEE Annals of the History of Computing

taught apprentice electricians at a vocational tech-

nology school in San Francisco, and he was gener-

ous enough to actually let me attend some of his

classes. So as a 12 year old kid, I’d sit in the back of

the class with a bunch of 20 year old guys. It was

all men at the time, of course, and he would teach

electrical theory, and I followed as best I could.

But that was a real treat for me to watch my dad

standing in front of the class.

Hsu: Do you have any siblings?

Cooper: I have two sisters. You know, my

parents, theywere each the youngest of their fami-

lies, and I’m the youngest of theirs, and so there’s

a long distance. Both my folks have been passed

for many years, and my sisters are moved away,

and we’re not really close, so my family really is

my wife’s family. I married into a much more

amendable family to me, and as I mentioned, Dave

Carlick already was an important part of that, and

so I’ve learned a lot frommywife’s family. They’re

from Paducah, Kentucky, so they have this sort of

southern gentility that was foreign tome. I found it

endlessly fascinating. They’re very gentlemanly,

and courtly, and so they’ve beenmy family.

Hsu: Okay, thanks. So obviously you’re very

into art as a, you know, your whole life. How did

you get into that, and did you have any other

hobbies besides that?

Cooper: I have a million hobbies. For one

thing, design is not art.

Hsu:Mm-hm.

Cooper: And when I was in school, I went to

the College of Marin, a local community college,

a very good community college, and so I like to

say I spent five of the best years of my life at the

two-year college. I studied, because I wanted to

get into architecture, I was trying to—I was

doing essentially prearchitecture at a commu-

nity college so that I could get into Berkeley, and

prearchitecture at a community college meant

art and design. So I studied art and design, and

art is free expression. Design is a much more

focused kind of critique, the sort of a studio way

of doing things, and I learned a lot from that.

I had pretentions as a youth to be an artist. I, first

I thought I was going to be a great photographer.

Then, I thought I was going to be a great painter.

I thought I was going to be a great printmaker,

and it became very clear to me that I was not,

that I was not an artist. I was a craftsman.

I loved the tools and the trappings of art. I

had boxes of brushes, and pencils, and paints,

and I loved all that stuff, and I knew more about

it than anybody else, but I was not an artist,

because an artist has a story to say, to tell, and

I didn’t. And I realized that there was a different

role for me, and that’s the thing about design is

design is problem solving. A lot of people call it

design thinking today. That’s not a distinction

that I make, but it’s a convenient term that’s

gone out into the wild. But to me design—I call

it “Alexandrian design” after Christopher Alex-

ander, who happens to be a professor of archi-

tecture, or formerly professor of architecture at

Cal Berkeley. He talked about design as a prob-

lem solving discipline. Design is the synthesis

of a form to fit a context, and when I read his

work as a boy, I mean, I was probably 14 when I

read his book, “Notes on the Synthesis of

Form.” I found it in my high school library, and

it rocked my world, because I had been reading

books on designing houses. I read Christopher

Alexander’s work, and it was a theory of design.

It was a way to think about what design is, and

it blew my mind.

I love hobbies. To me in many ways program-

ming and design are hobbies, you know? Some

of the hobbies I’ve built companies around and

some of the hobbies were just fun. So, when I

was a kid, I liked to swim, and ride my bike, and

with Gary as a buddy, bicycling was an interest-

ing thing. I’ve always been interested in trains,

and model railroads, and model railroading is a

really interesting hobby because there are so

many different aspects of it. A lot of people think

it’s about building toy trains, but the part of

model railroading that has become so fascinat-

ing to me is the historical research, so I’d go on

these trips to middle America, and I’d go to the

bad parts of town, and take pictures of old shut-

tered factories, and stuff, and go into historical

libraries and research, you know, industries that

were thriving in the 1950s, things like that.

Hsu: Were you into science and math as a

kid?

Cooper: I was into science. I liked science,

but not math. I’m a visual thinker and a visual

learner. And the way math, I don’t know how it’s

taught today, but the way it was taught in the

1960s was antithetical to the way I learned. I had

October-December 2020 101

a saying when I was into model rocketry. . .

which is that model rockets might get a kid inter-

ested in mathematics, but mathematics won’t

get a kid interested in rocketry. And that’s kind

of my philosophy: mathematics is the burden if

you want to make cool things. And, you know,

beyond multiplication, my eyes glaze over, but

I’m really interested in the applied stuff. I mean,

Adam Savage is a great hero of mine, ’cause he

says, “Kids,” you know, “the only difference

between science and screwing around is writing

it down.” And I love that notion.

Eventually, I started taking classes at the

College of Marin. As soon as I finished the first

mandatory introductory course, I threw myself

into the data processing curriculum, and I got a

work study job as a computer operator inside

the computer lab. The college’s computer, they

had an IBM System/370 also, and it not only was

used for teaching, but they also administered

the school on it. So as a student operator, they

didn’t let me run a lot of the big jobs that ran the

school or ran the district, but they let me run all

the student jobs. So I worked inside the actual

computer room, and the other students would

hand me a deck of cards through a window. I’d

run the deck of cards through and then I’d take

their green bar print out results and rubber

band it together and toss it in the out basket.

But it meant that I was inside the air-conditioned

room with the big computer, and they were out-

side. So I got all the computer time I wanted, so

I wrote bigger and bigger programs and did

more and more stuff. But that was, you know, a

student job, a work study job.

There was also a timesharing culture. The

minicomputer timeshare thing was growing, and

I spent some time at the Lawrence Hall of Science

in Berkeley, where they had timeshared com-

puters. You could get time on them. I don’t

remember if they were free or dirt cheap. And

therewas also, there were some guys down in Sili-

con Valley. It was a long drive for me, but there

was the People’s Computer Company. But also

right about that time is when the Altair 8800

came out, and then the IMSAI 8080, which wasmy

first computer, and I went to a buddy of mine, the

guy who had said, “You’re over qualified. Go get a

job.” And I said, “Look. We could buy a computer

withmoney that we, actually, have.”

And he said, “Wouldn’t it be great if we could

find some guy who was about to buy a turnkey

minicomputer accounting system? And, you

know, instead of spending $30,000 on a [DEC]

PDP-8 or something with an accounting system,

we could sell them a microcomputer system?

And what we could do is we could sell it to

them—,” he outlined the business model. He

said, “We’d sell the turnkey system to them, but

then tell them that it’s going to be three months

before we’re ready. And then, in the three

months, we’d write a business accounting sys-

tem, and then we’d give them the microcom-

puter and this business accounting system, and

then we could keep doing that.” And I said, “You

know, I was at a party just the other night and I

was talking with a guy who was an accountant,

and he was thinking about buying a system.” So,

we went and we talked to the guy. He promised

us the money, we promised him the software,

and we did eventually sell him a system. But he

never did front us the money.

Hsu: And that’s the IMSAI?

Cooper: Yeah, that’s the IMSAI 8080.

Hsu: Wow. Let me take a little step back. So

how important was the counterculture in expos-

ing you to the early microcomputer hobbyist

scene?

Cooper:Well, having your own computer was

pretty darn countercultural. And so it wasn’t

that the counterculture had computers, as much

as it was that countercultural people did things

that other people didn’t do, and one of those

things was have your own computer and figure

out something to do with it or start a company

around it. And so there were a remarkably large

number of people who picked their own path in

the early days, and there were self-help commu-

nities like EST, and the whole IMSAI computer

company came out of EST.

Hsu:Were you reading Ted Nelson or Stewart

Brand, people like that?

Cooper: Oh, yeah. Yeah, Stewart Brand, the

Whole Earth Catalog was the bible of that gener-

ation. It was a printed Internet is really what it

was. I mean, a World Wide Web, I should say.

Because he called it “Access to Tools.” It was a

catalog of all the stuff that creative, outside the

box, thinking kind of people would want, and it

was a very important publication. And Ted

Interviews

102 IEEE Annals of the History of Computing

Nelson’s “Computer Lib,” yeah, he was a radical

thinker.

Hsu: Let’s talk about your first company,

Structured Systems Group. Were there any other

personal computer software companies, at the

time? Or were you one of the first?

Cooper: We were definitely one of the first.

There were personal computer software compa-

nies. There were three, and Gary Kildall really is

the guy who, kind of, said, “Hey, look, there’s

three companies. There’s my company—” Gary

Kildall’s company, Digital Research, that did

operating systems. They did an operating sys-

tem called CP/M. It was the first. And there was

Bill Gates, who had the first language that was

commercially viable, which was Microsoft

BASIC. And then, there was my company, Struc-

tured Systems Group, which had business appli-

cation software. And that’s how he [Kildall]

articulated it. He said, “Really, this is the three

points of the tripod.”

We developed our own distribution network.

It was, basically, a Rolodex filled with the names

of little computer stores around the country,

and we had developed a channel and it was very

clear that if we could invent more software, we

could drive more software through that channel.

So it was a matter of trying to say, “What can we

do?” And so I wrote a little program that man-

aged names and addresses, and then, I wrote

another little program that let you create, like,

little comma separated value data files, and then

reassemble them and print it out as a report. So

it was a very primitive database manager kind of

program

I started Structured Systems Group in 1976,

which is when we discovered the microcom-

puter, came up with this idea of the turnkey

[accounting] system, and built the General Led-

ger. I sold my interest in that company to my

partner, in 1980. The company, we were pretty

successful at the time. I mean, today, it would be

down to a rounding error, the size of the com-

pany. But when we started that company, we

would sit around and, you know, drink red wine

and talk about how we’d be better than our

bosses, at the big companies, at doing this, at

running our own company. And I remember say-

ing, “Yeah, I’m going to have my own company

so I can get $50,000 a year,” which was, like, the

biggest number that I could think of. And a year

later, I was making $50,000 a year. I was 26 years

old and, you know, 10 years earlier, they told me

I was going to be a ditch digger, and $50,000 year

was twice what my dad made. I bought him a

car. But people are weird, you know? And I felt

like I was on this roller coaster. I kept thinking,

“When are the grownups going to come in here

and take this away from me?” And it became

clear that what we needed to do was get some

investment money, and I didn’t even know what

investment money was, but I knew that we

needed help to take our company to the next

step. But my buddy who was also, kind of, a

counterculture guy, was—he was extremely

happy at 50 thou a year. He bought himself a

house in the suburbs and he said, “This is good.

I don’t want to go anywhere.” And I said, “Let’s

go to the next step,” and we started fighting over

that. We started fighting over what’s our destiny,

and as people do, we started poking holes in

each other’s work, and it became untenable and

something had to give. And being this young kid

with no experience, no education. It had seemed

very easy. I just did what was fun, and I’d built a

successful company. What I did was I said to my

partner, I said, “Just pay me my salary for the

next 10 years, and you can take my half of the

company,” and I walked out.

That was in 1980. In 1981, he stopped paying.

In 1982, he went out of business. There’s a lesson

there. You know, the wrong guy stayed and I

learned that you need to watch your back. In my

second software company, we did some pretty

good stuff. I built a spreadsheet that was pretty

darn good and was halfway done with a word

processor that was also pretty ambitious. . . .

Well, in 1981, IBM released its PC, and there was

an instantaneous consolidation in the microcom-

puter business, and the guy who financed me

just started circling the drain. I had been negoti-

ating with somebody to license my spreadsheet,

and the guy who was financing me stepped in

and forced the deal, because it was his money. I

wasn’t that happy with that deal, but what could

I do? And I don’t know what the timing was, but

within a year, probably within six months, both,

the guy, the microcomputer company, was

investing in me, and the software publisher who

was my one client for my spreadsheet, they were

October-December 2020 103

both out of business, victims of the consolida-

tion. I sat down one day and paid all the bills,

paid off everybody I owed, quietly closed the

doors to my second company, Access Software.

And I learned that just because you’re smart and

hardworking doesn’t mean you’ve got a success

there. I learned more, I think, from failing than I

did from succeeding at my first company. And it

was at that point, that I took a job working for

Gary Kildall at Digital Research, and he said,

“Come and start the R&D department.”

And what I had done at Access Software that

was really interesting was I said, “I’m going to do

things differently at Access Software.” I hired a

couple of guys who I really liked, who were

good, strong programmers, and I said, “I want

you guys to do all the coding.” And I hired a

woman, who was a technical writer, to do the

documentation. And I said, “I’m going to specify

every pixel and every keystroke, and I’m not

going to write a single line of code.” This was

radical in this new microcomputer industry, and

then, we also did user testing and it was, kind of,

a semiblind user testing. We draped sheets over

stuff in the office, and we’d bring people in and

pay them 25 bucks, and they’d sit there and we’d

give them tasks and we’d observe them. Again,

this stuff was not done, and we had really good

results. We really learned a lot, and I found that I

was designing the interface, but I wasn’t pro-

gramming it, so I was detached from that. So

when I went to Digital Research, I told Kildall

that this is what I had done and I wanted to

explore it, because, I said, “This is really promis-

ing.” It’s really good. I’m getting better results

than if I just go head down and code, and he

said, “Yeah, you can do that. So come on down

to our R&D lab.”

So I was the second guy there, and my wife

joined Digital Research, too, in the marketing

department and she had a much more successful

time there than I did. Because, while Gary Kildall,

the founder and owner of the company, told me

what I could do, it turned out that they had a

president who had been brought in by the ven-

ture capitalists, who looked at me and said, “No.

I want to see you coding.” <laughs> And I said,

“No. You don’t understand. I came here not to

code.” And he said, “Well, let’s see what you do.”

And I just, kind of, went, you know, “I’m not

going to do this.” And so I wrote business plan

after business plan for a product within the com-

pany, or I should say product plan. And each

one, each plan, basically, said “I need a head

count. I need a couple of software developers.”

And they never approved any of them, and so

after about a year, I said, “I’m out of here,” and I

quit.

That was somewhere around late 1982, early

1983. And I went home, and I looked at this list of

product plans that I had given them that they

weren’t interested in, and I said, “Any one of

these I’ll build them and we’ll make a lot of mon-

ey.” So I took the top one off the list, which was a

critical path project management program, and I

said, “That’s an interesting challenge.” So I

started to write it, and at the time, we had about

three months’ worth of money, my wife and I.

I had a spare bedroom in the house, and I just

started coding, started writing this product, and

it took about six months to build it to the point

to where we finally sold it, and then we ran out

of money. It was pretty horrendous. They began

foreclosure proceedings on our house. PG&E

came out and disconnected our electricity. I had

to go out—my dad was an electrician, and I hot-

wired the house <laughs> so we could get the

lights back on so I could run the computer. And I

wrote, I think, a really good program. It was the

critical path project management program that

did tasks with interrelated dependencies. It was

very cool stuff, and. . . then, I sold it to Computer

Associates, and it was released as SuperProject.

And I forget the numbers. It was, like, I don’t

know—they wrote us a check. What I remember

is we had a check upon signing. So when we

inked the contract, they gave me a quarter of the

money or half the money, or something. And Sue

and I went home and sat down and got out our

checkbook and started writing checks to all the

people we owed money to, and we spent $60,000

in an afternoon, because we had, basically, been

living on nothing for three months. And then, we

threw a party. <laughs> We called it the reboot

party, and we pasted the walls with green bar

paper of source code and we just celebrated. We

invited all of our friends and we had a good time.

And so we were back on our feet, and I built soft-

ware like that, just going off and just thinking it

up all by myself and then building it all by

Interviews

104 IEEE Annals of the History of Computing

myself, and then taking it out and showing it to

software publishers. I did that two more times in

the 1980s. I built three products, but the fourth

one never saw the light of day, and the next one

was the first serial communications program for

Windows and I sold it to Will Hearst’s company.

Hsu: Software Ventures?

Cooper: Software Ventures. And. . .

Hsu: And that was the Microphone II product?

Cooper: Yeah, and that was a—I mean, this is

before the Internet. I should say, definitely

before the World Wide Web, the Internet was an

infant at that point. So communications were

really serial at that point, so that was an interest-

ing program. I was experimenting with a geo-

graphic information system that I was writing,

that would do—that would display maps of dif-

ferent sizes and shapes and colors to indicate

different values, you know, visual communica-

tions. And but what I really needed was a multi-

tasking graphical user interface operating

system. And such a thing didn’t really exist, so I

started writing my own, and it ran on top of CP/

M, or DOS, I guess I should say. And that was an

interesting problem. I mean, that was the way

things were back then was if you didn’t have it,

you made it. And but it was a big project.

Hsu:What year was this?

Cooper: This was probably 1986?

Hsu: Okay. And so weren’t there other graphi-

cal interfaces for DOS machines?

Cooper: No, no. And that’s what this guy said,

one day he said, “I want you to seewhatMicrosoft

is doing.” And he took me to a technical pitch

meeting somewhere in Silicon Valley, and there

was Steve Ballmer up on the stage, and they were

talking about Microsoft Windows. And they were

saying that they were going to do really impres-

sive stuff with this graphical multitasking system,

andwhich did not impressme at all. Okay? ’Cause

I had my own, and I wasn’t that impressed with

theirs. But there were some things that I couldn’t

do because I didn’t have access to the deep guts

of the operating system. And there were things

that I wanted, whichwere interprocess communi-

cation, dynamic relocation, and dynamic load

ability. This is the argument that I had for a

year-and-a-half at Digital Research is, is all the

systems guys there would come to me and say,

“Alan, you’re the applications guy, what is it

you want?” And I’d say, “I want dynamic

relocation.” And they’d say, “Yeah, yeah, but

why would you want that? What else do you

want?” I go, “I want dynamic relocation.”

“Well. . .,” “Yeah, yeah, no thanks.” And they

didn’t understand it, is that without dynamic

relocation, multitasking is useless. They saw it

as a scientific experiment; and I saw it as a prac-

tical platform, and what you have to be able to

do is as programs come in and go out of main

memory, they—you have to be able to slide the

remnants of the old ones down to the end, and

make room for the new guys to come in. And

they had the technology, they wouldn’t build it.

And it really frustrated me. And there was Steve

Ballmer up on the stage saying, “Dynamic relo-

cation and interprocess communication.” And

you know, dynamic loading of modules that

could run and go out without shutting down

the operating system. I said, “Okay, I’m sold!”

It wasn’t the sexy graphics that sold me. It

wasn’t the GUI that sold me, because I had my

own GUI. What sold me was the dynamic relo-

cation, which I couldn’t do. So I went home

and I put my little graphic front end, and mul-

titasking dispatcher in the sock drawer, as my

wife calls it, and started building software in

Windows.

And the first thing you learned when you

started working in Windows back then was what

an incredible piece of shit it was. In particular,

the thing that so was shitty about it was the shell,

the “Finder,” the face of it. It had this awful little

program that was unigraphic and miserable. And

it just was, just bad! And you know,Microsoft was

doing whatever Microsoft was doing. They were

building it or selling it or improving it or adding

to it, or whatever. But the interface was just kind

of the red-headed stepchild that nobody cared

about. And so they might as well have had a neon

sign saying, “Market Opportunity.” And it just

really intriguedme. So I started saying, “Okay, I’m

going to build a shell.” And so I started writing lit-

tle programs that could be shells for Windows.

But that’s actually—that’s a hard problem! You

know, what would a shell be for Windows? It’s an

operating system that serves a lot of people, and

it really—

Hsu: So you wanted to replace the Windows

Explorer with your own?

October-December 2020 105

Cooper: Yes. Yes. It was—their Explorer was

just really bad. Everybody knew it was bad,

even Microsoft knew it was bad, too, but they

just didn’t have the bandwidth or something, or

the interest to make it any better. So a friend I

had worked with at Digital Research had actu-

ally gotten a job in the sales team at Microsoft.

And he asked me if I would come out with him

on a sales call one day, ’cause I was—he knew I

was a Windows developer, he was trying to sell

Windows to these big IT Departments, and he

was trying to convince the big IT Departments

that there were actually guys writing for Win-

dows. So I went along as Exhibit A, an actual

tech guy. Because the jury was out at that point

as to whether Windows was going to be a suc-

cess or not.

And so where he took me was to the Bank of

America Headquarters, way out in the East Bay.

And I met with the Head of IT there. And my

buddy at Microsoft is pitching the virtues of Win-

dows, and I was going, “Yeah, Windows is won-

derful.” And this guy was saying, “Our issue here

is that we’ve got people who are Senior Systems

Analysts building systems. And we’ve got bank

tellers who have a high school diploma, and

they all have to use this system, this Windows

system that you’ve got.”

Plink! There it was.

Right there! I saw it! I saw that this is what the

shell needed to be, I didn’t want to write a shell

for the expert, and I didn’t want to write a shell

for the beginner. I wanted to write a shell con-

struction set so that the systems guys could build

a shell for the expert, or they could build a shell

for the intermediate analyst, or they could build

a shell for the rank beginner—it would let them

do what they needed to do. And so I was helping

my buddy at Microsoft, and I went home and I

started working on the shell construction set,

which I code-named Ruby, no connection to the

language. And it was—and it turned out to be

really good. ’Cause it was—it had a little palette

of controls, and you could click and drag-and-

drop, and because of the dynamic relocation

and the dynamic loading of these dynamic link

libraries, DLLs, what Microsoft called them, you

could build a shell on the fly that was pretty

darn powerful, and you could wire them

together and add little bits of very simple

instructions. It was not the first use of dynamic

linking. But it was the first kind of big useful use

of it that really worked!

And when I had a prototype, that worked. I

mean, it was really cool. You could take the

blank screen, and you could drag-and-drop. You

could create a little window and start putting lit-

tle controls in it, and you’d push a button, and it

would fire up a list box, and it would let you

select a file, and then it would launch a program

that would do something to it. It was simple shell

stuff, but it was immensely powerful, because it

was a visual programming language. And it had

visual idioms in it. Like it had drag and drop, and

you could drag an arrow from one control and

the arrow would swing around and point to the

control, and then when you pushed this control,

it would affect that control. And this stuff didn’t

exist. The other thing I did, in order to have it all

be visual, is I had to invent my own drag-and-

drop protocols, because the drag-and-drop pro-

tocols didn’t exist. And I had to invent sprite ani-

mation, because there were no sprite animation

tools in Windows. I mean, it was really a primi-

tive system.

And I—so just the same way I had shown

SuperProject to a lot of people before they

bought it, I went around showing Ruby to a lot of

people, because there were a lot of publishers

out there. And you know, and I showed it to

Adobe and Lotus and all these guys. And they all

looked at it and said, “This is really cool! Why

don’t you show it to Microsoft?” They all said

the same thing. And I go, “Well, yeah, I don’t

want to show it to Microsoft, because they’re

busy doing their own thing. But this would be a

really good opportunity for you as a publisher to

take to market.” And they go, “Ah, you know, I

don’t want to fight with Microsoft. I don’t want

to get in that pissing contest.” So finally, you

know, so many people stood there and said, “I

really like this, why don’t you show it to Micro-

soft,” I went back to my buddy who had taken

me to the Bank of America. And I had met and

gotten to know Bill Gates a little bit in the early

days. But we weren’t friends, and we didn’t cor-

respond. So I went to my buddy, Glen, and I

said—this is in 1988—I said, “Can you get me an

audience with Bill Gates?” And he said, “Let me

work on it.” And he called me back a couple

Interviews

106 IEEE Annals of the History of Computing

weeks later, and he said, “Okay, you’re not going

to see Gates, but you’re going to see one of his

guys. Come on up.”

So I came up, and the guy who I had the inter-

view with was a guy named Gabe Newell. . . I

went into my spiel, giving my little demo, and it’s

a half-hour demo, and about 5 min into it, he just

pushed his chair back, and he goes, “Bill’s got to

see this.” He didn’t want to see any more of it.

He knew he was looking at something cool! I

said, “Great!” I went home and had a meeting

with Gates a month later.

So you bet I coded like a crazed coding wea-

sel for a month, adding cool new features to the

prototype, and I show up at Microsoft, you

know, go into the HQ Building, and I’m ushered

into a big board room with a big table, and about

a dozen Microsofties pour in, and I’ve got my lit-

tle computer in front of me, and I start demoing

this thing to Bill. And it blew his mind! He’d

never seen anything like it. At one point he goes,

“How did you do that?!” I go, “It’s magic, Bill!” I

mean, what do you say when he asks something

like that? And it was when I showed him sprite

animation. ’Cause nobody at Microsoft had done

that yet. I mean, you have to BitBlt onto the

screen, and it’s complicated, and I had to figure

it out and build all the routines to do that. And

then I was showing him something else, and he

looked at his guys, he goes, “Why don’t we do

stuff like this?!” I mean, it was really interesting. I

had no idea how wrong that was, but I learned

later. And at one point, one of the guys starts

criticizing it, and says, “Well, it doesn’t do this,

and it doesn’t do that.”

And Bill, as I was about to leap to the defense

of my program, Bill leapt to the defense of my

program! So at that point, I knew, this was gonna

happen. Eventually, signed the deal to deliver

this shell construction set. It was gonna be the

front face of Windows 3.0, which became the first

successful release of Windows. And I wrote the

product to completion, and delivered it through

their—through Microsoft Quality Assurance Pro-

cess. That was again back in the days of Golden

Master disks, not of continuous delivery. And

the—it got caught in a political battle within

Microsoft. Microsoft was fighting with IBM, who

was their big patron at the time. And Windows

was actually not a strategic product for

Microsoft. OS/2 was the strategic product, and it

was for IBM, their client, and it was getting all

the calories within the organization, and it was

the B-team was working on Windows. But the B-

team kept looking at the 640k barrier. And they

said—they broke it! And they broke it before the

OS/2 guys did, because the OS/2 guys didn’t con-

sider it to be an issue. But the Windows guys

knew it was. And so Windows really stole a

march on OS/2 and, thus, there was this huge

pissing contest within Microsoft.

None of this that I was party to, because I had

brought significant technology in from the out-

side, which embarrassed a lot of guys. A lot of

those guys who Bill sat there in that meeting and

said, “Why can’t we do stuff like this?” I didn’t

realize at the time that what he was doing was

he was making all those guys at the table hate

me. You know? Because, you know, I showed

them up really badly. And so the shell construc-

tion set, they said, “Look, you have to be able to

be identical to the OS/2 shell.” And I said, “Well,

look, you can build the OS/2 shell from scratch

in about ten minutes using Ruby.” They said, “Is

it keystroke for keystroke identical, and pixel for

pixel identical?” And I said, “Well, it’s close!”

Well, okay, that was just enough of a beachhead

that they could point to it and say, “This won’t

work.” And so they kicked it out of the build.

And it did not go out as the shell construction

set for Windows 3.0. And it became an orphan

within Microsoft. And it bounced around looking

for a home within the organization. I flew back

up to Seattle and met with Bill and I said, “Will

you sell it back to me? ’Cause I’ll release it

myself. I’ll publish it myself as a shell construc-

tion set for Windows.” And he thought about it

and he said, “No.” I had no leverage, and he fig-

ured he could do something with it. So I came

back home and I tried to start a company, and of

course, I was seriously nondisclosured.

And so I struggled for a while to try to figure

out what to do. And finally withinMicrosoft, Ruby,

this visual programming front-end, which I had

always seen as a tool for users, found this sort of

strange bedfellow of QBasic, Microsoft’s BASIC,

their interpreted BASIC, which at that point was a

dead product. The hobbyists in the world were

using Pascal and the pros were using C. I wrote

Ruby in C. And I was not a fan of BASIC. I’ve never

October-December 2020 107

been a fan of BASIC. Anyway, they put BASIC

together with my visual front-end, and released it

as Visual Basic, and they invited me to the rollout,

and I went up to Washington and watched, and I

sat there seethingwith anger in the front row.

I mean, it took me a while to overcome my—

“What have they done to my baby?!” kind of atti-

tude. But it was a huge hit. It was a huge success

from the very moment they released it. At the

time, the microcomputer was ascendant and the

mainframe was just at the apogee of its life. And

there was this enormous cohort of mainframe

programmers who were looking around going,

“Oh, shit! We’re in trouble!” And to program in

any of the conventional languages, they would

have had to have just given up everything they

know and made this arduous journey to the

microcomputer. And along comes Visual Basic,

and it was just this easy hop from COBOL to VB.

And so it was this enormously empowering tool

for this cohort of mainframe programmers to

make the change over to writing software for

Windows. And the other thing that I did in Visual

Basic was it had this palette of controls. And you

could drag-and-drop this control onto a Window,

and then imbue them with behavior. So we came

up with this bright idea of having those controls

be dynamically loadable. And so each little con-

trol was written as a separate code module that

communicated kind of at arm’s length with the

main program. And so what it meant is that you

could write, completely separate, a control, and

build it as a DLL, as long as it knew how to

respond to certain messages and behave in cer-

tain prescribed ways. So what would happen is

Ruby would come in, and it would connect to all

of its internal controls, but then it would broad-

cast to anybody saying, “Anybody out there

know how to speak Ruby?” And if a dynamic link

library recognized it, it would say, “Yeah, I’m

one of your guys!” What it would so is it would

say, “Oh, well, tell me your name, tell me your

icon, tell me your functions.” And it would suck

that stuff in and it would extend the little palette,

and then you could click and drag on it. So it was

this third-party aftermarket thing. And this was

just revolutionary. Again, this is—it wasn’t that

the technology didn’t exist, ’cause it was there.

Microsoft built it. It’s just that nobody knew

how to use it. Nobody thought in terms of—they

thought in terms of, “I’m building my functions for

me.” And I was kind of thinking, “What could we

do to create places for others?” And this was new

and novel. So, when this interface was released to

the world it was called the VBX Interface. The

Visual Basic Extensions. But what it didwas create

a commercialmarketplace for third parties. This is

what they could do is they couldwrite these DLLs,

and they would just work. And it was one of the

reasons why VB became so popular. Because I

had populated it with some very rudimentary

tools, and all of a sudden people came along and

started writing really sophisticated tools that

communicated with the protocol. And it would be

part of VB. So you could click, and drag-and-drop a

very competent spreadsheet in the middle of your

window. That kind of thing.

So the fact that it was really the first inte-

grated development environment. You know,

where you did development inside of a program

that could help you, and it was visual. That was,

again, my design, it was a visual programming

environment. I mean, Microsoft took that much,

farther. They developed all kinds of really cool

things and ways to step through the language. It

was really neat. But the basic idea that you’re

programming inside a visual environment, that

was mine. And the basic idea that it’s dynami-

cally extensible and open to third parties, that

was also my idea. And I think those were the two

really significant contributions that made Visual

Basic a success. And so a guy that I had known

from way back in the 1970s, who had a—who

was an author, a technical writer in Marin

County in the mid-1970s, named Mitchell Waite,

was—had been writing books about software, he

was interested in this field. And he had actually

started his own publishing company, called

Waite Publishing, which he eventually sold to

McGraw-Hill. He through, I don’t know what con-

nection it was, he got called up to Microsoft and

they disclosed Visual Basic to him early on, and

they said, “Would you like to write a book?” And

he said, “You bet I would!” He was really

intrigued by Visual Basic, this idea of this power-

ful programming environment.

So Mitchell Waite wrote the very first book

in support of Visual Basic, called, “The Visual

Basic How-To.” And I think it came out, not with

VB, but a few months later. But I hadn’t talked

Interviews

108 IEEE Annals of the History of Computing

to him in a decade, and I got a call from him one

day and he said, “In the ”About" box of Visual

Basic it says Cooper Software. Is that you?!"

And I said, “Well, yes. Yes it is!” And he goes,

“Can I buy you dinner? I want to hear this

story.” And so I said, “Sure,” and we had dinner

in San Francisco, and I told him the story. And

he sat back at the end of the story and he goes,

“That makes you the Father of Visual Basic!”

And, “Well, I guess it does!” And so he dedicated

the book to me, “The Father of Visual Basic.” So

he gave me my one-phrase resume. I became

the Father of Visual Basic, and that opened a lot

of doors at that point. A lot of people that I had

been saying, “Oh, I did something big over

there,” they didn’t believe me. And then people

started coming to me, and saying, “Is that you?”

<laughs> So it was sort of gratifying to see

that. And my opinion about VB, you know,

began to change. You’d kind of go, “All right,”

it’s actually the metaphor “Father of Visual

Basic,” is actually really an appropriate meta-

phor. Because as the Father—if you’re a father

of children, you know that you make a contribu-

tion, you do your best, you support them, and

then they go out and they surprise you. Your

kids will surprise you. And so Ruby surprised

me by becoming Visual Basic. But it became a

huge success, so I’m okay with that.

Visual Basic, I sold that to Microsoft in 1988.

And that was pretty much the end of it.

<laughter>. . . It was later in that year, and then

it was finally released as VB in 1990, I think? I

shepherded it to delivering at Microsoft, and

then they took it to final release. This is one of

those things about this—I don’t know if it’s the

tech world, or if it’s the world in general, but the

things that are a success are kind of accidental,

and weird combinations of people contribute to

them, and you never know where it comes from.

And the stuff that has turned out to be big and

prominent in my life are things that are not nec-

essarily the stuff that I would say is the most sig-

nificant that I’ve done. The things in my life that

have given me money, have not necessarily been

the things that I thought were worth money; and

the things that I thought were worth a lot of

money, some of them have just quietly slipped

beneath the waves, and not made me a nickel.

And it’s just—it’s a funny world out there. The

things that people come around and say, “Oh,

Mr. Cooper, you’re the greatest! You’ve done

this amazing thing!” I look at it and go, “Yeah, I

knocked that off in a weekend!” And the things

that my heart and soul are in, nobody knows

about. It’s one of the conundrums of this world,

certainly of my world. So you learn as you get

older, you learn a kind of equanimity, just move

on. Whatever! That’s the thing about innovation.

Hsu: . . .Was visual programming something

you came up with on your own, independently of

any other influences?

Cooper: Well, yeah, it’s not like visual pro-

gramming didn’t exist. It was—that I kind of

pushed the boundaries. And yeah. That’s what I

did. I pushed the boundaries. And making it

extensible was a big deal. I mean, again, like I

say, dynamic link libraries was something Micro-

soft invented, and it was based on computer sci-

ence that had been around for many years. So

again, nothing really earth-shattering about that,

except if you go to 1988, and you look at the

DLLs, there were none! If people wrote some-

thing as a DLL, they did it as an exercise, then

statically linked it, or in effect statically linked it.

I was one of the few guys who actually used it.

Hsu: All right. Let’s move on to interaction

design. So it seems like a logical step to go from

making Visual Basic and this shell development

environment to then actually moving into this

higher level of looking at the actual principles of

design.

Cooper: After I shipped Ruby to Microsoft, I

went off and invented another product, and

learned a new word: monopsony.

Cooper: We all know the word monopoly. It

means when only one company is selling.

Monopsony is when only one company is buy-

ing, and as a guy who is trying to invent stuff and

sell it to publisher, when I did SuperProject,

there were probably 200 software publishers out

there of equal stature, and I offered my product

to them, okay? When after VB in 1990, when I

took Flute [Cooper’s subsequent project] out

into the marketplace, there was Microsoft and

Adobe and a couple others. And so they could

just say, “No,” and I would just twist in the wind,

and I remember I took Flute up to Microsoft and

Bill goes, “Yeah, we’re working on that.” They

still haven’t. But so I’ll tell you, the first product

October-December 2020 109

that I shipped, I mean, I wrote a sort program

and a name and address manager <inaudible>,

but the first real product that I built at Struc-

tured Systems Group was a General Ledger, and

it was pretty bad.

I mean, it was awesome because it was, you

know, the first viable accounting program on a

microcomputer and it sold just fine and I built a

business on it. But, you know, looking back on it,

it was all I knew. I came from a batch processing

COBOL mainframe background, so I built a batch

processing BASIC mainframe program to run

accounts, and, you know, the paradigm has

moved on, well beyond that. But I knew it was

hard to use and I got some complaints from peo-

ple. I learned so much building that General Led-

ger that I then went on and did an Accounts

Receivable, Accounts Payable, Payroll and an

Inventory system—so we ended up with a whole

suite of accounting stuff. Well, the second pack-

age was the Accounts Receivable, and I really

took pains, I was really proud of it, because it

was better. I took all the problems with the inter-

face in the General Ledger and I fixed them all in

the Accounts Receivable, and it was a significant

achievement and it was much awaited by our cli-

entele. Everybody who owned a GL wanted to

buy the AR, and we started shipping it, and peo-

ple were buying it and they were very happy

with it, except they started complaining, and

they said, “All the commands are different.” And

I said, “All the commands are better,” and they

said, “But they’re all different,” and that’s when

the light came on.

As I realized I could hear somebody knocking

on my frame of reference. All of a sudden I knew

there was something new going on here that I

didn’t know about, that I hadn’t conceived of,

that my self-referential design was missing some-

thing. There was something big there, and I

didn’t know what it was, and so this was in the

1970s, and that’s when I changed my focus and I

started to think not about from the software out,

as you would build it, but from the user in as you

would use it, and so that began my path. Now I

was still an inventor and a developer, but every-

thing I did after that was done from the point of

view of how would users use this, and you have

to understand in 1978 that was a radical notion

and other people weren’t doing it. It took me a

long time to begin to get to where I had some

command of this stuff, and Visual Basic, Ruby,

the visual programming language, was a user-

centered thing, because it was based on this

idea. I mean, I had identified users in the field

who would use it and configure it for who and

what and its behavior. I mean, it was still very

self-referential and very programmer-oriented,

but for its day, it was pretty out there in terms of

its ability to be easy to use. It’s one of the rea-

sons I think why Visual Basic was such a com-

mercial success. But it was finally, after I

couldn’t sell Flute, I ended up—

Hsu: Flute was the. . .

Cooper: Flute was the product that I worked

on afterward. It was really this kind of informa-

tion management system. It would manage your

e-mails and your names and your appointments

and stuff like that, calendaring systems. That I

began to realize that I was, that what was really

interesting to me was this idea of thinking about

what software should be and how it should

behave, and that was much more interesting to

me than actually writing it, which I had been

doing for the last dozen years and had kind of. . .

I was kind of done with that, and I had a real cri-

sis in my life about, I thought, “Well, nobody

would hire me to just design products because

anybody who designs products builds them, and

anybody who builds them designs them and you

could never just design the product,” and I really

kind of moped around the house and whined for

a long time. <laughs> Until I talked to some

friends and they just encouraged me to try it.

So one day I was at a conference somewhere,

I was leading a panel, and on the panel were sev-

eral of my friends and colleagues from the devel-

opment world, and at the end of the panel, the

audience filed out and I looked at my panelists. I

said, “Hey, you guys. You’re the first to know.

I’m a consultant. I’m not going to do any coding

but I’m here to help you make your products eas-

ier to use and better,” and a couple of them hired

me. To my shock and amazement, they did. They

hired me because they knew me as a program-

mer, they had faith in me, and so I began to help

them without programming. So, I would look at

their product and give them advice and make

suggestions and redesign interfaces, and that’s

how I went from being an independent software

Interviews

110 IEEE Annals of the History of Computing

author to being a consultant, and really it was

interaction design. I didn’t call it that. I called it

software design at first, because I still thought

like a programmer. But stopping programming

was really a remarkable thing. I’d been program-

ming nonstop for so many years through my

entire career, and to stop all of a sudden really

gave me a lot of insight into how the way pro-

grammers think affects the way software is

designed, and, you know, over the next couple of

years I built up a pretty good clientele. I had sev-

eral people I was working for and they liked my

work and I started to get really busy. I started

raising my rates and I still was busy, and finally

in 1992, I went to my wife and I said—Sue, you

know, has had her own career in tech marketing

and she was the director of marketing at Logi-

tech back in the day and I said, “Honey, come on

my rounds with me. I want you to see what’s

happening,” and she came around and she found

that I had, like, a fan club of people who liked

what I did, and we got our heads together, we

realized that we, there was a business there if we

wanted it, and it took some soul-searching,

because we realized that this was a big step for-

ward and it would be hard to step back. But we,

we decided to create a company and she started

to help me on the marketing and sales side and

we ended up hiring a designer, a brilliant young

guy named Wayne Greenwood, and he showed

up for work Monday morning. I was still working

out of my home office and Wayne <laughs> kind

of showed up and would come wading through

the kids and Sue and I looked at each other and

said, “Oh, yeah. We need to get an office, don’t

we?” <laughs> You know, because we weren’t

thinking of it the way startups are thought of

now as it’s like a hothouse and you’re incubating

somebody who hopefully will get acquired by

Google.

Back then we were thinking in terms of actu-

ally doing good things in the world and. . . But

the company grew. We were very lucky in the

early days. The name Interaction Design barely

existed. There were no jobs anywhere, in any

company, called User Interface Design, Interac-

tion Design, Design, nothing. It was just a green

field, and so to hire people, we had to just kind

of thrash through the underbrush and people

slowly. . . I wrote a book. I mean, I learned so

much starting that company. I learned so much.

I’m not a writer; that’s not my thing. But I learned

so much in such a short period of time doing this

stuff that it was, from the time we really began, it

was three years, and I wrote a big, fat book called

About Face, of everything I knew. I put it all in

there, every last thing. When I was done, I said,

“That’s it. I don’t know anything else,” and I

said, “I’ll never write another book, because I

just put it all there,” and three years later I

wrote another book, because I was learning so

much at the time. But that first book really, it

really struck a chord out there in the world and

a lot of people were trying to figure out how to

solve these same problems, which is they had

technology and people weren’t happy with it. It

was good, strong, powerful technology. People

were unhappy. This is a familiar feeling to a lot

of technologists and it was rampant in the

1990s, and they found this book, About Face. It’s

one of the few books that actually talked about

it and actually had some solutions, and it was

very practical. You know, there was a lot of—

there was academic stuff where it talked about

analyzing usability after a product was built and

how to test a product that’s already built, but

nobody talked about making a product easy to

use before it was built, okay, and so they would

call me up and say, “Could I come work for

you?” and so we built this cadre of really sharp

men and women and who had very checkered

backgrounds and oddball resumes and many of

them are out there in the industry today doing

significant stuff in big companies and some of

them are still with us too, and so we were really

the first.

Hsu: Could you talk a little bit about the

principles that you espoused in your books and

how you arrived at them, and the impact that

that’s made?

Cooper: Well, what’s interesting is that

design has all these different roots [like a tree].

It’s more like a bucket of rocks as there’s the

usability thinking comes in here and then there’s

the web design thing comes in here and then

there’s the typography guys come in here and

then there’s the industrial design thinkers come

in here, and there’s all these different constitu-

encies with their own different motivations and I

was the really, the only guy, who came from a

October-December 2020 111

world of software development. Who entered

this world with that history that was, it was just

different, and. . .

It needs to show you who it is, what it’s

doing, and how far along it’s going, okay, and it

needs to be nice to you. Which means it needs to

anticipate your needs. Like, I came up with just

this fundamental notion, which is, goes like this,

and it’s still remarkable how often it’s forgotten.

I said, “If it’s worth the user entering, it’s worth

the program remembering.” The thing about

software is every time it’s loaded into memory

it’s a tabula rasa, and so software would come in

and it would, no, it—“I don’t know anything.”

<laughs> You know, and I would say, “No.” You

know, if the last time you ran the user moved the

window up here, the next time it runs the win-

dow needs to be there. Stuff like that. I mean,

just none of this stuff is rocket science and it’s

all fairly widely accepted today. At the core of

my thinking, early on, it became very clear to me

that the way software is built is, it’s built func-

tionally. So this is how all software is conceived

of, and it’s how all software used to be designed

and it’s written and still an enormous amount of

software is still all about the function. Here’s the

functions we’re going to add, and. . . But that

isn’t how users think. It’s not how people think,

and so they—people have a different way of con-

ceiving of things. They think about it in terms of,

“Where do I want to be and why do I want to get

there?” and so I began to see that there was this

fundamental dichotomy. There was thinking

about tasks and there was thinking about goals.

Too many people approach the problem of

interaction design as interface design. So they

said, “Okay, how can I make it easier for you to

pump gas in your car on your way to visit Grand-

ma?” and I looked at it and said, “Your goal is to

visit Grandma, not to pump gas.” So is there a

way to make it so you don’t have to pump gas at

all? Those are the kind of questions you need to

ask. You see, interface design works at your gas

tank. Interaction design works on getting you to

Grandma. So I called my methodology goal-

directed design, and it was based on this notion

that if you know who your user is, what their

desired end state is, and why they want to get

there, then you can create well-behaved soft-

ware that will make them very happy, and if you

come at it and you say, “Okay. As an organiza-

tion creating client management software, I want

people to keep the database pure,” you start

thinking in terms of editing fields to keep the

database pure, and it has nothing to do with the

needs of the salesperson out there who’s trying

to manage his or her client contacts. You see,

it’s so easy to start designing and building soft-

ware from the software out, and it’s so hard to

design it from the user in, because you have to

put yourself in the shoes of the user, and so

much of the design of the behavior of software

was vouchsafed with engineers and this was a

problem. Because engineers are the ones build-

ing this thing and what you’re doing is you’re

saying, “Okay, Mr. Engineer, you need to get

into the heads of your user,” and they go, “yeah,

I got that.” But they wouldn’t, and because to get

into the heads of the user, that’s not an engineer-

ing job, and it doesn’t use engineering tools or an

engineering mindset. It’s a compliment to engi-

neering, okay, and so this led me to where it was

very clear that there was a problem in the indus-

try is that organizations were structured in such

a way that they were hiring a bunch of pro-

grammers and saying, “Will you guys design it?”

and design it so it’s user-friendly?

But the problem is, is that that isn’t what pro-

grammers do, you know? Asking a programmer

to be user-friendly, to put themselves in the

shoes of the user, is really playing against type.

It’s not something that the developers are really

particularly good at and, and so I ended up writ-

ing a book called, “The Inmates are Running the

Asylum,” talking about this. Saying, that, see,

what I had done was I had been a developer and

I stopped developing and it immediately became

apparent to me how much the way developers

think influences the way developers think about

interaction design. . .But the thing about design-

ing from the user’s point of view that they don’t

get is in order to do that you actually have to go

out and listen to the users, and it turns out that

programmers hate listening to users, and so

whenever developers get jealous about that role,

they go, “Oh, I don’t need a designer to tell me

what to do. I can figure it out myself,” I say, “Oh,

are you going to go out and interview users?”

No. They’re not going to go out and interview

users. They’re going to tell designers what they

Interviews

112 IEEE Annals of the History of Computing

do from their ivory tower. Well, I’ve been in that

ivory tower for many years and I know how ridic-

ulous that is and how it doesn’t work and as

soon as I put that trap in front of them and they

fall into it then they realize, “Oh, yeah. That’s

right. I guess somebody does have to listen to

the users and it isn’t going to be—so I guess I’m

not the interaction designer around here.”

The problem is that management tends to

want to hurry everything up because they’re still

thinking industrial. You know, is that if we’re

more efficient in our development we’ll be bet-

ter, and they don’t understand that efficiency

doesn’t have a role here anymore, and effective-

ness is much more important, and so building

software faster means nothing. Building software

better, that means everything; and by better it

doesn’t mean that the functions are executing

smoothly, but that the user is arriving at their

goal, and I used to play this game with people in

groups where I’d say, “Well, what’s your goal

here?” and they’d say, “Well, my goal is to, as a

user, is to get this data entered,” and I said,

“Okay. Well, how about if you take your clothes

off and enter the data?”

They go, “I’m not going to do that.” I go,

“Right. That’s really not your goal, is it? Your

goal is to keep your pants on.” There’s—I proba-

bly can’t say that anymore like I used to. It’s

probably viewed as sexist and horrible. But my

point is that there’s a whole bunch of tacit goals

that precede the corporate goal that we don’t

acknowledge, okay, because we tend to come at

it with our rationalist programmer’s point of

view, and so we said, “Okay, the job here is to fill

this out or to record my contacts or stuff like

that,” but that isn’t the goal. The goal is to not

be made to feel small, to not—to be made to feel

bad, to not sit in front of a computer and go,

“What is it saying to me? I don’t get it! I push the

button and it’s not working!” That’s the number

one goal. People don’t want that. So the fact that

you can contact their clients is secondary to the

fact that they don’t want to be made to feel like

an idiot, so if your software contacts all their cli-

ents but makes them feel like an idiot, then you

don’t have a success and you don’t have a good

design. This is revolutionary stuff in the mid-

1990s. Now it’s kind of seen as, “Yeah, that’s

about right,” although people still are a little

shaky about how to get there. They still tend to

say, “Well, if it’s got cute stuff on the screen, that

will do it,” and no, it won’t. But that’s, you know,

how I arrived at the basic principles of design.

Now, then comes the question, “Well, how do

you get there?” and there’s a whole bunch of

other stuff that derived from that, because this

is what we were doing. Clients were coming to

us and they were giving us complicated domain

problems and we had to solve them and we real-

ized early on several things. Number one is, you

can’t imagine what people want. You have to go

out into the field and you have to find real users

and you have to listen to them, and you can’t ask

them—you don’t do it with questionnaires. You

know, if you go out in the field and you find

somebody who’s using Oracle every day and

you say, “Well, how do you like this Oracle

software?” They say “It’s great. I love it.” You go,

“Well, what do you like about it?” “I like this thing

here and that thing there.” And then you say,

“Hey, want to get a beer?” You drink a beer and

you say, “So you really like your job?” “Oh, yeah,

yeah, it’s nice and. . .” but, you know, and after a

while they’re going, “You know, I hate this Oracle

software. It’s terrible. It’s just—I hate it. The

other day, I was just—I just broke down and I

was sobbing at my desk.” This is real. We’ve had

stuff like this happen, or you’ll have somebody

will be sitting there and they’ll—you say, “Are

you able to memorize all these commands?”

“Oh, yeah, no problem.” Then, an hour later, you

turn their keyboard upside down and it’s cov-

ered with Post-its and cheat codes.

What I’m saying in this kind of thing, for inter-

action design, there’s not a lot of value in quanti-

tative stuff, but there’s a lot of value in

qualitative, and qualitative, you have to just ask

nothing but essay questions and then you have

to shut up. You ask me a question. I rage on for a

while and then I stop and then instead of jump-

ing in with a question, you wait. And then you

wait one more beat, and then you wait one more

beat and I jump in again, you see? That’s what a

good listener of a good qualitative interview

does and that’s what you have to do in the field.

Know-it-all programmers—and God knows, I’m a

know-it-all programmer. I can’t do that, okay,

and so it’s a really hard lesson to learn as an

interaction designer to go in the field and be

October-December 2020 113

patient and listen and listen and listen some

more and ask open-ended questions and get peo-

ple talking, but after a while, you earn their trust

and they start to spill their guts to you, and you

can’t—if they give you suggestions, you have to

discard those because they are users and while

a broken clock can be right twice a day, they’re

still not dependable.

I was working with a client one day and I was

just having the hardest time communicating to

them the results of what I was working on, and

so just as a kind of an expediency one day, I said,

“Okay, I’m going to say there’s this person

named Carolyn.” I think it was Carolyn was her

name, and she wasn’t a real person, but I

described her job and it was totally representa-

tive, and I described how she uses the product,

which was totally representative and I said, “And

this is what she wants to accomplish,” which

was totally representative, and when I presented

that to the client, they said, “Yeah, we know that

person. We’ve seen a hundred like her.” And

then I said, “This is what she needs.” And that’s

how I invented “personas,” because it’s a—while

it’s a hypothetical archetype, it’s based on the

qualitative research that you do in the field and

it’s really a bucketful of characteristics that

you’ve observed empirically, and what you can

do is use this person to define who the user is,

what they’re trying to accomplish and why

they’re trying to accomplish it, and it’s

immensely powerful because it allows you to

gather your thoughts together and to encapsu-

late them in such a way so that you as a designer

can manipulate them in your design, because

you express a persona as somebody who exists

because of their goals, and their goals exist

because of the persona. It’s kind of a tautology,

and then what you do is—-now, you have a pur-

pose, right? There’s what does the product do?

What would the user want to do with it? Well,

what you can do is, you can then begin to write a

series of scenarios. The person wants to use the

product to accomplish this end for this reason,

and so then what you do is, you as a designer,

you say, “Okay, well, here’s the screen and

here’s the buttonology.” Then, what you do is,

you take the persona and you play act, role play

the persona using your proposed solution and

say, “Does it get them to their goals without

making them take off their pants?” And if it

does—well, if it doesn’t, then you go around

again and it’s nice and cheap and free. You can

do it on a whiteboard or on a sketchpad. It’s

easy, no code, fast, and you can do it a hundred

times if you want, and when you find, yeah, that

does get them to their desired end state without

embarrassing them, then you know you’ve got a

good design; so, as a design tool, it’s really sec-

ond to none. But the thing that I discovered that

is so powerful about design personas is that a

funny dynamic takes place in the boardroom or

the meeting room, which is, as a designer, you

don’t code. And if you don’t code, you’re half a

person.

Okay, in the Silicon Valley culture, coders

have two votes and people who don’t code have

one vote. Okay. So if you sit in a room and say,

“As a designer, I have studied. I have researched.

I know this is what I think we should do,” all the

programmers are sitting there going, “Yeah, until

you have facts and we just have to go with opin-

ions, we’ll go with mine.” That’s how they’re

thinking and—but a remarkable thing happens

when you say, “I’ve done the research, I’ve been

in the field and here’s Carolyn. She’s our repre-

sentative user, and Carolyn wants you to do it

this way.” All of a sudden, the programmers go,

“Oh, well, we can do it that way,” because it’s

not you and your opinion. It’s a psychological

tool of incredible power because it’s really hard

to go up against a programmer, because pro-

grammers are really smart and they’re lawyers. I

mean, they argue cases in front of the central

processing unit, who’s more nitpicky than any

judge, so if you’re going to—personas are a great

tool for just kind of finessing that argument and

so they’re very powerful tools. We used them

widely across the company. I wrote about a

bunch of other tools that we used, but this is the

one that just galvanized the industry and a

bunch of people jumped on the bandwagon and

started writing their own books and their own

blog posts and stuff about it, and—but very few

of them got it right, and so actual—in terms of

pure word count, a lot of other people have writ-

ten more about personas than I ever have and—

but a lot of them talk about personas as mecha-

nisms for describing program functionality,

whereas I invented them specifically for getting

Interviews

114 IEEE Annals of the History of Computing

away from program functionality and they’re

just misdefined and misused [it]. We’ve done

projects for clients without personas, but

we tend to find that they’re incredibly useful. We

use them all the time, so that’s one of our very

successful tools that came out of trying to invent

a practice.

And another one of the tools that we use is

one that still has not widely caught on. It’s pair

design. We’ve done pair design since the early—

well, since—yeah, since the early 1990s, we’ve

been—we—early on, we learned that there’s

something magical about two people working

together when you’re doing this kind of creative

work, where you’re trying to solve problems by

innovating, and we find that—I mean, people

working by themselves can certainly have good

ideas, but they can also start breathing their

own exhaust and start losing perspective, and

when you get large groups together—like, there

was a craze for brainstorming there for a while.

But the problem with large group brainstorming

is, the loud people take the day and the quiet

people don’t, and it’s really—you get people

shooting down ideas and one-upping and politi-

cal stuff, and in our experience, large group

brainstorming is not worth the bother or the

expense. It is very expensive to get a lot of peo-

ple together. And one person working is good,

but two people—there’s something magical

about two people, there really is, when they’re

mutually supportive, because it’s really easy to

take criticism one on one, whereas one on two

taking that same criticism gets really personal. If

you look at somebody and say, “Yeah, I think

there’s a better way to do it,” and there’s some-

body watching, it’s just—that hurts, but when

there’s nobody watching, the other person can

go, “Yeah, how would you do it? Let’s work on

this,” and—so now, we have taken that much far-

ther, so there’s a whole bunch of nuance as to

how we do that pair designing, but we’ve done it

pretty exclusively for 25 years now and we think

it’s one of the most powerful design tools, and

I’ve had people—it’s so funny. They say to me,

“Alan, what’s your secret?” and I say, “Pair

design,” and they go, “Yeah, well, we can’t afford

that.” But what can you afford, bad design? What

business are you in? Are you in the business of

saving money or are you in the business of

making lots of it by creating products that peo-

ple really like? It’s not more expensive. I mean,

the cost of having two people do the design of

one is not high compared to the value you get

when you create something that people really

like. So we—early on, we found that when you

get two really creative—it’s like two alpha dogs.

When you get two alpha dogs doing pair design,

they tend to spend a lot of time arguing about

“my way.” Ask me how I know that. <chuckles>

Wayne and I used to argue all the time and we’d

find ourselves—we’d have these long arguments

and then at the end, we’d finally realize that we

were in violent agreement. And so we began to

realize that there was something more to this,

even though we were still so very productive

with working as a pair, that we were not the opti-

mum match, and so our first thought was, “Well,

we need a junior designer,” so we hired a junior

designer and we discovered that we had a

designer [that] wasn’t very good and they were-

n’t much help at all, and so then we said, “Okay,

really what we’re looking for is somebody who’s

like a technical documentation person, who can

be the amanuensis for the designer,” and so we

hired a technical doc person, and they literally

ran screaming from the room because it’s just—

it’s—technical documenters are in the—histori-

cally what they do is, they take what is and docu-

ment it, and what we were looking for people to

do is to take what isn’t and instantiate it. And

then, we realized that what we were looking for

was a designer, a skilled, intelligent, capable,

experienced designer, but somebody who looks

at things differently.

And we finally got to this—we now called

them generators and synthesizers, and they’re

kind of arbitrary terms. The idea of a generator,

that’s the alpha dog. That’s the person who’s

always running to the whiteboard and saying, “It

should look like this,” and the synthesizer is the

person who sits back and watches this for a

while and then says, “How do you solve this

case?” And the generator goes, “Oh, shit, okay.”

They erase it. “Okay, we’re going to do it like

this,” <chuckles> because the generator can

have 10 ideas in a minute and a synthesizer is

the one who starts riffing through all the scenar-

ios and say, “How do we do that? How do we

know that this is going to work, how this is

October-December 2020 115

right?” and it turns out if you put a gen and a

synth in a room with a bunch of other people,

their abilities, it just depends on how assertive

they are, but you put a good gen and a good

synth in a room together, just the two of them,

they really can move forward and they can do an

immense amount, and the gen is constantly say-

ing, “Where’s the brilliant idea here?” and the

synth is constantly saying, “How do we integrate

all this stuff so that it becomes a coherent whole

and work?” and the gen is saying, “What’s going

to make this thing sizzle?” and the synth is say-

ing, “How are we going to communicate this to

the world?” and the two really work together.

Now, we have hired people who are pure synths

and pure gens, but we also have people who

are—who can go back and forth and people

who—you know, and there’s—we’ve got a lot of

really sparky, inventive synths, and lots of really

thoughtful, reflective, critical gens, so we’re

not—when we began doing this, we saw this as a

job and we now see it as a role. And so when you

work at Cooper, you’re a Designer or a Principal

Designer or Senior Designer, and you don’t—

you’re not—whether you’re a gen or a synth is

not in your job description. You know, we’ll talk

about it in your role on a given project or engage-

ment. So these are the kind of tools that we’ve

developed for doing this kind of design work and

there are some companies out there that do pair

design and are very, very successful with it, and

there are a lot of companies out there where we

talked to them and their designers come to us

and they go, “I’m so lonely.”

Hsu: Okay, I have two more questions.

My second to last question is how did you

get involved with Agile software development

methodology?

Cooper: Well, I’m not really sure that I am

involved with Agile because my days as a devel-

oper are long gone, and Agile is a development

methodology. There are some people who think

that Agile is a design methodology, to which I

say, “No, it’s not, and if you think it is, you

deserve all the hell that’s going to come to you,

not from me, but from your users.” Agile, on the

other hand, is a remarkable and unique thing

and I’m a huge fan of it. It’s the—you know, I

used to joke that every seven years, the commu-

nity of software developers rises up as a group

and throws a tantrum and smashes all their toys

and decide that, no, we don’t want these assem-

blers. We want compilers, and then they say,

“No, we don’t want that. We want object-ori-

ented,” and they say, “No, we don’t want that.

We want. . .” oh, structured was one. “First we

want structured, then we want object-oriented,

then we want reusable,” so the thing is, all of

those tantrums are all about techniques and

tools. And then along comes Agile and it starts

talking about the developer’s responsibility to

create a product that is successful, and it’s the

first tantrum that says, “Let’s talk about people

and process,” so it’s a qualitative difference

amongst the community of developers for the

first time in 40 years, or 50 years, and so it’s

remarkable because of that. I don’t think it’s a

coincidence that one of the underlying princi-

ples—one of the tactics, I should say, of Agile is

pair programming, the notion that we’re not try-

ing to be efficient; we’re trying to be effective,

and so they put two minds on it. I was a big

opponent, in the early days, of Extreme program-

ming because it was brought to me as a design

methodology and I just kind of said, “That’s

cray-cray. That can’t be,” and I kind of dismissed

it, and I didn’t pay attention to it, and it was

Lane Halle—that’s her maiden name. She wasn’t

our first synthesizer, but she was the one who

really wrapped her head around the role of syn-

thesizer and really developed it. She’s a very

intelligent, capable woman. She used to work at

Microsoft before she worked at Cooper and now,

she worked for a while for Pivotal and a couple

other companies, but she’s in New York now

making copper cookware and I think she’s doing

some other tech stuff on the side. And she

grabbed me (this was 10 years ago) and she

said, “Alan, Agile is not Extreme programming. I

want to take you out and introduce you to some

people,” and she did. She took me out into the

world and introduced me to some Agile practi-

tioners and really changed the way I thought

about it. I realized that it wasn’t just another

name for Extreme programming. Extreme pro-

gramming—there was a lot of—I mean, the

whole Agile/Extreme came out of a lot of frus-

tration the programmers had, because pro-

grammers had been told, “Go this way and you

will be successful.” They went that way and they

Interviews

116 IEEE Annals of the History of Computing

got good salary, but they created stuff that they

weren’t proud of and they were unhappy with

that, and they felt blamed, and Extreme pro-

gramming was a way to say, “Well, if we’re going

to hatch a catastrophe, you’re going to hatch it

with me,” but Agile said, “What can we do to not

hatch a catastrophe?” It was much more positive

and so it was something that I’ve been a big fan

of. I call what we do in the interaction design

world “responsible craftsmanship,” because you

have to take responsibility for the end result and

it’s a craft, and it’s the exact same phrase that I

use to describe Agile, real Agile, not rigid three

week scrums and stuff like that, but real Agile is

responsible craftsmanship. It’s developers tak-

ing responsibility for creating successful prod-

ucts and making people happy, not just creating

a bug-free program.

Hsu: At the beginning of this interview, you

mentioned that you actively made certain deci-

sions to not become Bill Gates, and those deci-

sions that you made encapsulate sort of your

philosophy or your—the way that you see, you

know, being a good software developer, being a

good designer. Could you talk about some of

those decisions and how those decisions

showed what your values are.

Cooper: I’d be Bill Gates if I could. When I first

started out, like I say, I wanted $50,000 a year. I

thought that was everything, but then as I began

to learn more, I realized that there was a lot of

money involved. I could build a big business. I

could make a lot of money, but the decisions

that you’re faced with every day, it’s a lot of kind

of little decisions and I found that all the little

decisions I was making were—each individual

decision was small and easy to make. It’s “No, I’d

rather take this path than take that path,” but

the sum total of those decisions sends you down

a different path than the path that Bill Gates

went down, and you. . .

Hsu: Are there any examples that you can

give?

Cooper: It’s like when we worked with the

Windows guys. I just so was so not proud of that

code, and that code has made billions of dollars.

And the code that we delivered, I’m proud of. I’m

not saying it was the greatest code ever because

it’s not. It certainly had its shortcomings, but it

was as good as we could make it and that stuff

that we saw coming from Microsoft wasn’t like

that. Well, when you make code that’s really

good, that’s something you do for yourself. It’s

not something you do for money and that’s kind

of the difference, so let me say that when I made

conscious decisions not to be like Bill Gates,

what I mean by that is, I’ve made unconscious

decisions to not be like Bill Gates, and it’s—I

realize—I’ve come to realize—and you could cer-

tainly accuse me of post facto rationalization,

okay, and I would not argue with you, but I say

that money people get rich in money and idea

people get rich in ideas. You know, money peo-

ple have a lot of money because they value

money in everything they do and they pay atten-

tion to money in everything they do and they

think about it first and foremost and they’re not

afraid to look you in the eye and say, “How much

money do you have? I want 10 percent more

than that,” whereas an idea guy, who—I’m an

idea guy. I go, “This is a really good idea. Let me

rub up against it and get all warm and fuzzy with

this wonderful idea and okay, oh, look another

idea. Let me go rub up against that idea,” and so

I’ve got to do a lot of really interesting work in

my day. I’ve worked with the big guys. I’ve done

business with Bill Gates and I got to code sitting

next to Gary Kildall. I’ve written books about

what I’ve done. I’m winning a Fellow award from

the Computer History Museum. It’s—this is what

I have to show for my work. This is the result of

the decisions that I have made. And I certainly—

I could’ve taken any one of those products that I

invented over the years and taken them to mar-

ket, but from the very beginning—at SSG, you

know, I conceived it, invented it, wrote it, code

it, documented it, shipped it, supported it, mar-

ket it, sold it, yammered on the telephone to

dealers across the country. I did it all and so

ever since then, I’ve been trying to do less, have

a smaller wedge of the pie, and there’s a cost to

that. The cost to that is, I don’t make the big

bucks, but what I do is, I get lots and lots of dif-

ferent slices of really interesting pies. You know,

Silicon Valley has been really good to me and I’m

not complaining and I’m doing just fine. I’ve got-

ten to do a lot of stuff. Mostly I’ve gotten to be

really self-indulgent. I get to play with the toys

that I like playing with, and sometimes those

toys make a lot of money and sometimes they

October-December 2020 117

don’t. They never really made a huge amount of

money for me, but it’s not like I want. I do just

fine. I live in paradise out here in the country

and I have a lot of friends and I got kids and

grandkids. So it’s good.

Hsu: Thank you. Is there anything else you

would like to add?

Cooper: Yeah. There’s one thing I’d like to

add, and that’s that we’ve reached a new level of

responsibility as technologists —I call it our

Oppenheimer moment. Robert Oppenheimer

was the inventor of the atomic bomb. He ran the

Manhattan Project, and he had his head down

making the finest weapon he could and when he

saw that bomb explode, all of a sudden, he kind

of went, “Oh, shit. Is this really going to give me

what I want in the world?” And that’s where we

are today. This is Silicon Valley’s Oppenheimer

moment. We’ve created these machines that

extract data from us and give us advertisements

in return, and the mechanisms of civil oppres-

sion used to be guns. Today the mechanisms of

civil oppression are Facebook and Google and

Uber and we’re creating those tools, us technolo-

gists and designers, and so we have to all of a

sudden go, “Well, wait a minute. Is this really

what we want to build? Do we really want to cre-

ate this nuclear blast?” And so there are engi-

neers out there who are saying, “Oh, I’m in

a. . .“—young men and women’s saying,” I’m

going to go to Silicon Valley and I’m going to be

one of those 500 startups and I’m going to be the

next Google or the next Facebook.” It’s like, think

this through, because there are people who’ll

write you a big fat check with a lot of zeroes. All

you have to do is screw over the human race. So,

is that who you want to be? Do you want those

zeroes that badly? This is really the answer to

your earlier question <laughs>. And as I look at

the problems of our society today and I try to

deconstruct them and say, “How did we get

here? What’s the problem?” I find that each one

has the same root cause, and that’s inequality, is

that I find out here I’m learning about the food

chain and I’m discovering that the food chain is

distorted. Well, what distorts it? Well, what dis-

torts it is inequality. I look at the information

economy of Facebook selling my soul to Russian

election hackers and the root of that is

inequality, is that there are people out there

who can afford to buy my story. And so when

you’re sitting there in Silicon Valley and you’re

saying, “I want to make a billion dollars,” what

you’re doing is, you’re saying, “I want to create

more inequality.” Okay, so I’ve been an entrepre-

neur all my life and I’ve always wanted to create

my own business. And I wanted to get rich when

it was $50,000 and then I wanted to get rich

when I thought I could make a few million dol-

lars, but when I was offered the opportunity of

joining Microsoft as a key contributor in 1988, I

told them no. Okay, I’d probably have a lot of

money today if I had done that. Those are the

kind of choices that you make where you say,

“No, you know, I don’t want to work for that

company.” I don’t want to do things the way

they do things because I don’t like that. I don’t

think that what you do is you amass enough

money so then you can be the world’s greatest

philanthropist. What I’d rather do is have every-

body join together and do something collec-

tively. I think it’s better for the—I trust our

collective judgment better than I trust Bill and

Melinda’s judgment, and so responsible crafts-

manship today—when I thought up that term,

what I meant is being nice to your users. Make

them happy. It will be good for everybody and

you will have a successful business. Now I say it

has a greater meaning than that. It means—

responsible craftsmanship means that every

artifact you build is another brick in the wall of

the concentration camp or a brick in the wall of

the cathedral, or a brick in the wall of the great

tower honoring ourselves. It could be what you

want it to be. But if you say, “Oh, the brick is

agnostic,” believe me, people will build concen-

tration camp walls out of it. They will take advan-

tage of your “I don’t care,” so that’s my parting

thought. Thank you, Hansen.

Hsu: Thank you very much.

Hansen Hsu is a historian and sociologist of

technology, and curator of the CHM Software History

Center. He works at the intersection of the histories

of personal computing, graphical user interfaces,

object-oriented programming, and software engi-

neering. Hsu received his PhD in Science and Tech-

nology Studies from Cornell University in 2015.

Interviews

118 IEEE Annals of the History of Computing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

