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From its beginning in the 1950s, noncomputingaca-
demics were skeptical about computer science
because it seemed strong on technology and

weak on theory. To answer the critics and shore up their
case, computer scientists turned to a rich trove of compu-
tationalmethods from logic andmathematics. Computing
from ancient times focused on methods of manipulating
symbols that could be performed by people untrained in
mathematics. Examples include ancient Babylonian algo-
rithm-like step-by-step rules, Greek mathematical proce-
dures like the Euclidean algorithm or the sieve of
Eratosthenes, and al-Khwarizmi’s algorithmic techniques.
In the twentieth century, the mathematical logicians
Turing, G€odel, Church, Kleene, and Post provided a solid
foundational theory for the new field of computer science,
showingwhatcanandcannotbecomputed.

Much human computation is based on procedures of
many steps,many ofwhichdependon logic: decomposing
a large task into a series of smaller ones, choosing
between alternative tasks based on a condition, and
repeating tasks until some condition was achieved. Popu-
lar history texts in computing cite the development of
logic as ameans for ultimately automating these choices.
Boole’s algebra for logic formulas (1854) gave a notation
for conditions used inmaking the choices, which could be
composed from simple true–false elements connected by
AND, OR, and NOT. Shannon’s insight (1938) made Boole’s
algebra the basis for describing electronic computer cir-
cuits. Frege’s axiomatic predicate logic (1879) presented
formal rules of inference and syntax, which, in the 1950s,
came to be seen as the logical basis for programming lan-
guages. Like many others, Boole and Frege believed that
logicwas the foundation for rational human thought.

Thenotion that logicenabledcomputationopened the
reverse possibility that computation could automate the

logic of mathematical proofs. Beginning around 1900,
prominent mathematicians and logicians sought to char-
acterizetheprocessofproofsopreciselythatanautomatic
procedure could decide whether any given proposition is
provable infirst-order logic. In 1928, the famous mathema-
ticianDavid Hilbert posed this Decision Problem as one of
thefundamentalchallenges inmathematics [5].

To many, the Decision Problem looked eminently
doable: a proof system consisted of given axioms and
rules of inference, and a proof is a well-structured
sequence of statements in which each statement is
either an axiom or is constructed from previous state-
ments by a rule. Hilbert andmany others had believed for
years that an algorithm for the Decision Problem existed,
although they never could find it. Their hopes were per-
manently dashed when, in the 1930s, G€odel, Post, Turing,
and Church proved that this was impossible. Their differ-
ent systemsofmechanizationwere all shown to be equiv-
alent—any computation in one could be simulated in all
the others. The famous Church–Turing thesis stated that
all effective computations could be formalized as Turing
machines. What an irony, that logic-inspired computation
was incapable of answering the Decision Problem’s ques-
tion of whether logical proofs could be automated.

This irony supported the academic case for com-
puter science. Not only did the work of Turing and the
others provide a basic theory of computation, it led to
the surprising conclusion that many important ques-
tions cannot be answered by computational algorithms.
It made the case that a small set of logic principles gov-
erned the thought processes of designing algorithms.

For these reasons, when computing became an
academic discipline in the 1950s, the popular disciplin-
ary narratives of computing prominently featured
mathematics and logic.

COMPUTING AS A BRANCH
OF LOGIC

Many pioneers of the nascent computing field in the
1950s came from mathematics. They took it as a given
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that electronic automatic computers are governed by
logic systems. Engineers agreed: logic was baked into
computer architecture from the beginning. In his 1938
M.Sc. thesis, Claude Shannon showed that the func-
tions of switching circuits, such as those found in tele-
phone exchanges and motor control equipment, could
be described by Boolean algebra. Through a series of
developments into practical applications, Shannon’s
insight permeated the engineering world [1] and was
eventually adopted for computer circuits. Electronic
computer circuits came to be called logic circuits, and
Boole’s algebra of logic became the standard basis for
computing. Logic’s influence on circuit design contin-
ued in the 1950s and 1960s. For instance, an early
design technique using Karnaugh maps (1953) enabled
logic circuit designers to minimize the number of logic
gates needed and avoid race hazards where a change
of state could cause an output to flicker. Logic
also influenced programming practice. The 1966
B€ohm–Jacopini theorem restated the logic basis of pro-
gramming languages: every computation could be con-
structed from simpler computations by joining them in
sequences, if-then clauses, or iteration clauses. The the-
orem was taken as a support for “structured program-
ming”—a programming practice that advocated a
limited set of constructs to build programs.

Similarly, early research programs in artificial intelli-
gence were based on an idea that human intelligence (at
least the rational part) is based on logic. This ideawas cel-
ebrated in the monumental intellectual achievements of
the early 1900s, notably Russell andWhitehead’sPrincipia
Mathematica and Wittgenstein’s Tractatus Logico-Philo-
sophicus. Logic was revered as a pinnacle of human intel-
ligence. Not surprisingly, early AI focused on getting logic
programs to perform intelligent actions. The logic theory
of intelligence received a big boost in 1956, when the
Logic TheoryMachine ofNewell, Simon, and Shawproved
38of thefirst 52 theoremsof thePrincipia. Somesaw that
machine as an improvement to human intelligence—it
produced in a few minutes proofs of several theorems
that brilliant thinkers took years to prove. Logic came to
be seen as a litmus test formachine intelligence.

This idea spawned a branch of AI devoted to logic
programming, from which expert systems emerged in
the early 1980s. The prototypes used new logic lan-
guages LISP and PROLOG. Engineers built special-pur-
pose machines to run programs in these languages very
efficiently. The Japanese Fifth Generation Project
(1980s) was aimed at turbocharging expert systems by
building supercomputers for massive logic operations,
just as a numerical supercomputer could do with mas-
sive arithmetic operations. The United States responded
with its Strategic Computing Initiative, more generally

focused on supercomputers capable of solving “grand
challenge problem” in science.

Logic pervaded other parts of computing as well. In
1970, Codd introduced the logic of relational databases,
which became a major IBM project later in that decade
and spawned a host of database companies. These sys-
tems are often queried and managed with the language
SQL, which consists of logic expressions to select, join,
and project records. Logic made the data management
systems common in business simpler andmore effective.

Inthesametime,therewasanexplosionof insights into
the complexity of computations. It was well known that
someproblemsarehardertosolvethanothers—theiralgo-
rithmstakemore timeandmemory.TheNP-completeness
theorems of Cook (1971) and Levin (1973) to characterize
theseproblemsare deeply rooted in logic.Manyharddeci-
sion problems could be simulated with gigantic logic cir-
cuits; finding the answer amounted to finding an input to
the logicnetworkthatproducesthedesiredyes–nooutput.
This is known in logic as the satisfiability (SAT) problem.
Any fast algorithm for solving the SAT problem would be
convertible to a fast algorithm for any of the numerous
hard problems that could be simulated as a SAT problem.
Ourtheoryofcomplexity restson logic.

CRACKS APPEAR
Yet, logic’s hegemony had already started to show
signs of cracking in the late 1960s. When software engi-
neering was being born to address the software crisis,
several pioneers from the logic-oriented community
proposed that much of the unreliability of software
would be eliminated if the software could be formally
proved to meet its specifications, for then there would
be no doubt that the software was error free once it
was compiled. Formal verification, however, turned out
to be a formidable challenge. It sparked heated
debates that forever shaped the computing field.

It turned out that formal logic proofs could be car-
ried out only for relatively small programs, but large
systems were beyond their reach. Even if the program
source code could be proved correct, there was the
additional difficulty of proving that the compiled
machine code as well as the hardware platform also
met their specifications. In his 1983 Turing Award lec-
ture, Ken Thompson reminded us that bugs were not a
feature of program code alone but of the total soft-
ware-hardware–human system. Logicians and engi-
neers argued endlessly about the practicality of
formal proof. Many engineers were concerned that
recovery from defects and deterioration of hard-
ware—such as a transistor failure or arrival of a signal
corrupted by noise—could not be supported in the
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logic formalisms. The prospects for full and complete
verification started to look very gloomy when many
agreed that developing complete specifications repre-
senting the true intentions of the human stakeholders
and users of systems could not be formalized—and
therefore not amenable to the tools of standard logic.

Other anomalies about the completeness of logic as
the basis of computing appeared. In themid-1960s, Lotfi
Zadeh argued that engineers are frequently faced with
ambiguous situations where a condition can be partially
true and partially false at the same time. He proposed
“fuzzy logic” as an extension of Boolean logic that allows
truth values to be represented by numbers between 0
and 1. Fuzzy logic proved useful in many physical devi-
ces, but did not gain much foothold in the AI and logic
community. Still another anomaly in the field of AI was
foundwith expert systems, which were expected to per-
form as a human expert by acquiring enough deductive
rules and facts. Dreyfus (1972) challenged this idea on
the grounds that much expert behavior does not follow
known rules; expert systems might become competent,
he argued, but not expert [4]. Many other anomalies
between the expectations of what AI could achieve and
what AI actually achieved arose from the presumption
that intelligence is founded in formal logic.

In 2013, Moshe Vardi lamented about the accumu-
lation of gloomy conclusions about logic two decades
before. He recalled how he and his colleagues experi-
enced a feeling that large-scale program verification
may indeed be hopeless: “First-order logic is undecid-
able, the decidable fragments are either too weak or
too intractable, even Boolean logic is intractable [6].”
Moreover, as computers invaded many new areas
such as entertainment, cyber-physical control sys-
tems, office tools, art, transportation, medicine, and
more, skillful development relied progressively less on
logic and more on design acumen, human communi-
cation, aesthetics, social savvy, and other nonformal
skills. Continuing progress in important technologies
such relational databases, Boolean reasoning, and
model checking did not stave off the growing feeling
that computing could not be reducible to logic.

NO COMPUTING WITHOUT
ENGINEERING

Over the 1980s, there was a growing consensus that the
logic view does not cover many engineering, science,
and technology aspects of computing. We were being
pulled back to the historic notion that the roots of com-
puter science are a complex mixture combining mathe-
matics, science, and engineering. Logic did not cover
everything in computing. The 1989 Computing as a

Discipline report crystallized this growing feeling among
people in the computing field [3]. Herewith a few
examples.

Start with logic circuits. The logic formulas describ-
ing circuits assume that the signals are 0 and 1. But
these are abstractions. The 0 and 1 represent states of
the circuits, such as voltage low or high. Because a
physical circuit can be in transient states that are nei-
ther 0 nor 1, the logic of the abstraction is unable to
deal with some physical behaviors. The “half signal
problem” asks what happens when one part of a cir-
cuit tries to read another part that has not settled into
a definite 0 or 1 state. The “arbitration problem” asks
what happens if a logic signal and clock signal arrive
at the input of a flip-flop circuit at the same time. This
condition can trigger the flip-flop into a metastable
state that is neither 0 nor 1 and can crash the CPU
when it persists for many clock ticks. These problems
have physical solutions that cannot be derived in
logic. Physical circuits display important stochastic
behaviors that cannot be addressed by logic alone.

Next, consider the architecture of computers. In
1945, John von Neumann published the ideas of a
team of pioneers from the early computing projects
who defined a better architecture that would be more
reliable and faster than their previous machines. What
emerged is now known as the von Neumann architec-
ture. It separated the computer into CPU, memory,
and input–output, and defined the CPU cycle that
fetches and executes programs stored as instructions
in the main memory. While this architecture has often
been held as an example of logical and analytic think-
ing in computing, it was actually the product of engi-
neering improvements for efficiency and reliability [2].

One of the innovations of that architecture was to
fetch instructions from main memory rather than
paper tapes or cards. This engineering innovation
greatly speeded up program execution. However, folk-
lore developed that the stored program idea was the
implementation of Turing’s universal machine. This is
not so. Historians find evidence to the contrary that
the architecture was not influenced by Turing’s model,
nor did Turing have in mind an architecture of the
same type. Other folklore held that the new architec-
ture would be easier to build than its predecessors. In
some ways, it surely was, but at the same time it also
created new challenges. For instance, Maurice Wilkes,
who led the EDSAC project at the University of
Cambridge, said that one of the many engineering
challenges was finding a technology that could sup-
port a main memory large enough to hold all the
instructions of the program. Wilkes found that a mer-
cury delay line did the job better than other available
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technologies. With this and other engineering innova-
tions, he got the EDSAC machine working a year ear-
lier than its U.S. version (EDVAC). Wilkes steadfastly
maintained that there are important aspects of com-
puting that logic cannot address.

Next, consider large multiuser networked systems.
The Multics project at MIT (1965) dreamt of a “com-
puter utility” that would dispense cheap computing
power over a network to the masses. No one knew how
to organize large operating systems that would coordi-
nate hundreds of users. The logic-inspired view at the
time was to carefully construct the operating system
as a set of modules that interacted by well-defined
interfaces. But these systems had great difficulties
with coordination and were prone to many errors and
crashes. Operating systems designers at MIT, IBM, and
elsewhere invented a new idea, the process, as the
basic entity demanding service from the system, and
they organized the system as a “society of cooperating
processes.” This led rapidly to successful operating sys-
tems and a new theory of concurrent process coordina-
tion. Although logic helped to make coordination
theories more precise, neither the gestation of the pro-
cess idea nor its development was in logic—the pro-
cess arose in the pragmatics of coordinating activities
in an operating system. Over the years, the engineering
understanding of these systems led to very small oper-
ating system kernels that could be formally verified by
the methods pioneered in the 1970s. Today the sel4
secure operating system kernel illustrates how an engi-
neered system can progress to the point of being a
commercially viable, fully verified kernel.

Computational science, which grew up in the
1980s, is based on the idea that many physical pro-
cesses can be viewed as information processes that
can be simulated on a computer. Formal logic does
not capture the simulation and modeling prevalent in
computational science.

Finally, consider the performance of computer sys-
tems. As users, we want computers to get our jobs
done as fast as possible within the constraints of pro-
cessors and memory. Complexity theory gave order-of-
magnitude estimates of running times of algorithms on
a single CPU. But it was not able to predict the response
time when multiple jobs were competing for the CPU.
The solution to this was again found by engineers who
recognized that queueing theory could answer the
question. Computer scientists plunged into the perfor-
mance analysis and prediction problem and discovered
very fast algorithms to compute throughput and
response times for operating systems (and the Inter-
net) built as networks of servers. This led eventually to

a thriving performance-evaluation industry. But queue-
ing theory is not a product of logic, and performance
evaluation is an empirical, not logical, matter.

In all these systems, engineering was oriented
toward finding what works and what does not work.
This is often accomplished with lots of trial and error,
tinkering, and experimenting. There is often no theory
or science available to understand what is going on;
understanding is developed by trying things out. For
instance, designers of early time-sharing systems
found no theory that could predict their response
time. Once time-sharing systems started to show
promise, a rich body of theory emerged to accurately
predict response time, guide the design of systems,
and evaluate their performance.

The modern computational thinking movement for
K-12 education has embraced the idea that computa-
tional thinking is founded on logical thinking. The
movement has defined curricula that teach comput-
ing principles using generic logic puzzles and games.
This has been controversial because generic logic
does not demonstrate the unique aspects of comput-
ing and because it omits study of engineering and
design in computing systems.

In truth, computer science is built on a complex
framework of understandings from logic, mathemat-
ics, science, and engineering. Combined together,
these different modes of thinking produced the amaz-
ing progress we have seen in computing. Computing
is bigger than logic, and logic is less foundational than
many people believe: designing, building, experiment-
ing, and are at least equally foundational for the field.
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