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Multicasting in Ad Hoc Networks in the Context of
Multiple Channels and Multiple Interfaces

Marco Aurélio Spohn and J.J. Garcia-Luna-Aceves

Abstract— Multicast routing protocols based on shared trees
employ one or more rendezvous points (usually called cores)
for coordination. To address fault tolerance in case of core
failure, multiple cores can be deployed. The location of cores
is crucial for the performance of the protocol. In this context,
the problem of finding the location for the cores is similar to
the (k, r)-dominating set problem, (k, r)-DS, in graph theory.
That is, (k, r)-DS is defined as the problem of selecting a subset
of nodes D such that the remaining nodes are within distance
r from at least k nodes in D. In mobile ad hoc networks
(MANETs), finding the location of cores should be computed
distributively, because the topology may change frequently. We
present a distributed solution to the (k, r)-DS problem, named
DKR, which is used for core selection in a novel multicast
protocol named core hierarchical election for multicasting in
ad hoc networks (CHEMA). CHEMA is designed to operate in
the context of multiple channels and multiple interfaces. One
interface is dedicated for the communication among cores and
members, using a non-interfering channel. The performance
of CHEMA is compared against one of the best performing
multicast protocols to date. CHEMA is shown to perform better
in all scenarios considered.

I. INTRODUCTION

Multicast routing protocols can be classified as tree-based
and mesh-based. Tree-based can be further classified as single-
source, shortest-path trees and shared, core-based trees. Core-
based trees are more scalable compared to shortest-path trees,
but usually present higher end-to-end delay and poor fault
tolerance.

To improve the performance of core-based trees, multiple
cores are deployed. The distribution of cores in the network
has a direct impact on the performance, since cores placed
closer to the receivers can reduce the end-to-end delay.

There are two one-to-all designs [1] with multiple cores:
senders-to-all, and members-to-all. In senders-to-all, senders
transmit to all cores, and members join to just one core
(usually the nearest one). In members-to-all schemes, senders
select one of the cores to send their data packets, and members
need to join all cores. In the one-to-one approach, each of the
cores must join to at least one other core [2]. In this case,
senders send to just one of the cores, and receivers join to just
one of the cores.

Senders-to-all scheme has several advantages compared to
a members-to-all scheme. Both approaches use one multicast
tree per core, but in a members-to-all scheme each tree
connects all members, which increases the routing state in
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each router. In a senders-to-all scheme, members decide which
core to join, allowing members to choose the core that better
satisfy their requirements (e.g., lower end-to-end delay).

While the one-to-one approach combines the advantages
of the two one-to-all designs, it requires a reachability and
maintenance protocol between the cores.

Core placement has a direct impact on the performance of
the protocol. If the number of cores is fixed, say k cores,
then the problem is referred as k-center [3], and is defined as
the problem of locating k cores in the network such that the
distance from nodes to the cores is minimized. If the number
of cores is not fixed, but the maximum distance to a core, say
r, is fixed, then the problem is the same as the problem of
computing d-hop dominating sets (DS) in graphs [4]. That is,
d-hop DS seeks to select the minimum number of cores (i.e.,
dominating node) in the network such that each node is within
distance r from at least one core. Both problems are known
to be NP-Complete.

The selection of cores could be further extended to include
a minimum number of cores within a maximum distance.
In this context, the problem of finding the location of the
cores is similar to (k, r)-dominating sets, (k, r)-DS, in graph
theory. The (k, r)-DS problem is defined [5] as the problem
of selecting a minimum cardinality vertex set D of a graph
G = (V, E), such that every vertex u not in D is at a distance
smaller than or equal to r from at least k vertices in D. The
problem of computing a (k, r)-DS of minimum cardinality for
arbitrary graphs is also NP-complete [5].

When selecting cores, redundancy is achieved by choosing
a value for the parameter k greater than one. At the same time,
the distance parameter r allows increasing local availability by
reducing the distance to the cores.

In mobile ad hoc networks (MANETs), finding the location
of cores should be computed distributively, because the topol-
ogy may change frequently. We present a distributed solution
to the (k, r)-DS problem, named DKR, which is used for core
selection in core hierarchical election for multicasting in ad

hoc networks (CHEMA) in the context of multiple-channel and
multiple-interface.

In CHEMA, each node is equipped with two interfaces. One
for general communication, and the other for communication
among cores and their members. Cores transmit packets to
their members on a specific non-interfering channel via the
dedicated interface, and receivers listen in the corresponding
channel in the same interface. To reach all members with
a single transmission, cores transmit packets with a larger
power, such that all member within r-hops from the cores
can successfully receive the packet. Therefore, all packets
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transmitted by the cores are expected to be successfully
received by the members.

The rest of this paper is organized as follows. Section II
presents a brief review of the related work. Section III de-
scribes DKR, which is applicable to ad hoc networks, given
that it relies on information limited to the neighborhoods of
nodes. Section IV presents CHEMA, a novel approach for
multicasting in MANETs with DKR as the core selection
mechanism. Section V presents the performance results for
CHEMA compared to PUMA, one of the best known multi-
casting protocol for MANETs. And Section VI concludes this
work.

II. RELATED WORK

Many centralized multi-core selection algorithms have been
proposed for wired networks [1], [6], [7]. These solutions are
greedy variations of either the d-hop DS problem, or the k-
center problem. They differ among each other by the metric
applied for the selection of cores, which can be delay-bound
or hop-count.

Max-Min [8] is an election-based distributed solution for
the (1, r)-DS problem, which takes 2r rounds to complete.
cores are computed during the first r rounds, and nodes decide
which dominating nodes are going to be their cores during the
subsequent r rounds. The authors also show that the problem
of computing the minimum r−hop dominating set is NP-
complete for unit-disk graphs [9].

Liang and Hass [10] proposed a distributed algorithm to
compute (1, r)-DS. The algorithm is a distributed version of
Greedy Set Cover (GSC), producing dominating sets with the
same cardinality as the centralized solution for this problem.
However, their solution requires the 2r-hop neighborhood
information.

Joshi et al [5] have provided centralized solutions for
solving the (k, r)-DS problem in interval graphs (IG). Even
though their solutions are optimal, IGs are limited to very
simple network topologies.

III. DISTRIBUTED SOLUTION TO CORE SELECTION USING

(K,R)-DOMINATING SETS

We propose DKR, which is a distributed algorithm for
core selection using (k, r)-DS. DKR is well suited for both
synchronous and asynchronous networks. In the synchronous
network model, nodes exchange messages in synchronous
rounds. In the asynchronous network model, nodes take steps
at arbitrary times. Even though there are no rounds in the
asynchronous model, it is possible to simulate rounds [11].
In order to do that, a node tags the message with its round
number x. The recipient waits to receive round x messages
from all its neighbors before transitioning to the next round.

A. Summary Description

We assume that nodes have unique identifiers (IDs), and
that nodes know who their neighbors are. The latter can be
implemented by means of a neighbor protocol with which
nodes exchange hello messages [12], as part of the MAC

protocol, or using periodic HELLO messages as part of the
protocol itself.

The status of a node reflects its role during the core selection
process. Initially, there is no established hierarchy among
nodes, and the nodes assume an unknown status. As the nodes
organize themselves, their status change to reflect their role in
the network, which can be one of the following:

• Dominating, the node is a core.
• Pending Dominating, the node may become a core.
• Dominated, the node has at least k cores within distance

r.
• Gateway, in addition to being dominated, the node con-

nects other nodes to their cores.

A round of messages is defined as the successful trans-
mission of a message m by any node n to all its one-hop
neighbors. If rounds are numbered, a round x is deemed
complete only after all nodes have sent the messages for round
x. DKR has two phases:

• Phase One (Election Phase): Each node elects the k
smaller ID nodes (including the node itself) within dis-
tance r. Elected nodes are just candidates to be cores.
Because each node has its own set of k elected nodes
within distance r, the sets of elected nodes dominate all
non-elected nodes in the network.

• Phase Two: During this phase cores are assigned, and
nodes are affiliated to their cores.

Clearly, there must be at least k nodes in every node’s r-
hop neighborhood for the required multiple domination to be
satisfied. In the subsequent description of DKR, we assume
that multiple domination can be satisfied at each node.

It is possible that not all nodes elected during Phase

One become cores, because some redundant candidates are
identified, and pruned. The rationale for choosing node IDs
over node degree for the election process is that elections based
on node degree can result on high turnover of dominating
nodes when the topology changes, because the degree of a
node is much more likely to change than the node ID relative
to its neighborhood [13].

B. Phase One

This phase takes r rounds to complete in a static topology.
For asynchronous networks, rounds are simulated as described
previously. At the beginning of a new round, a node advertises
its list of K ≤ k nodes with smaller IDs (including the node
itself), and the respective distance to each node listed. After
a number of rounds (r rounds in a static topology), a node i
in the network learns the set of up to k nodes with smaller
IDs (including the node itself) within distance r from it. We
denote such a set by D

′

i.

An elected node can elect itself or be elected by other nodes.
A node that elects itself is called properly-elected if the node
is not elected by any other node, and is called self-elected if
the node is elected by at least one other node. A node that
does not elect itself and is elected by other nodes that are
not elected is called neighbor-elected. After the election, any
node i in the network changes its status as follows: If node



i is properly-elected or self-elected, node i changes status to
pending dominating. Otherwise, node i has status dominated.

Note that a properly-elected node must become dominating,
because there are at most k − 1 other elected nodes in node
i’s r-hop neighborhood. Because identifying properly-elected
nodes would incur extra overhead, they are implicitly notified
of their dominating status after not hearing from enough
dominating nodes within a given period of time.

A neighbor-elected node i is elected by at least one node,
call it n, which is not elected and for which node i is
strictly required. That is, there is no self-elected node in node
n’s r-hop neighborhood that could possibly replace node i;
otherwise, node n would have elected that self-elected node.
Even though in some cases a properly-elected node could
replace node i, initially DKR chooses to select all neighbor-
elected nodes as cores.

C. Phase Two

During phase two, some or all nodes elected during phase

one become cores. In addition, the rest of the nodes are
affiliated to their cores.

The messages used during this phase are:

• Local Advertisement (LA): A message having the list of
nodes elected by the sender, and the respective next-hop
to each one of the elected nodes.

• Neighborhood Advertisement (NA): A message advertis-
ing a core.

• Notification: A message sent to notify a node that must
become core.

• Join: A message sent to notify, or to connect to a given
core.

Because neighbor-elected nodes are not aware of their
election, a notification mechanism is needed to notify them.
Depending on the coverage provided by neighbor-elected
nodes, some self-elected nodes may be ruled out as cores.

At the beginning of phase two, dominated nodes send
to their one-hop neighbors an LA message containing their
elected nodes. Any dominated node i proceeds as follows upon
receiving an LA message:

• If node i is listed in the advertisement, node i changes
its status to dominating, triggering an NA message an-
nouncing node i as core to all its r-hop neighbors. This
is accomplished by broadcasting the NA message using
restricted blind-flooding with the time-to-live (TTL) field
set equal to r.

• If node i is not listed in the LA message but is listed as
a next hop to any advertised node, then node i changes
its status to gateway.

• For any advertised node n ∈ LA that is not among
the nodes elected by node i (i.e., n $ D

′

i) it sends
a Notification message to node n. Upon receiving the
notification, if the notified node is not yet dominating,
the node advertises itself via an NA message.

Definition 1 For any node i, and for all n ∈ D
′

i, node n is

deemed validated only upon the reception of the respective

NA message advertising node n; otherwise, node n is not yet

validated.

Any neighbor-elected node n eventually changes its status
to dominating by either receiving a Notification message
originated at some node k within distance 1 < d < r, or
by receiving an LA message from some one-hop neighbor. In
any case, once node n becomes dominating, it sends an NA
message.

Because an NA message is sent only when a node changes
its status to dominating, nodes receiving an NA message
advertising node n know that this is a core. When processing
an NA message for node n, any node i inserts an entry for
node n in D

′

i.
A pending dominating node i does not become a core if

(a) node i has at least k validated dominating nodes within
distance r, and (b) every node n, which elected node i during
phase one, is also covered by a set of validated dominating
nodes.

Definition 2 Wait Period is the minimum time required for

reaching an agreement in phase two.

In the worst case, a Notification for node n is initiated by
some neighbor i located r − 1 hops away from node n. The
correspondent NA message initiated by node n reaches the
most distant neighbors (i.e., r hops away from node n) after
r successfully transmissions of message NA. Therefore, Wait
Period should be larger than the time required for 2r transmis-
sions of a message. After a period of time equivalent to Wait

Period any node i in the network checks its coverage. If node
i is pending dominating, and it does not have enough validated
entries in D

′

i, then node i changes status to dominating, and
sends an NA message. This means that node i does not have
enough information for ensuring its own coverage (i.e., node
i does not know if it has at least k dominating nodes within
distance r). Otherwise, any non-dominating node i sends a
Join message to k nodes from D

′

i (including the nodes already
validated). If there are more than k validated entries in D

′

i,
node i chooses the closest ones (ties are broken choosing the
node with smaller ID).

Like a Notification, which also serve for assigning gateways

while the message is being routed to its destination, Join

messages also serve to notify any pending dominating node
that is still required as core. That is, even though some pending

dominating node i finds itself covered, there might be some
node j that still needs node i (i.e., without node i, node j
does not have the required number of dominating nodes).
While a Join message is being routed to destination n, a
node i processing the message does not need to relay it if
a Notification, or another Join message, had already been sent
to node n. So, we assume that every node keeps track of
recent Notification and Join messages sent by the node. After
Join messages reach their destinations, all regular nodes are
connected to their cores.

D. Example

Consider the example presented in Figure 1, where nodes
are computing a (2, 3)-DS of the network. During Phase One
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Fig. 1. Computing a (2, 3)-DS of the network

nodes elect the two nodes with smaller IDs in their 3-hop
neighborhood (Figure 1(A)). Nodes 10 and 15 are self-elected,
and nodes 18 and 20 (both elected by node 90) are neighbor-

elected. Self-elected nodes assume status pending dominating.
The remaining nodes assume status dominated, and send an
LA message advertising their list of elected nodes. After
receiving the LA message from neighbor 90, node 18 changes
status to dominating, and sends an NA message that eventually
reaches all nodes within distance 3 from node 18. Figure 1(B)
show the status of nodes, and their corresponding validated

dominating entries. Besides sending the NA message, node
18 also sends a Notification to node 20. Figure 1(C) presents
the status of the network after the notification has reached
node 20. The notification makes node 20 change its status
to dominating, triggering an NA message that eventually
reaches all neighbors within distance 3 from node 20. After
all affected nodes process this NA message, we notice that
all dominated nodes are satisfied, because each of them have
2 validated entries in their D

′

lists. Wait Period should be
set appropriately, so that by the time the event CheckStatus

happens all NA messages have already been delivered and
processed. Figure 1(D) shows the status of the network after
all dominated nodes have sent out their Join messages to their
dominating nodes (assume that Join messages are grouped
together whenever different dominating nodes are reachable
through the same node). In this case, because nodes 50 and
80 have either relayed a Notification, or a Join message, they
serve as gateways for other dominated nodes.

E. Analysis of DKR

To prove the correctness of DKR, we have to show that it is
safe (i.e., the algorithm computes a (k, r)-DS of the network),
and that it is live (i.e., it completes within a finite period of
time).

Lemma 1 Phase one of DKR has time complexity of O(nδr),
where n is the number of nodes in the network, δ is the largest

node degree, and r is the distance parameter.

Proof: During each round, nodes send messages to all
their one-hop neighbors. Phase one takes r rounds. Assuming
a network of n nodes, and that nodes have at most δ links,
phase one of DKR requires O(nδr) messages to complete.
Therefore, the time complexity of phase one is O(nδr).

Lemma 2 After r rounds of successful transmission of mes-

sage m, the message is propagated up to r hops away from

the originating node.

Proof: This can be proved by induction on the distance
d from the originating node. The base case is when d = 0,
and corresponds to the originating node n0. Now consider a
node v at distance r from n0. A neighbor u of node v at
distance r − 1 received the message. Therefore, node u sends
the message to all neighbors, including v. Eventually node v
receives the message.

Theorem 1 Phase One of DKR correctly computes a (k, r)-
DS of any arbitrary connected graph G = (V, E).

Proof: We assume that nodes know their one-hop neigh-
bors. The system is either synchronous or asynchronous. In
the latter case, rounds are simulated by tagging advertisements
with the round number. By Lemma 2, after r rounds a node ID
is propagated at most r hops away. Because nodes advertise
their K ≤ k known smaller IDs, after r rounds every node
n ∈ V learns the K ≤ k nodes, D

′

n, with smaller IDs located
within distance r. Lets assume that S is the set composed
of proper-elected, self-elected, and unsatisfiable nodes (i.e.,
a node i is deemed unsatisfiable if |D

′

i| < k), and that R
is the set of satisfiable non-proper/self-elected nodes (i.e.,

R = V − S). It follows that the set D = {
⋃

n∈R

D
′

n + S}

is a (k, r)-DS of G.

Theorem 2 Phase Two of DKR correctly connects dominated

nodes to at least k dominating nodes at most r hops away.

Proof: At the beginning of phase two, any dominated

node i advertises its list of elected nodes, D
′

i, by locally
broadcasting the list via an LA message. Any node n with
status dominated, or gateway, upon receiving an LA message
from neighbor m, changes its status to dominating if the
advertisement lists node n, implying that node n ∈ D

′

m. In this
case, node n sends an NA message which is then propagated
to all nodes within distance r from node n. For every node
k in the LA message such that m $ D

′

n, a notification is
sent to node k if node n is on the path to node k (i.e.,
for node n the next-hop to node k is known, and it is not
m). If this is the case, at least one neighbor of node m has
a route to node k, because nodes are elected based on the
advertisements sent by one-hop neighbors during phase one.
Eventually, the LA message sent by node m reaches all its
one-hop neighbors, including the nodes with routes to the
nodes elected by node m. A Notification for node n, when
necessary, is issued (initiated or relayed) just once by any
node i. A dominated node relaying a notification changes its
status to gateway. Once a Notification reaches the destination,



if the status of the destination is not dominating, it changes
its status to dominating, and advertises itself sending an NA
message. If any node i relaying an NA messages currently has
fewer than k validated entries in D

′

i, then an entry with the
validated node is inserted in D

′

i. After a period of time equal
to Wait Period (starting from the beginning of Phase Two),
every node i in the network checks the number of validated

entries in D
′

i. If node i’s status is pending dominating, and
it has l < k validated entries in D

′

i, then node i changes its
status to dominating, and it sends an NA message. Otherwise,
if node i’s status is not dominating, it sends a Join message
to all its dominating nodes (validated or not). Any node n
receiving a Join message, for destination d, does not need
to relay the message in case node n had already initiated,
or relayed, a Join or Notification message to node d before.
After all the Notification, or Join, messages have reached
their destinations, the paths from dominated nodes to their
respective dominating nodes are formed by nodes that are
either dominating or gateway. Because all nodes must check
their status after a finite period of time (i.e., Wait Period), and
any non-dominating node i must send Join messages to all its
dominating nodes, (k, r)-coverage is guaranteed.

IV. CORE HIERARCHICAL ELECTION FOR MULTICASTING

IN AD HOC NETWORKS (CHEMA)

CHEMA uses DKR for the election of cores, and is designed
to work in the context of multiple channels and multiple
interfaces. CHEMA’s main features can be summarized as
follows:

• Deploy multiple cores, with DKR as the core selection
mechanism. This allows flexibility in terms of redun-
dancy, and a bounded distance to the selected cores. Core

announcements are used to disseminate core information
throughout the network. To reduce overhead, a single
announcement aggregates information about all known
cores.

• Use the senders-to-all approach. To reduce overhead, the
packet header lists which neighbors should relay the
multicast packet on a core basis. Instead of sending one
packet toward each core, nodes relay the packet whenever
they are listed at least once as a next-hop to any core.
Before relaying the packet, the header is updated with
entries for those cores for which the node is requested to
forward the packet.

• Multi-channel and multi-interface: Each node has at least
two interfaces. One is dedicated to receiving multicast
transmissions from cores, and the other is used for any
other transmission. Each core transmits in a channel
different than any possible interfering core. That is,
through core announcements nodes learn about all cores
in the network, and the distance to each one. Using this
information, cores select channels so that they do not
interfere with other cores.

• Single shot approach: Once a multicast packet reaches the
core, the packet is transmitted just once via the dedicated
interface. In order to reach all receivers, the packet is
transmitted with an increased power so that all nodes

within r hops from the core can receive it. Because cores
use different channels, and an interface is dedicated for
receiving packets from the core, receivers should receive
all transmissions sent by the core.

Multiple cores are selected via DKR. While cores have
not yet been elected, multicast data packets are transmitted
via blind flooding. After cores are elected, receivers join the
nearest core by sending a join message to the core. Nodes
aggregate all the fresh core announcements they receive, and
broadcast them periodically every core announcement interval

(which by default is set to be 3s). Core announcements also
include the number of members each core has. To let cores
know about any associated members, an explicit multicast join

message is sent from the receiver to the desired core whenever
a node wants to join a multicast group. Note that this is not
the same as the association provided by the join messages sent
during the execution of DKR, which provides for connectivity
from any node to at least k cores within distance r.

Senders send multicast packets to all cores with members.
Instead of sending one packet per core, the sender broadcasts
just one packet with all the information regarding the cores
that need to be reached. That is, the packet header includes an
entry for every core and the corresponding next hop toward
the core (recall that in DKR nodes keep information about
which neighbors are used to reach each core). A node receiving
the packet for which it is listed as a next hop to any core
forwards the packet. Before relaying the packet, entries for
which the node is listed as a next-hop are updated with the
current information, and any other entries are excluded.

Because multicast packets are broadcast unreliably, a node
may retransmit a packet up to N times, unless it receives an
implicit acknowledgment. That is, for every multicast packet
transmitted the node relaying the packet keeps record of the
packet and which neighbors should relay the packet. After a
period of time equivalent to an acknowledgment timeout, the
node checks if it has overheard any of the relayers transmis-
sions. If the node fails to hear any of the relayer’s transmission,
the node retransmit the packet including only those nodes from
which it has not yet heard from. Ideally, the length of an
acknowledgment timeout should be set dynamically, because
it depends on the level of contention, which is higher with a
larger number of transmitting nodes.

Nodes are equipped with two radio interfaces. One is used
for communication among cores and receivers, and the other
is for general communication. More specifically, cores use
a dedicated interface for transmitting multicast packets to
their members, and the receivers use the same interface to
receive packets from their cores. To allow for multiple cores to
transmit simultaneously without interference, we assume that
each core transmits on a different channel than any possibly
interfering core. Therefore, the dedicated interface is set for
transmitting and listening using a specific channel.

The problem of assigning non-interfering channels to cores
is similar to the graph coloring problem in graph theory. Con-
sidering a core with transmission range of r, any core within
distance 2r may interfere (i.e., even though the two cores
may be out of range of each other, they may have members
within range of both cores). In the context of MANETs, any



distributed approximation to the graph coloring problem could
be applied for assigning channels to the cores. Instead, we
choose to limit the total number of cores in the network to
the maximum number of orthogonal channels available for
the dedicated interface. Because nodes learn about all cores
in the network (through the periodical core announcements),
channels are assigned lexicographically.

To reduce delay, and to avoid retransmissions from nodes
between the core and members located more than one hop
away from the core, cores transmit multicast data packets with
a larger power. The transmit power should be set so that the
packet can be successfully received by any node up to r hops
from the core. Even though this approach increases energy
consumption, it is expected to reduce the end-to-end delay
and control overhead, because a single transmission from the
core is supposed to reach all core members at the same time.

V. PERFORMANCE

In this section we present performance results for the
efficiency of DKR compared to Max-Min (recall that Max-Min

is for computing (1, r)-DS, and that the (k, r)-DS problem
is NP-Complete), and results comparing CHEMA against
the protocol for unified multicasting through announcements

(PUMA) [14].

A. Efficiency: DKR compared against Max-Min

When comparing DKR against Max-Min, we consider only
(1, r)-DSs because the latter works only for this particular
configuration. To focus on the efficiency of the heuristics
themselves, we use a customized simulator for ad hoc net-
works, and assume an ideal MAC protocol with which no
collisions can occur. This is the same approach adopted in all
prior work [15]–[18] to compare the efficacy of heuristics.
As discussed previously, DKR works in both synchronous
and asynchronous networks. However, for the simulations we
assume synchronous networks.

Experiments are repeated for 100 trials with different net-
work topologies, varying the number of nodes and terrain size.
Nodes are randomly placed over the terrain, and connectivity
is tested to ensure that the network is connected. The radio
range is set to 250m. The results represent the average over
the 100 different networks . The network size is varied from
100 nodes to 500 nodes, with increments of 50 nodes. For
the same number of nodes, we vary the terrain size according
to two configurations so that we can test the algorithms for
different node density. Configuration 1 has a node density of
50 nodes

km2 , and Configuration 2 has 100 nodes
km2 .

Because DKR discards self-elected nodes whenever possi-
ble, in the worst case all elected nodes become cores. However,
in Max-Min [8] all nodes elected at the end of the first r
rounds become dominating; but, it is only during the second
set of r rounds that some of the elected nodes find out about
their dominating status. Besides that, in certain scenarios Max-

Min generates dominating nodes that are on the path between
a node and their elected nodes. In that case, only during
the convergecast (which is used to connect regular nodes to
their dominating nodes) that nodes adjust their selections to
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the closest dominating node. To show how DKR reduces the
number of cores compared to Max-Min, we present simulations
for different values of the distance parameter.

Figure 2 presents the results for the total number of cores
for Configuration 1, varying the distance parameter from 2 to
4. And Figure 3, presents the results for Configuration 2. For
both configurations DKR always selects fewer cores compared
to Max-Min, meaning that usually some self-elected nodes are
ruled out as cores.

B. CHEMA versus PUMA

PUMA has been shown to outperform two of the state
of the art multicast routing protocols for MANETs (i.e.,
ODMRP [19] and MAODV [20]). PUMA presents the follow-
ing characteristics: receiver-oriented; core based (one core per
group); mesh-based, providing multiple routes from senders to
receivers.

Only the core performs control packet flooding in PUMA.
In CHEMA it is the same, but information about multiple
cores are aggregated to reduce control overhead (PUMA also
applies aggregation when flooding information about multiple
groups).

We compared CHEMA against PUMA using the
QualnetTM [21] network simulator. Each simulation was
run with four different random-number seeds. Timer values



TABLE I

SIMULATION PARAMETERS

Simulator QualnetTM3.5
Simulation time 350s

Terrain Size 1000 X 1000 m
Number of nodes 50
Node placement Random
Mobility Static
Radio Range 250m

MAC protocol 802.11
Channel Capacity 2 Mbps
Data packet size 512 Bytes

(i.e., core announcements in CHEMA, and multicast

announcements in PUMA) were set to three seconds. Table I
presents details about the simulation parameters.

In CHEMA, cores use a multiple of the regular radio range
(i.e., for distance domination r, cores have a radio range
of r · 250m) for the dedicated interface. DKR is executed
every 16s for core assignment. Because only static topologies
are considered, the cores remain the same throughout the
simulation.

Four performance metrics are evaluated:

• Packet delivery ratio: The ratio of the data packets
delivered to the receivers to those data packets expected
to be delivered (i.e., data packets sent times the number
of receivers).

• Average end-to-end delay for data packets, including
all possible delays caused by queuing at the interface,
retransmission delays, and propagation and transfer times.

• Control overhead: The number of control packets trans-
mitted per data packet delivered.

• Total overhead: The ratio of the total packets transmitted
(i.e., control + data) to the data packets delivered.

For the simulation scenario, traffic load is varied across
{1, 2, 5, 10, 25, 50} packets/s. There are 5 senders, and 20
receivers for one multicast group. That is, the number of
packets expected to be delivered varies from 20 packets/s
to 1000 packets/s. Both senders and receivers are chosen
randomly among the nodes in the network, and traffic load
is equally distributed among all senders.

Even though DKR allows a myriad of scenarios for core
selection, we consider just a few configurations for the purpose
of simulation. For a 50-nodes network, at most eight cores
are allowed (and there are 8 orthogonal channels for the
dedicated interface). Values 3 and 4 are tested for the distance

domination, and at least one core is selected within the
specified distance. These two configurations are presented in
the graphs as CHEMA (1, 3)-DS, and CHEMA (1, 4)-DS,
respectively. For the networks considered, three cores are
elected in average in the first configuration, and fours cores in
the second configuration.

Figure 4 presents the results for packet delivery ratio.
CHEMA delivers almost 100% of the data packets for all trafic
loads considered. But PUMA cannot deliver more than 70%
of packets for traffic load of 50 packets/s, due to increasing
contention and collision of packets. On the other hand, mainly
because CHEMA applies the one shot approach and the non-
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Fig. 5. End-to-end delay

interfering channels for cores, once packets are transmitted by
the core the packets are successfully received by the receivers.

For flows of up to 10 packets/s both protocols have similar
end-to-end delay (Figure 5). While CHEMA has a small
increase in terms of end-to-end delay for flows larger than
10 packets/s, PUMA experiences an exponential increase in
average end-to-end delay. These results, together with the
delivery ratio, indicate that CHEMA not only delivers more
packets but does so incurring smaller end-to-end delays. This
shows that it pays off sending packets to multiple cores and
using a single transmission per packet from the cores to their
members.

Even though CHEMA sends more control packets (mainly
due to the election process) compared to PUMA, both pro-
tocols present similar control overhead because CHEMA
delivers more packets (as shown in Figure 6). However, in
terms of total overhead CHEMA incurs less than half total
overhead compared to PUMA (Figure 7). CHEMA requires
fewer transmissions for every data packet delivered, specially
because once the packets reach the targeted core it takes just
one transmission per data packet to reach all core’s receivers.
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VI. CONCLUSION

We have presented a novel approach for core election using
(k, r)-dominating sets in multicast protocols based on shared
trees. DKR is the first distributed solution to the (k, r)-DS
problem, which allows the selection of k cores within distance
r for any regular node in the network. DKR is applicable to
ad hoc networks, given that it relies on information limited to
the neighborhoods of nodes.

We proposed a novel multicast protocol named core hierar-

chical election for multicasting in ad hoc networks (CHEMA),
which is designed to work with multiple channels and multiple
interfaces. CHEMA applies DKR for core election, with a
dedicated interface using non-interfering channel for commu-
nication among cores and any multicast member. Because
cores use a larger radio range for the dedicated interface, it
requires just one transmission per data packet for any core
member to receive the packet.

CHEMA is compared against the protocol for unified mul-

ticasting through announcements (PUMA), which is one of
the best performing multicast routing protocols for MANETs.
CHEMA is shown to outperform PUMA in all aspects.

CHEMA delivers more packets, incurs small end-to-end de-
lays, and drastically reduces the total control overhead.
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