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Abstract

Existing protocols for in-network fusion of data, in wire-
less sensor networks, are either single-path (i.e., tree-
based) or multi-path. Tree-based fusion protocols have
small message overhead but low reliability under node and
link failures, while multi-path protocols have good relia-
bility, but potentially higher overhead. This paper presents
a suite of protocols, called Cushion, which automatically
adapts message overhead in order to maintain a desired
level of reliability. As a part of Cushion, we present (1)
a simple adaptive aggregation protocol as well as (2) a
node-aware adaptive aggregation protocol. Both these pro-
tocols use special control messages that enable nodes to
decide when to transition between using single path and
multi-path fusion approaches. The protocols span a con-
tinuous spectrum between these two approaches and can
further increase reliability over multi-path approach using
redundant transmissions. We present experimental results
quantifying the benefits and drawbacks of using a Cushion-
based approach versus both tree-based and multi-path ap-
proaches.

1. Introduction

Data fusion is an important service for sensor network
applications. The goal of data fusion (or aggregation) is to
aggregate data from independent sensors to compute use-
ful information, such as the average of all the sensor read-
ings, the maximum value among the sensor readings, or the
number of sensors that detect an event. In data aggregation,
reliability is often measured by the participation ratio, i.e.,
the number of participating nodes over the total number of
nodes.

The data aggregation challenge addressed in this paper
is: how does one achieve a desired level of reliability at all
times, with low message overhead, in spite of time-varying
unreliability in the underlying networks? In other words,
can we design an autonomically and automatically adaptive
protocol that maintains a high reliability, even as nodes fail
and recover, and as the lossiness of links varies over time,
without the need to configure parameters online or the need
for human intervention? In addition, energy conservation
requires the adaptive protocol to have low control overhead
and actual aggregation message overhead.

In a typical in-network aggregation problem, data origi-
nates from multiple source nodes, and moves towards sin-
gle sink node or root node. Along the way, i.e., inside the
network, the data may be partially aggregated, thus reduc-
ing message overhead. Two well-known classes of solu-
tions to this problem are: tree-based aggregation and multi-
path aggregation. Our autonomically adaptive data fusion
solution, called Cushion, contains two protocols that span a
continuous spectrum between these two design points and
can further increase reliability over multi-path approach us-
ing redundant transmissions. We motivate the design of
Cushion by first discussing the complementary advantages
and disadvantages of the two design points.

Tree-Based Aggregation: In tree-based approaches,
e.g., [9, 12], a tree is constructed and maintained, with
the sink node as the root. Data converges from the source
nodes towards the sink along the edges of the tree. How-
ever, unreliable channels, energy depletion, and node fail-
ures, can result in momentary loss of entire subtrees of
readings, while the tree is reorganized. Failures closer to
the root affect the reliability very drastically. Finally, if the
rate of failures is comparable to the rate of tree reorganiza-
tion, a thrashing-like behavior could produce a consistently



low reliability all the time.

Multi-Path Aggregation: On the other hand, multi-
path data fusion protocols take advantage of broadcast
communication in the sensor networks [3, 13]. Reliabil-
ity can be improved by broadcast communication because
each node can send data to multiple parent nodes with-
out incurring additional overhead. While this approach in-
evitably accompanies the problem of detecting duplicate
messages from a node, Flajolet and Martin’s counting al-
gorithm [4] provides the framework to solve this duplicate
problem. When all nodes in the network (except the sink)
are sources, then the overhead of multi-path aggregation is
same as tree-based aggregation (each node transmits once).
However, if only a subset of nodes are sources, then multi-
path aggregation may have larger overhead compared to
tree-based aggregation, since nodes that are not part of the
tree may participate in forwarding packets.

New Approach in Cushion: In this paper, we present
two new aggregation protocols that adopt a probabilistic
approach to realize autonomic and automatic adaptivity.
Initially, a spanning tree rooted at the sink node is estab-
lished in the network. All nodes except the sink are clas-
sified into two types: nodes along the spanning tree whose
leaf is a source, or nodes outside the spanning tree. The
most important parameter, for achieving adaptivity, is the
redundancy level p(> 0). When p = 0, the Cushion pro-
tocols operate as a tree-based protocol. In this case, node
that are outside the spanning tree do not forward the pack-
ets from the source. (Nodes that are on the spanning tree
forward packets from the source, regardless of p.) If the
sink node does not obtain the desired reliability due to fail-
ures in the network, the sink attempts to increase the re-
dundancy levels of the sources in the system. On the other
hand, if reliability rises above the target reliability, e.g., due
to node recoveries, the sink reduces the redundancy level.
As a result of this reduction, the system might converge
to a tree-like configuration, when the channel condition al-
lows the sink to achieve the target reliability. As a result
of this, the emergent behavior throughout the system is a
minimization of the message overhead while maintaining
a certain level of reliability, even as nodes fail and links
become lossy.

If the redundancy level at each source in the system is
increased to p = 1, the Cushion protocols reduce to a multi-
path protocol, where multiple parents forward packets from
the source to increase reliability. When 0 < p < 1, nodes
outside of the spanning tree forwards a packet with prob-
ability p, and thus message overhead is adjusted between
the tree-based and multi-path approach in order to satisfy
the required reliability at a necessary cost. If the desired
level of reliability is not met even when p = 1, then p

can further be increased over 1. When p > 1, it translates
into redundant transmission. For example, if p = 3, then
each intermediate node (including nodes on the spanning
tree) transmits a packet three times, to further increase re-
liability. The adaptive behavior of Cushion is illustrated in
Figure 1.
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Figure 1. Illustration of adaptive behavior of
Cushion. The Cushion protocols achieve de-
sired reliability level by controlling message
overhead using the redundancy level p.

Depending on whether the sink node adjusts the redun-
dancy level on a system-wide basis (i.e., at all sources) or
on a per-source basis, we obtain two flavors of adaptive
aggregation protocols. We present both flavors, and then
experimentally compare them to pure tree-based and multi-
path-based approaches. The details of the protocols will be
described in Section 4.

The remainder of the paper is structured as follows. In
Section 2, we briefly introduce the related work. In Sec-
tion 3, we present the basic schemes used in designing our
protocols. In Section 4, we describe the adaptive behavior
of our proposed Cushion protocols. In Section 5, we dis-
cuss the experimental results regarding the overhead and
reliability in various settings. Finally, we conclude with
directions for future work in Section 6.

2. Related Work

Directed diffusion [9] is a data communication mech-
anism proposed for sensor networks. Although the main
goal of directed diffusion is to establish efficient commu-
nication between sources and sinks, it performs data ag-
gregation by using the spanning tree built for communica-
tion. As an extension to this work, an algorithm for select-
ing the aggregation points is proposed, which tries to re-
duce energy consumption by using low-cost paths [8]. An-
other algorithm for placing aggregation points is proposed
in [11], where each node can transfer the aggregation role
to a neighbor if the neighbor is a “better” point of aggrega-
tion according to a cost function. Intelligent placement of
aggregation points can improve energy efficiency.

There have been previous studies on increasing relia-
bility. Karl et al. [10] suggested using different level of



forward error correction (FEC) according to the amount of
aggregation in a message. Other approaches are mainly
concerned with (1) utilizing multiple paths to increase re-
liability, and (2) handling redundant messages caused by
multiple paths. In TAG [12], multiple paths are used to
increase reliability, so that a node can divide the duplicate-
sensitive aggregates, e.g. COUNT, into multiple values and
send each of them to the multiple parents. While TAG uses
unicast as a communication method, even more reliabil-
ity can be achieved by exploiting broadcast communica-
tion. Broadcast communication provides redundancy with-
out incurring additional overhead by allowing each node
to send data to multiple “parent” nodes. Considine et al.
[3] utilized Flajolet and Martin’s counting algorithm [4]
to construct messages that can detect duplicates and suc-
cessfully aggregate the data. The algorithm for computing
SUM is presented in [3]. Synopsis diffusion [13] extends
Considine’s work and use the order and duplicate insensi-
tive (ODI) synopses to compute various aggregates.

There are also other data aggregation schemes that are
not based on tree structures, yet try to achieve good fault-
tolerance. [17, 2] proposed a scheme for aggregating
duplicate-insensitive data such as MAX or MIN, where
each node periodically communicates with neighbors to
update its data until the global agreement reaches. A ran-
dom walk technique for data aggregation has been pro-
posed in [1]. Gupta et al. [6] proposed a topology-aware
data aggregation protocol for large process groups by build-
ing a hierarchy and using gossiping on each level of the
hierarchy.

Finally, there are several adaptive approaches proposed
to improve reliability. In synopsis diffusion [13], the
“level” of a node can be changed in order to increase or
decrease redundancy (the Adaptive Ring topology [13]).
Rodrigues et al. [14] proposed a dynamic feedback mech-
anism to improve reliability in a gossip-based broadcast al-
gorithm. Gupta et al. [5] proposed protocols for gossip-
based multicast dissemination. In their approach, multicast
is integrated with gossiping, which provides good prob-
abilistic reliability with additional copies of the original
multicast. Although our primary concern is the trade-off
between reliability and message overhead, it is noteworthy
that adaptive protocols such as SPIN [7] and T-MAC [15]
have been proposed to reduce energy consumption by re-
ducing message overhead.

3. Designing the Cushion Protocols

The goal of the Cushion protocols is to maintain a de-
sired level of reliability (participation ratio), regardless of
dynamically changing network conditions, by controlling
the amount of message overhead. Moreover, the amount
of message overhead should not be more than needed for

achieving the desired reliability level.
In Section 1, we briefly described two classes (tree-

based and multi-path) of aggregation protocols. The Cush-
ion protocols move between the two protocols based on
channel condition, by controlling the message overhead.
Also, the Cushion protocols can achieve a reliability higher
than that of a multi-path protocol using redundant transmis-
sions. For a tree-based protocol, the spanning tree rooted at
the sink node has to be established and maintained, and the
routing and aggregation strategy needs to be defined. For
a multi-path protocol, the multi-path routing scheme must
be designed, and also duplicate messages need to be de-
tected and removed for duplicate-sensitive aggregates (e.g.
COUNT, AVG). We describe these schemes briefly in the
following, which will be the components of Cushion proto-
cols. The terms defined here will also be used in Section 4,
where we focus more on the adaptive algorithms in Cush-
ion.

Tree Establishment: The sink node initializes the tree
establishment phase by broadcasting a QUERY message.
A QUERY message includes the sender’s id, its parent’s
id, and the number of hops from the sink which is called
depth. (The sink node does not have any parent, so it has
a null value for the parent’s id.) When a node receives a
QUERY message, it selects the first sender as its parent,
and rebroadcast the packet, with the depth incremented by
1. When the node rebroadcasts the packet, its parent node
overhears the packet and remembers the node as its child
by recording in its child-list. So at the end of the tree estab-
lishment phase, each node knows its parent node, its depth
in the tree, and its child nodes in the tree. The ANSWER
messages (messages including data) from the sources will
be sent along the established tree.

Routing and Aggregation: We use the routing and ag-
gregation strategy similar to TAG [12]. Time is divided
into epochs, where a single data aggregation process (an-
swers from sources are collected at the sink) takes place.
An epoch is again divided into rounds, where the number
of rounds in each epoch is larger than the maximum depth d
of the tree. At the start of ith round, nodes with depth d− i
transmit their ANSWER packets. At the end of each epoch,
the answers from the sources are collected at the sink node.

Multi-path Routing: The multi-path routing in Cush-
ion uses similar ideas with synopsis diffusion [13]. After
the tree establishment phase, all nodes in the network know
their hop distance from the sink (depth). The idea of multi-
path routing is to have a node aggregate and forward all
packets coming from nodes with larger depth. For exam-
ple, if the source node has the depth l, then when it sends



the ANSWER packet, all nodes that have depth l − 1 who
receives the packet, forwards it towards the sink.

Tree Maintenance: Due to failures or mobility, a path
from a source to the sink may break. If this causes the
reliability to drop, the Cushion will start using multi-path
routing to increase the reliability. Since a node can detect
whether its parent node is forwarding its packets or not, it
can choose to switch the parent, if the current parent node
is not reliably forwarding its packets.

Suppose node A has depth l − 1, and node B has depth
l in the spanning tree. Node A is selected as B’s parent.
When B sends its packet to A, A aggregates packets from
its child nodes and sends a packet to its parent node. B can
overhear this packet and check whether A has received its
packet. If multi-path routing is used, B can detect who has
received and forwarded its packet, and who has not. If the
link between B and A breaks, B will notice that A is not
receiving and forwarding its packet. If A does not receive
B’s packet for τ epochs, B chooses to re-select a parent
among its neighboring nodes with depth l − 1. Suppose
node B has selected node C as its new parent. Then, this
information is piggybacked in the ANSWER packet, so that
node A can remove B from A’s child-list, and C can include
B in C’s child-list.

Duplicate Detection: When packets are forwarded via
multiple routes, an answer can be counted multiple times.
For duplicate-sensitive aggregates (e.g. COUNT, AVG,
SUM), the duplicates need to be detected and removed.
For duplicate detection, we apply the Order- and duplicate-
insensitive (ODI) synopsis technique used in [13].

4. Cushion: Adaptive Data Fusion Protocols

In the previous section, we have described the basic
building blocks for designing the Cushion protocols. Here
we focus on how the two protocols of Cushion adapt to the
network condition in order to maintain the desired reliabil-
ity.

The main idea is to have the sink node measure the re-
liability level, and control the message overhead by send-
ing out CONTROL messages to the network. In particular,
the sink node controls the redundancy level p(> 0) of the
sources in order to control the message overhead.

According to the redundancy level p, the protocols be-
have as the following.

• p = 0: The protocols behave similar to a tree-based
protocol. Only the nodes in the spanning tree forward
the packets, in its corresponding round that matches
its depth. (A round is defined in the previous section.)
Other nodes do not forward packets.

• 0 < p < 1: Nodes that are not on the spanning tree
forwards the packet with the probability p in its corre-
sponding round. The nodes in the spanning tree still
forward with 100% probability.

• p = 1: All nodes that receive packets in the previous
round forward the packet in the corresponding round.
The behavior of the protocols becomes similar to [13].

• p > 1: Nodes forward packets more than once. That
is, each node transmits the packet with 100% prob-
ability in �p� rounds, and transmits with probability
p − �p� in the following round. For example, if the
redundancy level is 2.5, then each node transmits the
aggregated message in its corresponding round, trans-
mits once more in the next round, and transmits with
50% probability in the following round.

Figure 2 shows a simple example of how the Cushion
protocols behave according to the redundancy level. In the
figure, the redundancy level is set to 0.5. When node S
sends a packet, B forwards the packet since it is the par-
ent node of S in the spanning tree. Other nodes, A and C,
forward the packet with 50% probability.

A

Sink

B C

S

50% 50%

100%

Figure 2. An example scenario illustrating the
adaptive behavior of Cushion, when the re-
dundancy level is 0.5. The solid lines are the
edges the spanning tree.

The reliability and overhead are both increased when the
redundancy level increases, and drops down as the redun-
dancy level is decreased. So redundancy level is the key
parameter in controlling overhead to maintain desired reli-
ability level in Cushion. Depending on how the redundancy
level is assigned to sources, there are two flavors of Cush-
ion protocols: Simple adaptive protocol and Node-aware
adaptive protocol.

4.1. Simple Adaptive Fusion in Cushion

The first protocol of Cushion is called the Simple Adap-
tive protocol. In the Simple Adaptive protocol, a single
redundancy level p is assigned for all nodes. Whenever the



sink node decides to change the redundancy level, it runs
the algorithm in Figure 3 and broadcasts the new redun-
dancy level in a CONTROL message. The reliability mea-
sure used in our protocols is the participation ratio, which
is the percentage of nodes that have successfully sent their
messages to the sink node.

Given a target participation ratio, the sink node tries to
find the optimal redundancy level. To do this, the sink node
monitors the reliability level while tuning the redundancy
level. Initially, the redundancy level p is set to 1, mean-
ing that the protocol operates as a multi-path protocol. If
the sink node achieves the target reliability, it might be
possible that the message overhead is higher than what is
needed. In this case, the sink node reduces p to reduce the
overhead. When the sink keeps reducing p, p eventually
becomes zero, and the protocol converges to having a tree-
like behavior. On the other hand, if the sink node does not
achieve the target participation ratio, it increases p to in-
crease the participation ratio. p is increased until the target
reliability level is obtained.

The protocol needs to decide how fast it should increase
and decrease the redundancy level. The requirements de-
pend on applications, but we choose to be conservative and
prefer to achieve the target reliability quickly when the re-
liability level is lower than the target. Thus, we use a Mul-
tiplicative Increase Additive Decrease (MIAD) approach,
where p is increased multiplicatively and decreased addi-
tively.

The algorithm for the Simple Adaptive protocol is de-
scribed in Figure 3. We assume that the sink node knows
the number of sources in the network. (The sink node can
count the sources that have recently sent a message to the
sink and regard the number as the total number of nodes.)
The granularity of changing redundancy level is a protocol
parameter, which is denoted as c. (In our simulations, we
use c = 0.25.) When the sink node does not obtain the
target reliability, it computes the new p as pnew = p + fc,
where initially f = 1. If the target reliability is still not
achieved in the next epoch (an epoch is defined in Section
3), then f is doubled, which results in multiplicative in-
crease. Once the desired reliability is achieved, f is reset
to 1.

Now when the desired reliability is achieved, the over-
head might be unnecessarily high. So the sink node tries
reducing the redundancy level slowly. Unlike the method
of increasing the redundancy level, the sink decreases the
redundancy level as pnew = p−c, which results in additive
decrease. The redundancy level is decreased until the reli-
ability goes below the desired level, and is increased again.
Note that in Figure 3, p and f are global variables.

Once the sink node decides to change the redundancy
level, it broadcasts a CONTROL message at the beginning
of an epoch, including the new redundancy level. If the

Algorithm AdaptiveSingleEpoch
Input: desired reliability level r0, granularity of redun-

dancy level c
(∗ Our first adaptive protocol in each epoch ∗)
1. r ← most recently measured reliability
2. if r = r0 then stop
3. if r < r0

4. then p ← p + fc
5. f ← 2f
6. CONTROL ←GenerateControlMessage(p)
7. Broadcast CONTROL
8. else p ← p − c
9. f ← 1
10. CONTROL ←GenerateControlMessage(p)
11. Broadcast CONTROL

Algorithm Adaptive
Input: desired reliability level r0, granularity of redun-

dancy level c
(∗ The overall first adaptive protocol ∗)
1. f ← 1
2. repeat
3. AdaptiveSingleEpoch(r0, c)
4. until r = r0

Figure 3. Cushion’s Simple Adaptive Proto-
col: Every source has the same redundancy
level. The sink node runs this algorithm and
broadcasts the new redundancy level in a
control message.

sink node changes redundancy level at the end of every
epoch, a CONTROL message will be broadcasted in ev-
ery epoch, which may incur a significant overhead. To
reduce the CONTROL message overhead, we use the fol-
lowing scheme. Suppose the sink increases the redundancy
level with f = 1. If the desired reliability is achieved in the
next epoch, it means that the redundancy level is likely to
be fine-tuned to the network condition. In this case, the sink
node does not send CONTROL messages for h epochs, if
the reliability does not fall below the desired level during
those epochs. If the reliability goes below the desired level,
the sink immediately starts increasing the redundancy level.
Using this scheme, the CONTROL messages are sent
frequently when the network is dynamically changing,
and rarely sent when the network is static, after the re-
dundancy level is fine-tuned to current network condition.
It is typical that sensor networks have static topology, and
so the network condition does not change drastically all the
time. Thus, we expect that the CONTROL messages are
sent infrequently.



4.2. Node-Aware Adaptive Fusion in Cushion

The second protocol of Cushion, called Node-Aware
Adaptive protocol, adds some complexity to the Simple
Adaptive protocol to improve efficiency. In the Simple
Adaptive protocol, a single redundancy level p was main-
tained for all sources. However, if the network condition is
not uniform across the sensor networks, it may be more ef-
ficient to assign different redundancy level for each source.
For example, suppose only a specific region has higher
packet loss rate, due to some reasons. To obtain partici-
pation from nodes in this area, the Simple Adaptive proto-
col may unnecessarily increase the message overhead for
sources outside the failure-prone area. In this case, it is
more efficient to assign high redundancy level to sources
in the failure-prone area, and low redundancy level to other
sources.

In Node-Aware Adaptive protocol, a separate redun-
dancy level is assigned for each node, by the sink. When
sending a packet, the source piggybacks the redundancy
level in the packet, so that the intermediate nodes can fig-
ure out the forwarding strategy for the packet. An interme-
diate node may receive packets from multiple sources and
aggregate them before forwarding towards the sink. In this
case, the redundancy level for the particular packet is cho-
sen as the maximum redundancy level among the sources
participated in the aggregated packet.

The sink node maintains the redundancy level for each
source, and also the history of aggregation for the last w
epochs. The parameter w is called history window. (We use
w = 20 in our simulations.) The history records whether
a source has participated in the data aggregation or not, in
each epoch. Using the history, the sink node can find out
the participation rate of each source in the recent past.

The algorithm for Node-Aware Adaptive protocol is de-
scribed in Figure 4. When the target reliability is not ob-
tained, the sink node increases the redundancy level to in-
crease the reliability. In Node-Aware protocol, instead of
having all nodes assigned a new redundancy level, only m
nodes with the worst participation rate are assigned an in-
creased redundancy level. To inform the sources, the sink
node includes in the CONTROL message the set of nodes
that are assigned new redundancy level, and the redundancy
levels for each of those nodes. On the other hand, when
the desired reliability level is achieved, the sink node starts
reducing the redundancy level. In Node-Aware Adaptive
protocol, the sink node selects m nodes with the highest
redundancy levels, and decreases their redundancy level.
The reason behind this strategy is that when the reliability
increases, it might be due to improved network conditions
in the failure-prone area. However, this strategy may not
be efficient if the reliability is improved because the net-
work condition is further improved in the areas other than

Algorithm NodeAdaptiveSingleEpoch
Input: desired reliability level r0, granularity of redun-

dancy level c
1. r ← most recently measured reliability
2. if r = r0 then stop
3. if r < r0

4. then nri
= the node with ith worst reliability.

5. pri
= the redundancy level of nri

.
6. target nodes ← {nri

|1 ≤ i ≤ m}
7. pri

← pri
+ fc

8. f ← 2f
9. CONTROL ←GenerateControlMessage((nr1 ,

pr1), · · · , (nrm
, prm

))
10. Broadcast CONTROL
11. else pi = the redundancy level of a node ni.
12. p = max

1≤i≤N
pi

13. target nodes ← {ni|pi = p}
14. k ← |target nodes|
15. p ← p − c
16. f ← 1
17. CONTROL ←GenerateControlMessage((n1,

p), · · · , (nk, p))
18. Broadcast CONTROL

Algorithm NodeAwareAdaptive
Input: desired reliability level r0, granularity of redun-

dancy level c
(∗ The overall second adaptive protocol ∗)
1. f ← 1
2. repeat
3. NodeAdaptiveSingleEpoch(r0, c)
4. until r = r0

Figure 4. Cushion’s Node-Aware Adaptive
Protocol: The sink node assigns a different
redundancy level for each source. Similar to
the Simple Adaptive Protocol, the sink broad-
casts the new assignment in a control mes-
sage.



the failure-prone region. Since the decreasing strategy al-
ways chooses the nodes with highest redundancy levels, it
may not be able to further reduce the redundancy level of
areas with better network condition. This issue is further
discussed in Section 5, where we compare the performance
of Simple Adaptive and Node-Aware Adaptive protocols.

5. Performance Evaluation of Cushion

We have evaluated the performance of the proposed
Cushion protocols using simulations. In this section, we
describe our simulation setup and discuss the results.

5.1. Simulation Setup

We have used the ns-2 simulator [16] with wireless ex-
tensions for our simulations. The sensor nodes have trans-
mission range of 10m, and they are randomly placed in a
50m × 50m area (the number of nodes are varied in the
simulations). A sink node is placed in the center, which
broadcasts a QUERY message every 10 seconds to gather
information from the source nodes. The source nodes reply
to the QUERY message by sending ANSWER messages
at each epoch. Each epoch is 1 second long, and the maxi-
mum network diameter D is set to 20. The duration of each
round in an epoch is calculated as Tepoch/D, so the dura-
tion of a round in our simulations is 50ms. (The epochs and
rounds are defined in Section 3.)

The type of aggregate we use in our simulations is
COUNT, which calculates the number of sources. Since
COUNT is a duplicate-sensitive aggregate, our protocols
can be applied to other types of aggregate as well. For
medium access, CSMA (Carrier Sense with Multiple Ac-
cess) protocol is used.

Under this simulation setup, we have evaluated our pro-
posed protocols, ADAPTIVE and N-ADAPTIVE. ADAP-
TIVE refers to the Simple Adaptive protocol described in
4.1, and N-ADAPTIVE refers to the Node-Aware Adap-
tive protocol described in 4.2. For the purpose of compar-
ison, we have evaluated other four aggregation protocols,
described in the following.

• TREE: The TREE protocol is similar to [12]. In the
TREE protocol, the sink node floods the QUERY mes-
sage to the network to establish an aggregation tree
in the network. Periodically, data from each source
is forwarded along the tree, and is aggregated at the
intermediate nodes to reduce overhead. To recover
from failure, each node may maintain multiple backup
parents in the aggregation tree, so that if the parent
node does not receive the data packet for a certain
amount of time, the node switches its parent to one
of its backup parents. However, each node only sends
its data to a single parent node.

• SYNOPSIS: The SYNOPSIS protocol is the basic
protocol (which does not use adaptive rings) in [13].
For simplicity, we did not use the synopsis generation
techniques described in [13], but concatenated all in-
formation when aggregating messages. So the error
from generating and aggregating synopsis is not mod-
eled here.

• A-SYNOPSIS: The A-SYNOPSIS protocol is the pro-
tocol that uses adaptive rings in [13].

• FLOOD: FLOOD protocol is also described in [13].
In FLOOD protocol, there is no tree structure in the
network. In each round, every node broadcasts its
message to its neighbors. If the new data is received,
the node transmits the aggregated message once again
in the next round. So every node usually transmits
multiple times in the FLOOD protocol.

For TREE, ADAPTIVE and N-ADAPTIVE, the num-
ber of transmission failure before a node switches to a dif-
ferent parent is set to 4. For A-SYNOPSIS, the proba-
bility of switching levels is set to 0.5. For ADAPTIVE
and N-ADAPTIVE, the number of epochs before reduc-
ing the overhead (h) is set to 10. Also, the granularity in
changing redundancy (c) is set to 0.25, unless otherwise
specified. Finally, the target reliability for ADAPTIVE and
N-ADAPTIVE is set to 0.9 (90%). For additional param-
eters of TREE, SYNOPSIS and A-SYNOPSIS protocols,
refer to [12] and [13] respectively. The parameters for the
ADAPTIVE and N-ADAPTIVE are defined in Section 4.

In order to evaluate reliability and overhead, we use the
following two metrics:

• Average participation ratio: For each epoch, we mea-
sure the participation ratio as the number of partic-
ipated sources (sources that the sink received data
from) divided by the total number of sources. Aver-
age participation ratio is the participation ratio aver-
aged over all epochs during the simulation time. This
is a measure of reliability.

• Average number of transmissions in each epoch: We
count the number of packet transmissions in each
epoch to measure the overhead. For our proposed
Cushion protocols, control messages are also counted
in this metric.

Finally, total simulation time for each simulation is 100
seconds, and each data point in the graphs is a result of 10
runs with different random seeds.

5.2. Results

Impact of Packet Loss: In the first simulation, 100
nodes were randomly placed in the simulation area, and 25
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Figure 5. Average participation ratio (reliability) and average transmissions per epoch (overhead) of
protocols for the scenario with 100 nodes and 25 sources.

sources were randomly picked among the nodes. We have
varied the packet loss rate on each link to see the impact of
packet loss on the performance of protocols. In this exper-
iment, the packet loss rate is uniformly applied to all links
in the network. For example, if the packet loss rate is q,
then when a packet is transmitted, the probability that the
receiver will correctly receive the packet is maximum 1−q
for each transmission on any link. Since the packets might
collide, the actual packet reception rate may be lower. For
each protocol, we have measured the average participation
ratio and the average transmissions per epoch. The results
are shown in Figure 5.

Figure 5(a) shows the average participation ratio, which
is a measure of reliability. FLOOD, ADAPTIVE, and N-
ADAPTIVE maintain participation ratio over 90%, even
when the packet loss rate increases up to 40%. The reli-
ability of the TREE protocol drops down at the fastest rate,
followed by SYNOPSIS and A-SYNOPSIS. For TREE, if
the number of hops from the source to the sink is k, then the
probability that the sink will successfully receive the packet
from the source is (1 − q)k, which decreases rapidly as q
increases. SYNOPSIS and A-SYNOPSIS use multipath
forwarding to increase reliability, but they fail to maintain
the desired reliability when the packet loss rate becomes
high. Even when SYNOPSIS and A-SYNOPSIS fall be-
low the desired reliability, ADAPTIVE and N-ADAPTIVE
still maintain high reliability using redundant transmis-
sions. This behavior of ADAPTIVE and N-ADAPTIVE
is reflected in Figure 5(b), where the overhead of the pro-
tocols is shown. TREE, SYNOPSIS, A-SYNOPSIS and
FLOOD show no change in the overhead as the packet loss
rate changes. For ADAPTIVE and N-ADAPTIVE, when
the packet loss rate is low so that even TREE can achieve
the desired reliability, ADAPTIVE and N-ADAPTIVE be-
have similar to TREE and thus use similar overhead as
shown in the figure. When the packet loss rate increases,

the protocols increase the redundancy by having multiple
intermediate nodes aggregate and forward packets from
sources. So up to a certain point of packet loss rate, ADAP-
TIVE and N-ADAPTIVE shift from a TREE-like protocol
to a SYNOPSIS-like protocol as the packet loss rate in-
creases. If the loss rate increases even higher, ADAPTIVE
and N-ADAPTIVE shift from SYNOPSIS-like protocol to-
wards a FLOOD-like protocol by having each node send
the same packet multiple times. However as seen in Figure
5(b), ADAPTIVE and N-ADAPTIVE use much less over-
head than FLOOD while maintaining similar level of relia-
bility as FLOOD, which means that after some point, more
redundancy does not help towards increasing reliability.

Figure 5 also shows the difference between ADAP-
TIVE and N-ADAPTIVE. While ADAPTIVE and N-
ADAPTIVE show similar reliability, N-ADAPTIVE re-
quires less overhead than ADAPTIVE. N-ADAPTIVE can
achieve comparable reliability as ADAPTIVE while using
less overhead because it can increase redundancy of only
the sources that have higher loss rate. The performance dif-
ference between ADAPTIVE and N-ADAPTIVE will be
examined again later when we assign packet loss rate on
links according to a non-uniform spatial distribution.

Impact of Node Density: In the next simulation, we
have changed the node density to study its impact on pro-
tocol performance. 50 nodes were placed in the simula-
tion area and 12 sources were randomly picked among the
nodes. The results are shown in Figure 6.

The shape of the curves looks similar to Figure 5, but
several differences can be found. In Figure 6(a), the perfor-
mance degradation of the SYNOPSIS and A-SYNOPSIS
is much quicker than Figure 5. This is intuitive, because
SYNOPSIS and A-SYNOPSIS benefit from having mul-
tiple paths from sources to the sink. When the network
is sparse, SYNOPSIS and A-SYNOPSIS cannot benefit
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Figure 6. Average participation ratio (reliability) and average transmissions per epoch (overhead) for
the scenario with 50 nodes and 12 sources.

much from redundancy, and thus their performance de-
grades quickly. However, ADAPTIVE and N-ADAPTIVE
maintain reliability even in the sparse network scenario by
paying a higher cost, as shown in Figure 6. Thus, the over-
head of ADAPTIVE and N-ADAPTIVE are higher than the
scenario in Figure 5.

Impact of Spatial Distribution in Link Quality: In the
third simulation, instead of setting the packet loss rate fixed
for all links, we only applied the packet loss rate to the
upper-right quadrant of the area. Links in other areas have
zero packet loss rate. The purpose was to see the difference
between ADAPTIVE and N-ADAPTIVE, because ADAP-
TIVE does not consider per-source reliability to control re-
dundancy of each source, whereas N-ADAPTIVE keeps
track of reliability measure for each source and controls re-
dundancy at per-source level. The result is shown in Figure
7.

In Figure 7(a), we can see that the participation ra-
tio of SYNOPSIS, A-SYNOPSIS, ADAPTIVE and N-
ADAPTIVE are all similar. However, ADAPTIVE and
N-ADAPTIVE use less overhead than SYNOPSIS and
A-SYNOPSIS while achieving comparable reliability, as
shown in Figure 7(b). N-ADAPTIVE uses less overhead
than ADAPTIVE, but the difference is not so significant
around 10-15%. This is mainly due to the behavior of N-
ADAPTIVE when decreasing redundancy level (details ex-
plained in Section 4). When N-ADAPTIVE decreases re-
dundancy, the first sources to decrease redundancy level are
the ones with the highest redundancy levels. However, in
this scenario, the redundancy level of the sources in the
upper-right quadrant region must be maintained, although
it is higher than other regions. The redundancy level of the
sources in the areas other than the upper-right quadrant can
decrease their redundancy without losing reliability. This
result suggests that it may be better to start decreasing re-

dundancy from the sources that had reliably sent their data
for the longest duration in the recent path. We are planning
to investigate this design choice in the near future.

Temporal Behavior of the Protocols: Finally, to study
the adaptive behavior of ADAPTIVE and N-ADAPTIVE,
we have simulated a scenario where at some point of time
the packet loss rate increases dramatically, and some time
later the network is recovered and the packet loss rate drops
down again. 100 nodes were placed in the simulation area
with 25 sources chosen randomly among nodes. The sim-
ulation is run for 100 seconds. At the start, the packet loss
rate is zero at every link. At 30 seconds, the packet loss
rate (of every link) increases to 50%. This goes on until
70 seconds, when the packet loss rate becomes zero again.
Figure 8 shows the temporal behavior of protocols in this
scenario.

In Figure 8(a), it is shown that at 30 seconds, the re-
liability of all protocols drops down quickly. But after a
short while, ADAPTIVE and N-ADAPTIVE quickly re-
cover and maintain the desired reliability, where as other
protocols suffer from low participation ratio during the en-
tire period of high packet loss. Figure 8(b) shows the
changing overhead of the protocols. Both ADAPTIVE and
N-ADAPTIVE increase their overhead to tolerate packet
losses, but the increase in ADAPTIVE is more dramatic,
because it increases redundancy level for all the sources, in-
stead of only a subset of the sources. N-ADAPTIVE shows
more graceful increase in overhead compared to ADAP-
TIVE, because it chooses a subset of nodes with least reli-
ability and starts increasing only their redundancy levels.

In conclusion, the proposed protocols ADAPTIVE and
N-ADAPTIVE in the Cushion framework efficiently adapt
to the network conditions to maintain desired reliabil-
ity at the cost of no more than necessary overhead. N-
ADAPTIVE (Node-aware Adaptive protocol) uses less
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Figure 7. Average participation ratio (reliability) and average transmissions per epoch (overhead).
The packet error rate is only applied to the upper right quadrant of the simulation area.

overhead compared to ADAPTIVE (Simple Adaptive pro-
tocol) using per-source control of redundancy level.

6. Conclusion

In this paper, we have proposed data aggregation pro-
tocols for wireless sensor networks that autonomically and
adaptively control redundancy (and thus overhead) in order
to maintain a desired level of reliability, in spite of node
failure and lossiness of links. In our approach, called Cush-
ion, the sink node adjusts the level of redundant transmis-
sions at the source and intermediate nodes to achieve de-
sired reliability with overhead no more than needed. Simu-
lation results indicate that our protocols adapt to the chang-
ing network conditions very well. Compared to tree-based
protocols, we showed that our protocols provide substan-
tially high reliability. Compared to the multi-path proto-
cols, our protocols incur substantially less message over-
head while achieving comparable reliability.

The biggest advantage of the Cushion approach is that
the sink node is capable of self-configuration. Once the
desired reliability is set, the sink node automatically takes
care of the process for achieving the reliability by mon-
itoring the reliability level and adjusting the redundancy
level accordingly. Considering the large-scale nature of
sensor networks, it is very important for the protocol to
have a self-configuring ability over the changing network
conditions. Although some previous works have reactive
mechanisms for recovery, we believe that our protocols are
the first ones that proactively monitor the status and auto-
matically control parameters in sensor data aggregation.

Future Work: One of the future directions is to consider
the significance of each node, which has not been taken into
account in our protocols. Nodes in the network have differ-
ent level of significance. For example, nodes that are closer

to the sink are more significant than nodes far away from
the sink, because data is highly aggregated at the closer
nodes. Also, nodes with less number of neighbors can be
more significant than nodes with more neighbors, because
packets sent from low-degree nodes benefit less from re-
dundancy. Considering topology and location of each node
may lead to more efficient aggregation protocols.
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