
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
On-demand Loop-Free Routing in Ad hoc Networks Using Source Sequence Numbers

Permalink
https://escholarship.org/uc/item/95n19972

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2005-11-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95n19972
https://escholarship.org
http://www.cdlib.org/

On-demand Loop-Free Routing in Ad Hoc
Networks Using Source Sequence Numbers

Hari Rangarajan∗
Email: hari@cse.ucsc.edu

∗ Computer Engineering Department
University of California at Santa Cruz

Santa Cruz, CA 95064.

J.J. Garcia-Luna-Aceves∗†
Email: jj@cse.ucsc.edu

†Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304.

Abstract— In any on-demand routing protocol, sources flood
route requests (RREQ) to build routes to destinations, and each
new RREQ is identified uniquely with a source-sequenced label
(SSL) consisting of the source identifier and a locally generated
sequence number. As a RREQ propagates, it creates a directed
acyclic graph (DAG), because nodes relay each RREQ only once.
We present the first framework for loop-free on-demand routing
in ad hoc networks that is based directly on SSLs, rather than
on independent mechanisms, which has been the way in which
prior on-demand routing protocols have been designed. Extensive
simulation results for simple protocol instantiations of our new
framework operating in scenarios with 50 and 100-nodes under
different traffic patterns show that our new protocols outperform
AODV (Ad hoc On Demand Distance Vector), DSR (Dynamic
Source Routing), and OLSR (Optimized Link State Routing).

I. INTRODUCTION

Several routing protocols (e.g., [3] [2] [1]) have been
proposed to deal with the fundamental problem of routing
data packets across multiple hops in a mobile ad hoc net-
work (MANET) using two different approaches. Pro-active
approaches maintain routing information for all destinations,
regardless of whether traffic exists for them. Reactive (on-
demand) approaches maintain routing information for only
those destinations for which traffic exists, and rely on flood
search mechanisms to establish routes to “active” destinations.
On-demand protocols are very attractive in scenarios with high
mobility, and traffic patterns in which source nodes pick a few
other nodes as destinations.

On-demand routing protocols establish routes to destina-
tions in two phases: During the route search phase, the
network is flooded with route requests (RREQ). Each RREQ is
uniquely labeled by its source by means of a source-sequenced
label (SSL), which consists of the identifier of the source and
a source sequence number that is locally unique. SSLs prevent
any node from processing the same RREQ multiple times, and
nodes effectively build a directed acyclic graph (DAG) rooted
at the source for a source-destination pair uniquely defined by
the SSL and the destination identifier.

1This work was funded in part by the Baskin Chair of Computer Engineer-
ing at UCSC, the National Science Foundation under Grant CNS-0435522,
the UCOP CLC under grant SC-05-33, and by the U.S. Army Research Office
under grant No. W911NF-05-1-0246. Any opinions, findings, and conclusions
are those of the authors and do not necessarily reflect the views of the funding
agencies.

During the route establishment phase, RREQs received by
the destination or an intermediate node with routing state
for the destination are answered with route reply (RREP)
messages that traverse the loop-free reverse paths along the
DAG built in the route-search phase. Each node receiving a
RREP establishes or updates its routing state for the destina-
tion specified in the RREP. This information is used for data
forwarding and route maintenance.

Interestingly, the design of on-demand routing protocols to
date has been such that the mechanisms used in the route-
search phase to propagate RREQs are fairly independent of
the mechanisms used during the route-establishment phase
to establish and update routing-table entries for destinations.
Clearly, SSLs are a necessity in any on-demand routing
protocol for the identification of RREQs and their efficient
processing. Furthermore, the loop-free paths that are built
during the route-establishment phase must be part of the DAGs
built during the route-search phase based on SSLs. This begs
the question of whether on-demand loop-free routing can be
attained using SSLs during both the route search and the route
establishment phases of the routing process. In this paper, we
present the first framework for loop-free on-demand routing
based directly on SSLs. Our framework supports hop-by-hop
packet forwarding, maintains routing tables that are always
loop-free, and operates correctly in the presence of state loss,
node failures, and unreliable message delivery.

Section II presents an approach for loop-free routing in
which the destination must answer all RREQs. Each node
relaying a RREQ associates a relay-sequenced label (RSL)
with the SSL of the RREQ it forwards. The RREPs traversing
the reverse paths along the DAG built by the RREQs cause
nodes to switch successors and activate the route along this
path. However, nodes can be associated with multiple RREQs,
and the directed graph associated with the aggregate of all such
RREQs need not be acyclic. Hence, to ensure loop-free routes
to a destination, nodes use the RSLs to accept a RREP for only
one SSL and drop the other replies, which essentially activates
successor entries for a destination within a single DAG created
by a RREQ SSL. This constitutes the first component of our
framework.

Section III introduces the concept of a viable successor set
(VSS), which is the set of nodes that a given node can safely

pick as loop-free successors for a given destination. We use
this concept to extend the approach introduced in Section II
to allow intermediate nodes to send replies to RREQs without
creating loops. The basis for this approach is the use of
label sets consisting of un-ordered collections of SSLs and
RSLs with which nodes can identify viable successors towards
destinations.

Section IV presents an alternative approach to extending the
basic approach of Section II. This approach uses the SSL and
distance to a destination as a new label for the destination, and
uses it together with RSLs to ensure loop-free routing while
allowing nodes with valid routes to destinations to answer
RREQs.

Section V shows how instantiations of our new framework
perform compared to two on-demand protocols (AODV, DSR)
and a proactive link state protocol (OLSR [1]). Results are
presented for 50 and 100-node networks with random traffic
flows. Section VI provides our concluding remarks.

II. ON-DEMAND ROUTING USING SOURCE SEQUENCE
NUMBERS AND DESTINATION REPLIES

We present an approach for on-demand routing based on
the SSLs and RSLs carried in RREQs, and on RREPs issued
only by destinations. We call this approach DSLR (destination-
controlled, source-sequenced labeled routing).

A. Information Stored

Node A has a unique address for itself (A) and maintains a
64-bit source sequence number IDA that is strictly increasing,
even after reboots. This can be achieved by deriving the source
sequence number from a real-time hardware clock.

At node A, the routing-table entry for destination D con-
sists, at a minimum, of the successor (next-hop) sAD and the
start-identifier SIDA

D, which is used for checking if a certain
neighbor can be used as a loop-free successor. SIDA

D is set
equal to ID?A

D , which is the last known value of IDA(t) at
time t when node A last added or updated its routing entry for
D. Nodes can use optional metrics for choosing successors.
Possible optional entries include the route-cost (dAD), life-time
of the route, and state of the route entry (rtAD) (which can
be valid or invalid). The route entry for a destination can be
purged at any time-instant to save memory. When there is no
routing-state, the value of SIDA

D is set to IDA(t), where t is
the time that node A first originates or relays a RREQ for D;
otherwise, it is considered to be invalid (∞).

B. Control Signaling

The basic signaling of DSLR consists of route re-
quests (RREQ) sent by sources and forwarded by relays, and
route replies (RREP) sent only by the destinations. Nodes no-
tify route failures and broken links using route errors (RERR).
Each RREQ is identified with a source-sequenced label (SSL)
that consists of a (source, identifier) pair, where source is the
node address originating the RREQ, and identifier is the source
sequence number ID created by that node. RREPs generated
by destinations in response to RREQs must carry the SSL used

to identify the RREQ. In addition to the SSL, each RREQ and
RREP must carry the relay-sequenced label (RSL), which is
locally assigned by the node relaying the RREQ or RREP, and
is only significant within the one-hop neighborhood.

Node A is said to be active in a route computation for
destination D (i.e., the RREQ) when it initiates a RREQ that
is uniquely identified by the pair (A, IDA). A node relaying
a RREQ (A, IDA) originated by another node is said to be
engaged in the RREQ. A node that is not active or engaged
in a route computation for destination D is said to be passive
for that destination. At any given time, a node can be the
origin of at most one RREQ for the same destination. The
RREQ (A, IDA) terminates when either node A attains a
viable successor for destination D or the timer for its RREQ
expires.

We define the following five rules for nodes to search for
routes to destinations. RERR handling is omitted for brevity
and is identical to ones used in previous on-demand routing
protocols [3]. We use the notation IDA to denote the current
source sequence number at node A, and id

req
A and id

rep
A to

denote the value carried in a RREQ or RREP.
• Rule 1: Node A must increment its IDA each time it

relays or originates a RREQ.
• Rule 2: If node A requires a route to destination D,

it issues a RREQ identified by SSL (A, IDA). At the
originating node, the RSL and the SSL for the same
destination are identical.

• Rule 3: If node B (6= D) receives a RREQ identified
by SSL (A, idreqA) from neighbor C, it caches the RSL
(C, idreqC) for this SSL. Node B processes a RREQ
identified by a SSL only once, and forwards a RREQ
to its neighbors with the SSL created by the source of
the request and its own RSL (B, IDB).

• Rule 4: When node D receives a RREQ from neighbor
I that was issued by source A for node D itself, it sends
a RREP carrying the same SSL (A, idreqA) of the RREQ,
and the RSL (I, idreqI).

• Rule 5: When node I receives a RREP for destination
D identified by SSL (A, idrepA) and carrying a RSL
(I, idrepI), it can use it (if it is feasible) to update its
routing table; if it does so, then it must find the pair
(B, id

req
B) it cached for this (A, idrepA), and send a RREP

to neighbor B with RSL (B, id
req
B) and SSL (A, idrepA).

Theorem 1: If rules 1 to 5 are followed, RREQs and RREPs
do not loop in an error-free network.

Proof: For a given route computation (A, IDA), a node
may be passive, engaged, or active. A node can become active
in a route computation at most once, because it maintains the
identifiers it assigns to the RREQs it originates. A router can
engage in a route computation only when the the correspond-
ing RREQ identified by (A, IDA) has not been previously
processed. Hence, any RREQ can traverse only a directed
acyclic graph (DAG), which may be a directed tree if no node
relays the RREQ more than once, and any path traversed by
a RREQ is free of loops.

Because RREPs are forwarded along the reverse path tra-
versed by the corresponding RREQs, it follows that the RREPs
must traverse loop-free paths.

Note that RREQs may loop if nodes lose their cached state
for a computation. However, RREPs will not loop, as long as
nodes have a safe loop-free condition when accepting them.
Rule 5 requires RREPs to be relayed only if they are accepted
and this means that the routing tables must form a loop in
order for RREPs to be relayed in loops.

C. Sufficient Condition for Loop Freedom

Theorem 1 shows that the RREPs travel loop-free reverse
paths because the RREQ identified by a unique SSL build
a tree rooted at the source. It is easy to see that no loops
can form if every node in that reverse path to the source is
engaged in only one route computation for the destination.
Based on this observation, we obtain a sufficient condition for
loop-free routing when multiple RREQs are present by having
a node only accept a single computation within a window of
computations. After accepting a computation, the node drops
all other route computations inside that window, and processes
only computations from a new window.

We use the following terminology: id(A)ADB denotes the id

from RSL (A, id) in the RREP for destination D sent by node
B to node A. id(B)AD is the id from RSL (B, id) in the RREP
that A receives from or transmits to a neighbor.

Source Sequence-number condition (SSC): Node A can
change its current successor for destination D to node B

at time t, if id(A)ADB(t) ≥ SIDA
D(t), where SIDA

D(t) =
ID?A

D (t).
We establish the following Lemmas (1 and 2) when nodes

obey rules 1 to 5, and use SSC for switching successors.
Lemma 1: SIDA

D(t1) ≤ SIDA
D(t2), where t1 < t2.

Proof: We know that SIDA
D(t1) = ID?A

D (t1). If node
A never updates its routing table till time t2, then SIDA

D(t2)
= SIDA

D(t1). On the other hand if node A updates route-entry
for D at time t2, then it can only be the case that IDA

D(t2)
> IDA

D(t1). Therefore SIDA
D(t2) =ID?A

D (t2)> ID?A
D (t1).

Even if there is a reboot or state loss after time t1, it is still true
at time t2 ≥ t > t1, that SIDA

D(t) = IDA(t) > ID?A
D (t1).

Hence, the lemma is true.
Lemma 2: The event of reporting the value of id(B)AD at

time t to neighbor B has a causal relation (denoted by)
with the event that node A uses a value of id(A)AD to update
its routing table at time t−, where t = t− + ε, assuming that
ε is the processing time for updating the route table.

Proof: By Rule 5, node A can report a RREP at time t

only if it used a RREP to update its routing table. Hence, node
A must have used the value of id(A)AD reported by a RREP at
time t−. By Rule 3, node A must have a stored value of node
B’s RSL for this RREP identified by an unique SSL. So, by
Rule 5, node A reports the value of id(B)AD at time t from the
cache after updating its routing table for a time ε. Therefore,
the events are causally related.

Theorem 2: If nodes use SSC to change successors, no
routing table loops can form.

i

D

b=s[1,old]
s[k+m,old]

p[i]
a=s[1,new]

s[2,old]

s[2,new]

s[3,new]s[3,old]

s[k+1,new]

s[k+2,old]

s[k+2, new]

s[k,new]
s[k+1,old]

s[4,old]

Fig. 1. SSC loop-free condition

Proof: The proof is by contradiction. Assume that, before
time t, the directed successor graph for destination D, which
we denote by SD(G) is loop-free at every instant, and a loop
LD(G) is formed at time t. It is easy to see that no loops
can be formed unless atleast one node changes its successor
at time t to a node that is upstream of itself in SD(G).

Assume that LD(t) is formed when node i makes node a its
new successor siD(t) after processing an input event at time t,
where b = siD(tb) 6= a and tb < t. Now, PaD(t) must include
Pai(t).

Let Pai(t) consist of the chain of nodes {a= s[1,new],
s[2,new], ..., s[k,new],...,i} as shown in Figure 1. The notation
indicates that node s[k, new] is the kth hop in the path Pai(t)
at time t, and has node s[k+1,new] as its successor at time t.

The last time that node s[k,new] updates its routing table
entry up to time t and sets s

s[k,new]
D =s[k+1, new] is denoted

by ts[k+1,new], where ts[k+1,new] ≤ t. Therefore, it is true that
s
s[k,new]
D (ts[k+1,new])= s

s[k,new]
D (t).

Because nodes joining PaD do not switch to any new succes-
sors afterwords, it is also true that

SID
s[k,new]
D

(ts[k+1,new]) = SID
s[k,new]
D

(t)

The time when node s[k,new] sends a reply that constitutes
the last reply from such a node that is processed by node
s[k-1, new] up-to time t is denoted by ts[k+1,old]. Node s[k,
new]’s successor at time ts[k+1,old] is denoted by s[k+1, old].
Note that ts[k+1,old] ≤ ts[k+1,new] ≤ t, and that s[k + 1, old]
need not be the same as s[k + 1, new]. It is also true that
SID

s[k,new]
D (ts[k+1,old]) ≤ SID

s[k,new]
D (ts[k+1,new]).

From Rule 5 and Lemma 2, when a node s[k, new]
relays a RREP to node s[k − 1, new] at time ts[k+1,old] after
updating its routing table at time t−

s[k+1,old], it must be true that

id(s[k, new])
s[k,new]
D

(t
−
s[k+1,old]

) < ID
?s[k,new]
D

(ts[k+1,old])

Because SSC must be satisfied when node s[k,new] ∈
PaD(t) makes node s[k+1,new] ∈ PaD(t) its successor at
time ts[k+1,new], it must be true that

id(s[k, new])
s[k,new]
Ds[k+1,new]

(t) = id(s[k, new])
s[k,new]
Ds[k+1,new]

(ts[k+1,new])

≥ SID
s[k,new]
D

(ts[k+1,new])

For a loop to be formed after t, it must be true that PaD(t)
exists. We now derive the following inequality along the path

Pai⊂PaD at time t, if nodes satisfy SSC when switching
successors. We use Lemmas 1 and 2.

SID
i
D(t) = ID

?i
D (t) ≤ id(i)

i
Da(t) = id(i)

a
D (ts[2,old]) id(a)

a
D (t

−
s[2,old]

) <

ID
?a
D (ts[2,old]) ≤ ID

?a
D (ts[2,new]) = SID

a
D(ts[2,new]) ≤ id(a)a

Ds[2,new](t) =

id(a)
s[2,new]
D

(ts[3,old]) ... id(s[k, new])
s[k,new]
D

(t
−
s[k+1,old]

) <

ID
?s[k,new]
D

(ts[k+1,old]) ≤ ID
?s[k,new]
D

(ts[k+1,new]) =

SID
s[k,new]
D

(ts[k+1,new]) ≤ id(s[k, new])
s[k+1,new]
Ds[k,new]

(t) =

id(s[k, new])
s[k+1,new]
D

(ts[k+1,old])

 ... id(i)
i
D(t

−
b

) < ID
?i
D (tb) ≤ ID

?i
D (t) = SID

i
D(t)

The invariant conditions along this path lead to the erro-
neous conclusion that SIDi

D(t) < SIDi
D(t). Hence, no loops

can be formed when SSC is applied.

D. Basic Route Maintenance

1) Route Establishment: Routes to destinations are es-
tablished on demand when data packets destined for that
destination are received. Node A that is active for destination
D buffers such data packets. However, if node A is passive for
destination D then it must become active and issue a RREQ
as per Rule 2. Node A maintains a RREQ timer that is set to
(2.ttl.latency) for every destination for which is it active, where
ttl is the time-to-live of the broadcast flood and latency is the
estimated per-hop latency of the network. If no usable RREPs
are received, node A resends new RREQs with an increased
ttl after the expiry of its timer. If node A does not receive a
RREP for destination D after a number of attempts, a failure
is reported to the upper layer. The number of hops that a
RREQ can traverse is controlled externally from the RREQ
by means of the TTL field of the IP packet in which a RREQ
is encapsulated, or by other means.

2) Updating Routing Tables: Node I sets sID ← B when it
accepts a RREP from neighbor B that satisfies SSC. If it has
an associated route metric, it updates dAD ← d

rep
D + lcAB. Note

that nodes can chose to accept only RREPs that will result in
shorter-cost paths, although it is not necessary.

E. Termination Properties

Theorem 3: All nodes in a connected component G not
containing destination D invalidate their route entries for node
D within a finite time.

Proof: From Lemma 1, RREPs generated by the des-
tination cannot traverse loops. A finite time t after node D

is partitioned from nodes n ∈ G, all RREPs must have been
processed at the sources that originated the RREQs, and no
more RREPs can be present in the network. The DASG for
D defined by the successor entries of nodes in G is loop-
free (Theorem 2), and in a finite time all nodes in the DASG
must be notified with a route error (RERR) stating the un-
reachability of D.

Theorem 4: In a stable error-free connected network, a
source S will establish a route to a destination D in finite
time.

Proof: From Lemma 1, RREPs generated by the destina-
tion D will travel a loop-free reverse back path to the source

SSL:(A,1)

SSL:(C,2)
RSL:(A,2)

RSL:(C,2)
SSL:(C,2)

P1

P2

A

B

C

D

RSL:(A,1)

P1

P2

SSL:(A,1)

A

B

C

D

RSL:(A,1)

SSL:(A,1)
RSL:(A,1)

SSL:(A,1)

SSL:(A,1)
RSL:(C,1)

RSL:(B,1)

SSL:(A,1)
RSL:(C,1)

SSL:(A,1)

RREP
RREQ

RSL:(B,1)

A

C

B

D

RSL:(A,1) RSL:(A,2) RSL:(A,2)RSL:(A,1)RSL:(A,1)

Drops

SSL:(A,1) SSL:(A,1) SSL:(C,2) SSL:(A,1) SSL:(C,2)

Accepts

Window of RREQ computations at node A for destination D

(a) (b) (c)
Fig. 2. Using SSLs and RSLs

S. If every node along the path updates its routing table for
D and relays the RREP, then the theorem is true. However,
if a node is engaged in multiple route computations for D,
then it may not satisfy SSC, and the RREP will be dropped.
However, in such a case, if a node is engaged for ’n’ different
route computations, atleast one of them succeeds. Because
along any path to the destination from the different sources,
one RREP is always relayed, atleast one source must always
establish a path to the destination irrespective of how many
other route computations are on-going at the same time. Given
that there are only a finite number of sources (nodes) in the
network, and they retry new RREQs upon failure, eventually
all sources must establish routes to the destination.

F. Non-caching Option

Caching of the RSL associated with a RREQs SSL can
be avoided at the relay nodes if the RREQs and RREPs
themselves carry the entire list of RSLs generated at every
relay node. This is beneficial when nodes have limited storage
capacity. The message structure of such a RREQ or RREP
would be a tuple {SSL,RSL1, RSL2, ..., RSLn}, where SSL
is assigned by the originating node, and each RSLi, where
i ∈ {1, ..., n}, is appended by the relaying node ni and is
carried as a list, rather than being cached at the intermediate
nodes along the path. It is also possible for mixed-mode
operation where some set of nodes can operate with the cache,
while the ones that cannot can force the previous hop RSL to
be carried in the message. For example, node ni can flag a bit
indicating that RSLni−1 , along with its new RSLni

must be
carried in the RREQ. This ensures that enough information is
present in the RREP generated so that node ni can process
and relay the RREP to node ni−1.

G. Example

Figure 2(a) shows the sequence of events in a four-node
network when node A initiates a RREQ for destination D

identified by SSL (A,1) along with a RSL (A,1) (that is the
same as the SSL at the origin). Node B caches the RSL
(A,1) for the SSL (A,1) and sends the RREQ with its RSL

(B,1). Similarly, node C caches the RSL (B,1) and sends out
a RREQ with RSL (C,1). Destination D generates a RREP
which is processed by nodes B and C. Assuming that the
network has just begun operation, when the nodes A, B, and
C transmitted the RREQ they must set themselves a value
of one for SIDA

D, SIDB
D, and SIDC

D, respectively. Node C

can accept the RREP (A,1) with a RSL (C,1) because SSC is
satisfied and will switch its successor to node D. Similarly,
node B will switch successors to C. Nodes B and C will set
their respective SIDB

D and SIDC
D to two after updating their

routing tables for D. Now, assume that the RREP relayed by
node B is queued at the MAC layer at time t1. Figure 2(b)
shows the sequence of events after time t1, when node C can
no longer reach D due to a link failure. Node C sends a new
RREQ that traverses the paths P1 and P2 through node A
to reach destination D. The RREQ is identified by SSL (C,2)
and node A relays it with a RSL (A,2). Note that node A still
has a stored value of one for SIDA

D.
Figure 2(c) shows the state of the network at a time t2 > t1

when a RREP is issued by the destination identified by (C, 2)
and the nodes along path P1 and P2 update their routing tables
to establish a route to node D. Node A sets SIDA

D ← 3 to
establish its successor path along P2 after updating its routing
table. When the RREP identified by SSL (A,1) queued at node
B is finally transmitted and received by node A, it can form
a loop if node A decides to switch successors to B. However,
because SSC must be satisfied, node A can only accept RREPs
carrying a RSL starting from (A,3) as SIDA

D = 3. Therefore,
the RREP will be dropped and no loops are formed.

Figure 2 also shows the window of RREQ computations
that node A is engaged or active for destination D. Node
A becomes a part of two different DAGs created by the
RREQs. However, the directed graph formed by the aggregate
of RREQs with SSL (A,1) and (C,2) is not acyclic. Inside this
computation window, node A becomes only a part of the DAG
created by RREQ SSL (C,2), and drops the SSL (A,1). The
window can consist of more RREQ computations, but only
one of them is used, and the rest of the computations in the
current window are dropped.

III. ON-DEMAND ROUTING USING SOURCE SEQUENCE
NUMBERS AND REPLIES FROM NODES WITH VALID

ROUTES

We extend the basic framework of the previous section by
deriving labels out of the SSL and RSLs carried in RREPs.
These labels are then used to identify neighbors as viable loop-
free successors to the destination, which allows intermediate
nodes to generate replies. We call this approach Source-
sequenced Labeled Routing (SLR).

For the purposes of discussing SLR, we use the non-caching
version of routing based on SSLs presented in Section II-F.
We later show how it can simplified to the caching version.

A. Viable Successor Sets

We consider the generalized class of on-demand hop-by-hop
ad hoc routing protocols that use a RREQ flood identified by

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

1

1

1

1

1

1

1
Z

Y

B

C

D

X

A

P

Q

R

1

1

1

2

L:(C,1)

 (X,1)]
 (Y,1),LS:[(A,1),

L: (Z,1)

L:(Y,1)

L:(X,1)
LS:[(A,1)]

L:(B,1)
LS:[(A,1)]

LS:[(A,1),
 (B,1)]

 (X,1)]LS:[(A,1), Y

X

A

B

C

D

Z
R

Q

P

L:(A,1)

(a) AODV (b) SLR using SSLs and RSLs

C

B

A

X

Y

Z

D

R

Q

P

 (X,1)]
LS:[(A,1), (Y,1),

L: (Z,1)

L:(Y,1)
LS:[(A,1), (X,1)]

L:(X,1)
LS:[(A,1)]

LS:[(A,2)]
L:(P,1)

LS:[(A,2),
 (P,1)]
L:(Q,1)

LS:[(A,2),
 (Q,1), (P,1)]
L:(R,1)

LS:[(A,1),
 (B,1)]

LS:[(A,1)]
L:(B,1)

L:(C,1)

L:(A,1)

(c) SLR after reset
Fig. 3. Viable Successor Set Dynamics

an unique SSL to build a tree rooted at the source, and label
one or more of the reverse paths traversed by RREPs along the
tree. We define a viable successor set for a destination D at
a node A at time t, denoted by V SSA

D(t), as the set of nodes
that node A can use as a successor to destination D without
causing any loops. We illustrate how VSS varies as a function
of time when using a labeling scheme such as AODV.

Figure 3(a) shows a possible assignment of destination
sequence numbers (as labels) when AODV is used as the
routing protocol for a ten-node network, after node A attempts
a route discovery for destination D and establishes a route at
time t. Node A uses B as its next hop for destination D

because it offers the shortest cost path. If at a later time t1,
link AB fails, then node A increases its destination-sequence
number to two. Any new RREQs from node A can only be
answered by a node that stores a destination-sequence number
greater than or equal to two. Because of the labeling adopted
by the nodes, V SSA

D becomes empty (∅) at time t1 as none
of the nodes in the shaded rectangle can satisfy the condition
for generating a RREP. Consequently, RREQs from node A

have to be answered by the destination.

B. Labeling with Source Sequence Numbers

To allow nodes with active routes to destination D to answer
RREQs in SLR, each node stores a label set for the destination,
which is an un-ordered collection of source-sequenced labels
and relay-sequenced labels, together with its self source-
sequenced label for the destination. The self source-sequenced
label and label set for destination D maintained at node A

are denoted by LA
D and LSA

D, respectively. The label set
serves the purpose of other nodes identifying node A as a
viable successor towards destination, while the the stored self

sequenced-label is used by A to identify other nodes as safe
viable successors. When routing state is lost, it is considered
that LSA

D = ∅ and LA
D = (A,∞). Nodes can also choose to

drop any of the elements from their label sets for a destination
at any time without affecting correct operation. We use the
term sequenced-label (SL) to refer to a SSL or RSL.

We define the following operator (�) to determine if a
sequenced-label SL1 = (src1, id1) is fresher than another
SL2 = (src2, id2) as follows:

SL1 � SL2, if src1 = src2 ∧ id1 ≥ id2

Labeling Rule: Let node ni receive a RREP satisfying SSC
for destination nk carrying a list of SLs [(n1, id1), (n2, id2),
..., (ni−1, idi−1), (ni, idi), ..., (nk−1, idk−1)], where (n1, id1)
is the SSL and the other sequenced-labels are RSLs appended
by relaying nodes. Node ni performs the following steps:

• Node ni must set LSni
nk
=LSni

nk
- SL, if ∃SL′, such that

SL′ ∈ RREP ∧ SL′ � SL.
• Node ni can assign itself a label set LSni

nk
⊆ LSni

nk
∪

{(n1, id1), (n2, id2), ..., (ni−1, idi−1)}.
• Node ni can set Lni

nk
= (ni, idi). However, if node ni

relays the RREP, it must set Lni
nk

= (ni, idi) or to (ni,∞).
We denote the individual elements of the label L with srcL

and idL. RREPs carry a label set (LS) which is set to LSA
D,

where node A is transmitting the RREP for a destination D.
The label set stored at node A for destination D reported by a
neighbor B is denoted by LSA

DB , and ID(LSI)
A
DB is used to

represent the idI of the SL (I, idI) reported in the label set.
Source-Sequenced Labeling Condition (SSLC): Node A can

switch successors to its neighbor B for destination D at time
t, if it is true that ∃ L, such that L ∈ LSA

DB(t) and L � LA
D(t)

(i.e., ID(LSA)
A
DB(t) ≥ idL

A
D (t)).

We establish the following lemmas (3, 4, and 5) for the
labels stored at a node A when SSC is used for RREP
processing, and Rules 1 to 5 and the labeling rule are adhered
to. We assume in Lemma 4 and 5 that there exists a node I in
the network that is active or engaged in the route computation
that node A is also engaged for.

Lemma 3: idL
A
D(t1) ≤ idL

A
D(t2), where t1 < t2.

Proof: Node A must change its label LA
D for destination

D only if it processes and relays a RREP. To accept a RREP
at time t as per SSC, it must be true that the RREP carries a
SL (A, idA) such that SIDA

D(t) ≤ idA. Node A will re-label
LA
D = (A, idA), and can only accept RREPs carrying a SL

(A, id), where id > SIDA
D(t), for SSC to be satisfied. This

is true even after reboots or state loss from Lemma 1. Hence,
the value of idL

A
D is strictly non-decreasing with time, and the

lemma is true.
Lemma 4: ID(LSi)

A
D(t1) ≤ ID(LSi)

A
D(t2), where t1 <

t2.
Proof: For (I, idI) ∈ LSA

D, it must be true that node A

engaged in a route computation for which node I is active or
engaged as well. The proof is by contradiction. Let (I, id1I)
and (I, id2I) be two SLs such that id1I < id2I , and (I, id2I) ∈
LSA

D. We will now prove that node A cannot accept a RREP

carrying a SL (I, id1I) and modify LSA
D. Node A must have

two SLs (A, id1A) and (A, id2A) engaged in a route computation
along with node I’s SLs to receive the RREPs; although the
relation between id2A and id1A is not known. After accepting
the RREP carrying a SL (I, id2I), node A must have set
SIDA

D > max(id1A, id
2
A). This is true even after reboots or

state loss because of Lemma 1. When node A receives the
RREP carrying a SL (I, id1I), it cannot satisfy SSC. Hence,
node A will not modify its label set LSA

D. Therefore, the
lemma is true.

Lemma 5: A correspondence (denoted by) exists be-
tween the value of ID(LSI)

A
D reported at time t and the

value of idL
A
D at time t− < t, where t− denotes the time

when ID(LSI)
A
D was added to or modified in the label set

LSA
D.

Proof: For ID(LSI)
A
D to be reported at time t, it must

have been added to the label set at a time earlier than t when
node A must have accepted a RREP satisfying SSC. Lemma 4
shows that the value of ID(LSI)

A
D does not decrease with

time, and hence t− must be the last time instant when
ID(LSI)

A
D was modified or added to LSA

D. As per labeling
rules, there must exist a defined value for idL

A
D at time t−,

although it can be modified at a later time. Hence, the value
of ID(LSI)

A
D reported at time t corresponds to idL

A
D at time

t−.

Theorem 5: If nodes follow labeling rules and use SSLC to
change successors, then no routing-table loops can be formed.

Proof: Using the same argument as in Theorem 2, we
derive the following inequalities along path Pai ⊆ PaD when
nodes follow labeling rules and use SSLC to switch successors.
We use Lemmas 5 and 3.

id
Li
D (t) ≤ ID(LSi)

i
Da(t) = ID(LSi)

a
D(ts[2,old]) id

La
D (t

−
s[2,old]

) ≤

id
La
D (ts[2,old]) ≤ id

La
D (ts[2,new]) ≤ ID(LSa)

a
Ds[2,new](t)

= ID(LSa)
s[2,new]
D

(ts[3,old]) ... id
L
s[k,new]
D (t

−
s[k+1,old]

) ≤

id
L
s[k,new]
D (ts[k+1,old]) ≤ id

L
s[k,new])
D (ts[k+1,new]) ≤

ID(LSs[k,new])
s[k+1,new]
Ds[k,new]

(t) = ID(LSs[k,new])
s[k+1,new]
D

(ts[k+1,old])

... id
L
p[i]
D (t

−
s[k+m,old]

) ≤ id
L
p[i]
D (ts[k+m,old]) ≤ id

L
p[i]
D (ti) ≤

ID(LSp[i])
p[i]
Di

(t) = ID(LSp[i])
i
D(tb) id

Li
D

(t
−
b

)id
Li
D

(tb) ≤ id
Li
D

(t)

This leads to the erroneous conclusion that idL
i
D(t) <

idL
i
D(t). Hence, no loops can be formed.

C. Simplified Labeling

We have previously introduced the Labeled Successor Pro-
tocol (LSR) [4], which can be considered as a simplified
version of SLR’s labeling scheme making use of only the
SSL of a RREP. LSR can be derived from SLR using a
subset of the original labeling rules as follows: When node
A accepts a RREP satisfying SSC identified by SSL (S, IDS)
for destination D, it performs the following steps:

• Node A must set LSA
D={(S, IDS)}.

• Node A can set LA
D to (S, IDS), if S = A. If the RREP

is relayed, then node A must set LA
D = (A,∞).

The two stored labels used can be replaced with one as is
the case of LSR [4] because it can be seen clearly that only one
of the two labels are useful for loop-free checks. LSR lacks a
mechanism to sequence RREPs received from the destination
correctly. The simplified labeling of SLR used to realize LSR
does not suffer from this limitation.

D. Example

Figure 3(d) shows an example of VSS dynamics using SLs.
Source A starts a RREQ flood with SSL (A, 1), which gets
relayed along paths XY Z and BC after the nodes forward
it with their respective RSLs. The RREPs generated by the
destination (for the purposes of this example, we assume the
destination replies to all received requests) are processed and
the nodes set their label sets LS as shown in the figure.
There is no explicit ordering of nodes here, and despite the
higher hop count of X , node A can still switch to X as
a viable successor applying SSLC. Here, the V SSA

D(t) =
{X,Y,Z,B,C}. Note that, in-addition to node A, other nodes
can also identify their respective viable successors for the
destination. Assume that at time t1, node A labels path PQR

as viable successors as shown in Figure 3(e). Because node A

does not relay the RREP, it can still retain its old LA
D = (A,1).

Despite switching to a new path, node A can still use all the old
successors at a later time and the V SSA

D(t1) is the complete
set {B,C,X,Y,Z,P,Q,R}. Node A is able to determine all
the nodes that were previously labeled as viable successors.
However, as per the labeling rules, if node A had relayed the
reply, it has to relabel LA

D to (A, 2), which will force A to
lose viable successors from its old RREQ (A, 1). The other
reason the VSS can lose successors at a later time is if the
relay nodes along the path drop SLs from their label set.

Figure 4(a) shows another example of the labeling for a
network where source A has a route to destination D. At a later
time, due to network mobility, node C’s link to D fails. Node
C re-establishes a route to D through a path CEAFD, where
E and F are new nodes that are in this vicinity due to mobility.
Figure 4(b) shows the labeling at this time. Subsequently, if
node B’s link to C fails, then node B establishes a new route
through BAFD. Figure 4(c) shows the labeling at this time.
Note that the re-labeling occurs in these cases because the
RREP is generated by the destination. Note that in both these
cases, the destination is the only node answering because node
C or B cannot identify any viable successors. The label sets
stored allow nodes to be identified as loop-free successors for
a destination when SSLC is used. Figure 5 shows the labeling
for the same set of events when LSR (using the simplified
labeling scheme of SLR) is used as the routing protocol.

E. Route Search

We present three conditions for SLR that are used by nodes
to search for loop-free viable successors across a single-hop
or multiple-hops to find a route to the destination.

L:(A,1)
LS:[]

L:(B,1)
LS:[(A,1)]

L:(C,1)
LS:[(A,1),

 (B,1)]

A

C

D

B

 (E,1),
 (C,2)]

L:(E,1)

LS:[(C,2)]

L:(B,1)
LS:[(A,1)]

L:(F,1)

LS:[(A,2),
L:(C,1)
LS:[(A,1),

 (B,1)]

L:(E,1)
LS:[(E,1),(C,2)]

L:(A,2)

E B

A

C

D

F

LS:[(C,2)] (E,1),L:(C,1)
LS:[(A,1),

 (B,1)]

L:(A,3)
LS:[(E,1),(C,2),(B,2)]

L:(B,2)
L:(F,2)

 (C,2),(B,2)]

B

A

C

D

FE

LS:[(A,3),
LS:[]

(a) (b) (c)
Fig. 4. SLR labeling

A

B

C

D

L:(A,1)
LS:[]

LS:[(A,1)]

LS:[(A,1)]
L:(C,

L:(B,

8
8

)

)

A

C

D

B FE

LS:[(C,2)]
LS:[(A,1)]

L:(F,

L:(A,

)

L:(C,)

)

L:(E,) 8

8
8

8

LS:[(C,2)]

LS:[(C,2)]

LS:[(A,1)]

A

C

D

B FE

LS:[(C,2)]
LS:[(A,1)]

L:(F,

L:(A,

)

L:(C,)

)

L:(E,) 8

8
8

8

LS:[(B,2)]

LS:[(B,2)]

L:(B,2)L:(B, 8)
LS:[(B,2)]

(a) (b) (c)
Fig. 5. LSR labeling

We redefine the is-a-subset-of or equal-sets operation (⊆)
between two label sets LS1 and LS2 as follows:

LS1 ⊆ LS2, if ∀ SL, SL ∈ LS1, it is true that
∃SL′, such that SL′ ∈ LS2 ∧ SL′ � SL

Each RREQ carries a common label set CLS that represents
the collection of self SLs of each node that transmitted the
RREQ. The purpose of the CLS is to find a loop-free path
from a successor whose RREP is usable at every node along
the reverse path to the originating node. We use superscripts
req and rep to represent the values carried in RREQs and
RREPs, respectively. The conditions for initiating RREQs,
relaying RREQs, and generating RREPs are as follows:
RLSC: (Reset Labeled Successor Condition). If node A

must change sAD (after a route failure or if sAD = φ), then
it must send a RREQ carrying CLS

req
D = LA

D.
GLSC: (Generate Labeled Successor Condition). Node I

can issue a RREP responding to a RREQ req for des-
tination D if I has an active route to D, and CLS

req
D ⊆

LSI
D.

CLSC: (Common Labeled Successor Condition). When
node A relays a RREQ for destination D, it sets CLSreq

D

= CLS
req
D ∪L

A
D in the relayed RREQ iff CLS

req
D ⊆ LSA

D.
Otherwise, CLS

req
D is set to ∅.

We illustrate an example of how the RREQ search pro-
gresses across multiple hops to find an intermediate node that
can reply. Assume all nodes in Figure 3(e) except node R have
expired their route for destination D. Node A sends a RREQ
with CLSreq

D = (A, 1). For simplicity we consider path PQR.
Node P relays the RREQ with CLS

req
D = [(A, 1), (P, 1)] as

per CLSC because (A, 1) ⊆ LSP
D. Similarly, node Q relays the

RREQ with CLS
req
D = [(A, 1), (P, 1), (Q, 1)]. Now, GLSC

allows node R to initiate a RREP that will satisfy SSLC at

every one of the nodes Q, P, and A when the RREP traverses
the reverse path.

When the simplified labeling scheme of SLR is used in
LSR, nodes can only identify neighbors as successors. Route
searches progressing more than a single-hop can only be
answered by the destination.

F. Termination Properties

The proof that all nodes will invalidate their routing entries
for a destination that is partitioned follows directly from
Theorem 3 which shows that the property holds when the
destination is the only node that can generate replies. In SLR,
according to Theorem 5, the DASG is instantaneously loop-
free and no nodes ever choose any nodes upstream in the
DASG. This means that the RERRs that propagate along the
DASG will force all nodes to invalidate their route entries for
the partitioned destination.

Theorem 6: In an error-free stable connected network, a
source will establish a route to a destination in finite time.

Proof: Let source A issue a RREQ for destination n1

that traverses a path P = {nk,nk−1,...,ni} (where ni can
be n1), before reaching the destination n1 or a node that
satisfies SLSC. If CLSreq

n1
= ∅, then the RREQ can only be

answered by the destination, and the proof follows that of
Theorem 3. Otherwise, when the RREP is transmitted along
the reverse path to node ni−1 by node ni, it is true that
LS

rep
D = LSni

D ⊇CLS
req
D because of GLSC and CLSC. Hence,

node ni−1 must be able to accept the RREP, which will satisfy
SSLC. The same argument holds at every node that relays the
RREP along the reverse path to source A. If a node along
path P modifies its label set by processing another route
computation, then the RREP will not be accepted and will
not be relayed to the source. However, sources retry RREQs
and there are only a finite number of nodes in the network.
From the same argument as in Theorem 4, each source must
be able to establish a route to the destination.

IV. ON-DEMAND ROUTING USING SSLS AND DISTANCE
INFORMATION TO ALLOW REPLIES FROM NODES WITH

VALID ROUTES

As the last component of our loop-free routing framework
based on SSLs and RSLs, we present an approach with which
nodes with valid routes to a destination are allowed to answer
RREQs using SSLs and distance information rather than label
sets, which may become large in some scenarios. In this
alternative approach to SLR, which we call Labeled Source-
sequenced Routing with Distances (LSR-D), distances are
paired with SSLs to create a single label that we call source-
sequenced distance label (SSDL). SSDL’s create a relative
ordering of the distances along the path in which nodes are
engaged for a particular RREQ SSL, and the source of the
SSL can identify all nodes in the path as viable successors
regardless of the distances. Showing that SSDLs can be
safely used to maintain loop-freedom can be proven using an
approach similar to the one presented for the prior approaches,
and is omitted due to space limitations.

A. Sufficient Conditions for Loop-freedom

Each source-sequenced distance label (SSDL) is a tuple
[(SSL), distance]. We now present the associated terminol-
ogy, and operations on these labels. The freshness operator
(�) between two labels, SSDL1 = [(src1, id1), d1], and
SSDL2 = [(src2, id2), d2] is defined as follows:

SSDL1 � SSDL2 if (src1 = src2 ∧ id1 > id2) ∨

(src1 = src2 ∧ id1 = id2 ∧ d1 < d2)

We denote the label stored for a known destination D

at node A by SSDLA
D. An invalid SSDL at a node A is

considered to be [(A, ∞), 0]. The SSDL reported to node
A by neighbor B for destination D is denoted by SSDLA

DB.
Each RREP carries the SSDL and distance metric (d) at the
relaying node for the destination denoted by drepD . We denote
the cost of the link from node A to B with lcAB.

Distance Labeling Rule (DLR): When node A accepts a
RREP from neighbor B for destination D that satisfies SSC
and that is identified by SSL (S, IDS), node A must set
SSDLA

D=[(S, IDS), d
′], where if S=A then d′ = ∞ else

d′ = d
rep
D + lcAB. Node A can choose not to modify a valid

SSDLA
D if it does not relay the RREP.

DLR allows nodes to assign or modify (reset) the stored
SSDL for a destination. This may be done after the loss of
state, or if the SSDL stored can no longer be used to determine
any viable successors. Note that DLR requires SSC to be
satisfied; therefore, nodes must still use the RSLs to determine
which RREPs to accept and such RREPs must be generated by
the destination. However, if nodes have valid SSDLs, they can
choose a neighbor as a safe loop-free successor by comparing
the freshness of the SSDLs as given by this sufficient condition
for loop-freedom.

Source-Sequenced Distance Labeling Condition (SSDLC):
Node A can switch successors to its neighbor B for destination
D at time t, if it is true that SSDLA

DB(t) � SSDLA
D(t).

Figure 6 shows the VSS for the same scenario discussed in
Section III-D when SSDLs are used for labeling. We assume
link costs to be unity. As the figure illustrates, a relay node
B with SSDL [(A,1),2] can identify C with SSDL [(A,1),1]
as a viable successor without using extensive label sets. Node
A can still identify all nodes as viable successors, because its
SSDL is set to the highest distance (∞). SSDLs also allow
nodes to identify viable successors along different paths; for
example, B can identify Y and Z.

B. Route Search

Each RREQ carries the freshest of the SSDL’s stored at the
nodes along the path traversed by the RREQ, which is denoted
by FSSDL. We define an in-order operator (u) between two
SSDLs, SSDL1 and SSDL2, as follows:

u(SSDL1, SSDL2) =

{

SSDL2, if (SSDL2 � SSDL1)

φ, otherwise

Y

X

A

B

C

D

Z
R

Q

P[(A,1),3]

 [(A,1),1]

[(A,1),2]

[(A,1),1]

[(A,1),2]

[(A,1), 8]

Y

X

A

B

C

D

Z
R

Q

P[(A,1),3]

[(A,1),2]

[(A,1),1]

[(A,1),2]
[(A,2),2]

[(A,2),3]

[(A,1),

 [(A,1),1]

8]

 [(A,2),1]

(a) Initial labeling (b) After reset
Fig. 6. Labeling with SSDLs

We briefly describe conditions similar to that of SLR for
nodes to search for routes across one or more hops and
when intermediate nodes with valid routes can reply. A node
A issues a RREQ with FSSDL

req
D = SSDLA

D for desti-
nation D, and node A relays RREQs with FSSDL

req
D =

u(FSSDLreq
D , SSDLA

D). An intermediate node I having a
valid active route can reply to a request if SSDLI

D �
FSSDL

req
D . A local-repair operation can be performed by

intermediate nodes to repair routes locally using a neighbor
query that is a RREQ with ttl set to one.

The in-order operator (u) is used when relaying RREQs,
because a previously expired path to the destination can be
activated without modifying the stored SSDLs. For example,
in Figure 6, node A can search a route to D through a path
PQR because the the SSDLs are in-order and every RREQ
will be relayed with the stored SSDL. However, if the RREQ
traverses a path PBC, then FSSDL will be set to φ, and the
RREQ can only be answered by the destination, which will
force the nodes along the path to reset their SSDLs. A local-
repair can be performed by an intermediate node B without
sending a RERR to source A when its current link to C fails.
A one-hop RREQ query sent will be answered by node Y or
Q.

V. PERFORMANCE

We present results over varying loads and mobility for an
instantiation of DSLR that selects shortest-cost paths, LSR,
which adopts the simplified labeling scheme of SLR, and LSR-
D, which uses SSDLs. We also present results for LSR-D-LR,
which is LSR-D with the local-repair scheme. The protocols
used for comparison are two on-demand protocols, DSR and
AODV, and OLSR [1], which is a pro-active link state protocol.
Simulations are run in Qualnet 3.5.2. AODV, DSLR, LSR,
LSR-D, and LSR-D-LR, use an expanding-ring search scheme
when flooding RREQs. AODV and DSLR set the ttl of the
RREQs to the last-known hop-count of the destination.

Simulations are performed for two scenarios, (i) a 50-node
network with terrain dimensions of 1500m x 300m, and (ii) a
100-node network with terrain dimensions of 2200m x 600m.
Traffic loads are CBR sources with a data packet size of 512
bytes. Load is varied by using 10 flows (at 4 packets per
second) and 30 flows (at 4 packets per second). The MAC
layer used is 802.11 with a transmission range of 275m and
throughput 2 Mbps. The simulation is run for 900 seconds.

Node velocity is set between 1 m/s and 20 m/s. Flows have a
mean length of 100 seconds distributed exponentially between
randomly picked sources and destinations Each combination
(number of nodes, traffic flows, scenario, routing protocol and
pause time) is repeated for nine trials using different random
seeds.

We present four metrics. Delivery ratio is the ratio of the
packets delivered per client/server CBR flow. Latency is the
end to end delay measured for the data packets reaching
the server from the client. Network load is the total number
of control packets (RREQ, RREP, RERR, Hello, TC etc)
divided by the received data packets. Data hops is the number
of hops traversed by each data packet (including initiating
and forwarding) divided by the total received packets in the
network. This metric takes into account packets dropped due to
forwarding along incorrect paths. A larger value for the data-
hops metric indicates that more data packets traverse more
hops without reaching the destination necessarily.

Tables I and II summarize the results of the different
metrics by averaging over all pause times for the 50 and
100 node networks with random flows. The columns show the
mean value and 95% confidence interval. All our performance
discussions focus on the average case because the confidence
intervals overlap atleast slightly in most cases. The packet
delivery ratio, the end-to-end delay, and the control overhead
over various pause times is shown for a 100-node networks
with 30-flows in Figure 7 (results for LSR-D are not shown).
The vertical bars in the graphs indicate the 95% confidence
intervals.

The performance results show that DSLR, LSR, and LSR-D
outperform AODV, DSR, and OLSR. LSR has better packet
delivery and lower control-overhead than DSLR across the
different scenarios. This is because the labeling in LSR allows
one-hop neighbors of the source to initiate RREPs, thus avoid-
ing RREQ floods, whereas RREPs in DSLR can be initiated by
the destination only. Note that if the elaborate labeling scheme
of SLR is used, it is also possible for intermediate nodes that
are across multiple hops from the source to initiate RREPs.
The latency of DSLR is slightly better than of LSR because
DSLR establishes more optimal (shortest-cost) paths because
RREQ floods search for the destination after a route failure. In
the case of LSR, the replies from intermediate nodes need not
necessarily reflect the best path when nodes are mobile. The
optimal forwarding of packets is also shown in the data-hops
metric of DSLR, which is slightly lower than that of LSR.
LSR-D’s performance is equivalent to that of LSR across the
different scenarios. However, the local-repair of LSR-D-LR
shows a noticeable improvement in performance, particularly,
in the 100-node, 30-flow scenarios where excessive RREQ
flooding can cause congestion. The local-repair allows nodes
to resolve failure without reporting a RERR to the source,
which will then retry flooding RREQs. The key feature is
that the RREQ sent with a ttl of one can elicit a reply from
one of the neighbors. Although, AODV supports a local-repair
operation, it floods the RREQ to locate the destination.

The performance of AODV, DSR, and OLSR suffer from

TABLE I
PERFORMANCE AVERAGE OVER ALL PAUSE TIMES FOR 50 NODES NETWORK FOR 10-FLOWS AND 30-FLOWS

Flows 10 30 10 30 10 30 10 30
Protocol Delivery Ratio Latency (sec) Net Load Data Hops
DSLR 0.996±0.001 0.830±0.035 0.016±0.002 0.446±0.100 0.271±0.067 3.566±0.821 2.612±0.182 2.617±0.172
LSR 0.995±0.001 0.859±0.038 0.017±0.002 0.480±0.170 0.313±0.082 2.229±0.657 2.628±0.186 2.678±0.223
LSR-D 0.995±0.001 0.858±0.037 0.025±0.005 0.475±0.159 0.374±0.093 2.226±0.628 2.535±0.167 2.675±0.224
LSR-D-LR 0.995±0.001 0.867±0.036 0.025±0.004 0.442±0.159 0.372±0.098 1.777±0.507 2.539±0.168 2.703±0.229
AODV 0.994±0.002 0.765±0.055 0.016±0.003 1.010±0.356 0.270±0.066 4.423±1.289 2.576±0.179 2.951±0.324
DSR 0.940±0.027 0.683±0.059 0.041±0.047 4.760±1.073 0.220±0.095 0.410±0.140 2.677±0.185 3.625±0.308
OLSR 0.887±0.040 0.798±0.034 0.012±0.001 0.883±0.311 1.937±0.220 0.713±0.069 2.456±0.175 2.478±0.161

TABLE II
PERFORMANCE AVERAGE OVER ALL PAUSE TIMES FOR 100 NODES NETWORK FOR 10-FLOWS AND 30-FLOWS

Flows 10 30 10 30 10 30 10 30
Protocol Delivery Ratio Latency (sec) Net Load Data Hops
DSLR 0.991±0.004 0.690±0.033 0.034±0.006 0.728±0.107 0.907±0.237 11.845±1.733 3.851±0.307 3.864±0.194
LSR 0.990±0.004 0.737±0.039 0.042±0.007 0.751±0.129 1.192±0.342 8.213±1.473 3.814±0.314 3.941±0.237
LSR-D 0.989±0.005 0.738±0.039 0.069±0.013 0.754±0.133 1.462±0.412 8.248±1.503 3.690±0.302 3.961±0.244
LSR-D-LR 0.988±0.005 0.757±0.033 0.069±0.013 0.669±0.118 1.353±0.405 6.229±1.154 3.747±0.294 4.020±0.259
AODV 0.988±0.004 0.608±0.051 0.036±0.009 1.455±0.385 0.897±0.236 18.298±13.069 3.744±0.293 4.751±0.434
DSR 0.876±0.050 0.618±0.049 0.099±0.057 5.125±0.782 0.859±0.353 1.243±0.405 4.257±0.317 6.141±0.499
OLSR 0.821±0.063 0.612±0.041 0.022±0.002 3.371±0.532 11.795±1.575 5.423±0.669 3.583±0.256 4.014±0.277

0 50 100 200 300 500 700 900
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
ac

ke
t D

el
iv

er
y

ra
tio

Pause Time (Secs)

AODV DLSR LSR LSR−D−LR DSR OLSR

0 50 100 200 300 500 700 900
0

1

2

3

4

5

6

7

E
nd

 to
 E

nd
 L

at
en

cy
 (

S
ec

on
ds

)

Pause Time (Secs)

AODV DLSR LSR LSR−D DSR OLSR

0 50 100 200 300 500 700 900
−10

0

10

20

30

40

50

60

70

C
on

tr
ol

 o
ve

rh
ea

d
ra

tio

Pause Time (Secs)

AODV

DLSR

LSR

LSR−D−LR

DSR

OLSR

(a) Packet Delivery (b) End-to-end Delay (c) Control Overhead
Fig. 7. Scenario with random sources and destinations (100 nodes, 30 flows, 120 pps)

the following problems: AODV suffers from excessive RREQ
flooding. Note, however, that DSLR must also have RREPs
sent by the destination, making it almost similar to AODV’s
case. We noticed that AODV was generating an excessive
number of RREPs, and yet the number of RREPs received at
the sources was far smaller. This could be caused by RREPs
being forwarded by nodes using a reverse route entry, which
is only valid for a limited time. Hence, with congestion, it is
possible that these RREPs get delayed and are dropped. DSR
suffers from stale caches and source-routes need not necessar-
ily reflect the topology of the mobile network. OLSR suffers
from temporary loops. The number of messages exchanged
in OSLR is constant although the control overhead calculated
depends on the number of flows in the network.

VI. CONCLUSION

We have introduced the first routing framework for on-
demand loop-free routing in MANETs based on the source
sequence number that is used to identify RREQs originated
uniquely. We presented three approaches within this frame-
work (DSLR, SLR, and LSR-D) that are robust to node
failures, loss of information, and unreliable message deliv-

ery. They allow hop-by-hop routing of data packets while
maintaining instantaneous loop-freedom of the routing tables
without requiring time-stamps, source-routes, or any other syn-
chronization techniques spanning single (i.e., packet filtering)
or multiple hops. Performance results in 50 and 100-node
networks with random traffic flows show that protocol instan-
tiations of the proposed frameworks consistently deliver more
data packets than DSR, AODV, and OLSR, while reducing
control overhead and data packet latency.

REFERENCES

[1] T. Clausen and P. Jacquet, “Optimized Link State Routing
Protocol,” Request for Comments 3626, October 2003.

[2] D. Johnson et al, “The Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks (DSR),” IETF Internet draft, draft-
ietf-manet-dsr-09.txt, April 2003.

[3] C. Perkins et al., “Ad hoc On-Demand Distance Vector (AODV)
Routing,” Request for Comments 3561, July 2003.

[4] H. Rangarajan and J. J. Garcia-Luna-Aceves, ”Efficient Use of
Route Requests for Loop-free Routing in Ad hoc Networks,”
IFIP Networking 2005 (LNCS), May 2005, Waterloo, Canada.

