
ar
X

iv
:0

80
9.

21
52

v1
 [

cs
.IT

]
12

 S
ep

 2
00

8

1-4244-2575-4/08/$20.00 c©2008 IEEE

Informed Network Coding for Minimum Decoding Delay

Rui A. Costa1 Daniele Munaretto2 Joerg Widmer2 João Barros1

1Instituto de Telecomunicações, Faculdade de Ciências da Universidade do Porto, Portugal
{ruicosta, barros}@dcc.fc.up.pt

2DoCoMo Euro-Labs, Munich, Germany
lastname@docomolab-euro.com

Abstract

Network coding is a highly efficient data dissemination
mechanism for wireless networks. Since network coded
information can only be recovered after delivering a suf-
ficient number of coded packets, the resulting decoding
delay can become problematic for delay-sensitive applica-
tions such as real-time media streaming. Motivated by this
observation, we consider several algorithms that minimize
the decoding delay and analyze their performance by
means of simulation. The algorithms differ both in the
required information about the state of the neighbors’
buffers and in the way this knowledge is used to decide
which packets to combine through coding operations. Our
results show that a greedy algorithm, whose encodings
maximize the number of nodes at which a coded packet is
immediately decodable significantly outperforms existing
network coding protocols.

I. Introduction

The basic idea of network coding [1], [2], by which
nodes transmit packets that result from joint encoding of
multiple original information units, has led to communi-
cation protocols that are applicable in a wide range of
wireless communication scenarios [3]. The gains brought
by network coding are most evident in applications involv-
ing multicast or broadcast sessions (in which messages are
intended for multiple destination nodes) in combination
with physical layer broadcast (in which neighboring nodes
can overhear potentially useful information).

For delay-sensitive applications such as media stream-
ing, it is not desirable for receivers to have to wait for
the arrival of several packets until they are able to decode
the sent data. Instead, we would like for a packet to be

immediately decodable given only the information units
already available at those nodes. Moreover, each packet
should be useful for as many neighbors as possible, thus
minimizing the required number of transmissions. Similar
considerations hold for distributed systems with highly
constrained nodes, such as sensor networks, where it may
well be impossible to store a large number of coded packets
and to decode them using Gaussian elimination.

In general, there is a tradeoff between delay, throughput
and end-to-end quality, and different codes can try to
optimize either one of these performance metrics. Priority
Encoded Transmission [4] provides graceful degradation
by specifying different levels of coding (and consequently
different minimum numbers of packets required for de-
coding) depending on the content and the priority of the
underlying information units. Fountain codes (e.g. Raptor
codes [5]) offer very low coding overhead and are (asymp-
totically) rate optimal when transmitting over erasure chan-
nels. However, decodingn packets is only possibleafter
n+ ǫ coded packets have been received. A fraction of the
encoded symbols can be decoded earlier albeit at the cost
of significant overhead [6].

We focus our attention on algorithms that allowimmedi-
atedecoding of each incoming packet. This stringent delay
requirement comes at the cost of a reduction in throughput
in the sense that broadcasting coded packets brings new
information to fewer neighbors than fountain coding or
priority encoded transmission would allow. Fostering early
or immediate decoding requires an algorithm that decides
which and how many information units or symbols1 should
be combined in each new packet that is to be transmitted.

Adequate design of such an algorithm is highly depen-
dent on the state information available at the nodes. Com-
plete lack of state information is likely to occur in highly

1These two expressions shall be used interchangeably throughout the
paper.

http://arxiv.org/abs/0809.2152v1

dynamic networks, such as mobile sensor networks, where
the overhead of tracking a changing neighborhood would
be prohibitive. In case a node has no information about the
packets that have already been recovered by its neighbors,
the algorithm can only optimize how many information
units to combine (i.e., the codeword degree [7]). Each node
simply combines randomly chosen information received
from other nodes with its own information units, until the
desired codeword degree is reached. The algorithm needs
to find the right tradeoff between a high codeword degree
that ensures that coded packets bring new information
to many of the neighbors, and a low codeword degree
that allows packets to be decoded immediately using
only the information that is locally available. An analysis
of optimum degree distributions with respect to network
dynamics and topology was carried out in [8].

When information about the data recovery status of
neighboring nodes is available, it is possible to employ
more sophisticated coding algorithms. One such instance
is presented in [9], which proposes a protocol for uni-
cast routing in wireless mesh networks. Routers combine
packets opportunistically from different sources in orderto
increase the diversity of the information content of each
transmission. A node chooses the symbols to combine
based on the content of the neighbors’ buffers. This form
of state information is piggybacked onto data packets
and also extrapolated from past loss rate measurements
and overheard packets. The procedure ensures that coded
packets are immediately decodable at the next hop with
very high probability.

Although the protocol in [9] targets unicast traffic,
very similar considerations also apply to broadcast. [10]
analyzes a number of simple heuristics for the online and
offline version of the problem.

Intrigued by the behavior of network coding protocols
for one-to-all or all-to-all information dissemination, we
compare the performance of several existing coding algo-
rithms with various levels of buffer state information on
neighboring nodes. We further propose two new protocols,
one that maximizes the number of immediately decod-
able packets in a greedy fashion, and one that attempts
to equalize the number of recovered information units
among neighbors. The proposed schemes operate under the
assumption that neighboring nodes exchange information
about which symbols they have already recovered, for
example by appending this information every time they
send a data packet.

We show that the proposed schemes outperform existing
algorithms in various scenarios of interest. We first con-
sider a simple decoder that discards all incoming packets
that cannot be decoded immediately. We then proceed with
a characterization of the performance gains induced by a
more complex decoder that buffers all received packets and

uses Gauss-Jordan elimination to recover the sent data.
The remainder of the paper is structured as follows.

In Section II we discuss related coding algorithms that
shall serve as a baseline for the subsequent comparison.
Section III describes our two network coding algorithms,
whose performance is highlighted in Section IV, where
simulation results are used to compare their performance to
that of existing solutions. Section V concludes the paper.

II. Review of Existing Coding Algorithms

Network coding enables nodes to transmit packets that
are a combination of multiple original data packets. For
this purpose, coding operations are applied to symbols (or
sequences of bits), which can be viewed as elements of a
finite field. When combining a set of packets, the same
operations are applied to all of the symbols that form
these packets and consequently the output packet has the
same length as the input packets. Linear codes have been
shown to be sufficient to achieve the multicast capacity of
a network and can be easily implemented in practice.

Network coding schemes often generate each coded
packet in a randomized fashion by taking into consid-
eration all the packets that are available in the send
buffer. This approach requires no knowledge about the
recovery status of the neighboring nodes and no pre-
established degree distribution (as explained later). The
most prominent representative of this class of schemes is
the Random Linear Network Coding(RLNC) algorithm
presented in [11], where the coefficients used to generate
the output linear combination are chosen randomly from
the prescribed field.

The algorithms presented in the next section are based
on the simplest form of network coding, whose single
operation is binary addition (in contrast with RLNC, which
generally requires addition and multiplication in higher
fields). Since the symbols are elements of the binary field,
adding two packets amounts to the bit-wise XOR of their
symbols. It is worth mentioning, however, that the design
considerations presented in this paper also hold for fields
of larger size.

Regarding the decoding process, we consider two differ-
ent mechanisms: (1) a very simple decoding scheme, which
uses only immediately recovered symbols for decoding a
new symbol from a received packet; and (2) the full decod-
ing scheme, which performs Gaussian-Jordan elimination
based on both coded and undecoded packets that are stored
in a node’s buffer.

As an example of a RLNC scheme, we now give
a formal definition of the algorithm presented in [10].
This Systematic Random Network Coding scheme was
designed for the scenario of a source broadcasting ton

receivers over independent erasure channels.

Systematic Random Network Coding [10]: The
algorithm starts by sending every packet once in uncoded
form. After this first phase, the algorithm computes the
output packet as a random linear combination of all the
(uncoded) packets in the buffer.

Since the systematic algorithm produces random linear
combinations of all the packets in the send buffer, the
original symbols can only be recovered by means of Gauss-
Jordan Elimination and only after enough independent
linear combinations have been gathered by the destination
node. In general, these coded symbols cannot be recovered
at an earlier stage thus defeating a simple decoder, which
discards all packets that are not immediately decodable us-
ing solely the already decoded information. It is therefore
necessary to limit the number of symbols combined at each
step, also called thecodeword degree.

A. Degree distribution based algorithm

Network coding schemes that combine all packets in
the buffer are not always optimal in terms of performance,
as observed in [7]. The authors show that depending on
the number of recovered packetsr at a specific node,
there exists an optimal number of packets to combine to
maximize the number of decodable packets at each instant
in time. More precisely, defining thecodeword degreeas
the number of original symbols which are jointly encoded
to form a coded packet, the authors of [7] determine the
optimumdegree distribution. For a prescribed number of
recovered packetsr, the degree distributionD(r) returns
the degree of the next output packet.

The scenario studied in [7] is a random encounter
scenario, in which each node meets independently at
random one neighbor at a time. The optimum degree
distribution depends on the dynamics of the underlying
network and in [12] the authors show the deficiencies of
such an algorithm in scenarios beyond the specific model
they were designed for. Since [7], some other coding
algorithms based on a pre-defined degree distribution
were proposed. As a comparison algorithm, we use the
following instance.

Adaptive Network Coding (ANC) [8]: When a trans-
mission opportunity occurs, the node randomly combines
a specific number of packets in its buffer, which ensures
that the degree of the resulting output packet is as high as
possible and less than or equal toD(r) (as defined above).

B. Opportunistic Algorithm

The previous algorithms do not make use of feedback
information in terms of the recovery state of neighboring
nodes. However, if available, this additional information
can be be used to make more efficient coding decisions
and can bring significant improvements to the overall
performance. The work presented in [10] analyzes how it
can be used and proposes a number of heuristic algorithms
designed for the scenario of a source node broadcasting to
n receivers over independent erasure channels, i.e. a one-
to-all broadcast scenario. Among the algorithms proposed
in [10], we consider the so called Opportunistic algorithm,
because it is the only one that can be used in conjunction
with a simple decoder. The basic idea is that each node
uses the feedback received from its neighbors to compute
a queue of symbols that have not yet been received by at
least one node. The first symbol is chosen randomly and
further symbols are added under the condition that the
packet remains immediately decodable by all neighbors
that were previously able to decode it (in other words,
the number of nodes that can decode the packet can only
increase).

Before defining a different set of algorithms capable
of exploiting the knowledge of the recovery status of
neighboring nodes, we must introduce some basic notation.
In the following, we will denote the node performing the
coding algorithm byx. The set of neighbors of nodex
is denoted byNx = {1, . . . ,m} andBx = {s1, . . . , sn}
denotes the set of symbols in the buffer of nodex. Bj

represents the set of symbols that are in the buffer of node
j, with j ∈ Nx. The set of symbols that are in the buffer
of x and that are not in the buffer of neighborj is denoted
by Bj and can be computed asBj = Bx\(Bj ∩Bx).

The algorithms presented next start by choosing the set
of symbolsC that will be combined in the output packet
by means of an XOR operation. The setC is constructed
iteratively, such that in each step of the algorithm one
symbol is added to the previously constructed set.C
denotes the set of symbols that nodex has in its buffer
and that are not inC (it can be calculated asC = Bx\C).

Finally, we will denote byR(C) the set of neighbors
of node x that are able to recover a new symbol from
the XOR of all symbols in a given setC. This means
that, if there arey symbols in setC, the neighbor must
have already recovered exactlyy− 1 of the symbols inC.
Therefore, we have thatR(C) = {j : |C|− |Bj ∩C| = 1}.

We are now ready to give a formal definition of the
Opportunistic scheme, presented in [10]. As shown in
Algorithm 1, the setC is initialized to the empty set.
Throughout the algorithm, setS represents the set of
symbols that can be added to the current configuration of
setC. Initially, all the symbols that are in the buffer of node

Algorithm 1 Opportunistic algorithm [10]

C = ∅
S = {s ∈ Bx : |R({s})| > 0}
while |S| > 0

chooses∗ ∈ S
adds∗ to C

S =

(

⋂

j∈R(C)

(Bj ∩Bx)

)

∩ C

end
p =

⊕

s∈C

s

transmitp.

x and that are not in the buffer of at least one neighbor are
deemed to be possible candidates. Thus, becauseR({s}) is
the set of neighbors that has not recovered symbols ∈ Bx,
S is initialized according toS = {s ∈ Bx : |R({s})| > 0}.

Next, we focus on the loop in the algorithm, which will
only continue whileS is non-empty. As long as there are
symbols inS, the algorithm chooses one of them randomly
and adds it toC. After this step, it is necessary to update
S, from which the algorithm chooses new symbols to add
to C.

The new setS is defined as the set of symbols that
satisfy the following conditions: (1) they are present in
the buffers of the neighbors inR(C) (i.e. those neighbors
that are able to recover a new symbol from the current set
C), (2) they are stored in the buffer of nodex; and (3)
they were not chosen up to this step. Thus, the new setS
can be determined according to

S =





⋂

j∈R(C)

(Bj ∩Bx)



 ∩ C.

When the loop finishes, all the symbols in setC are
XORed together and the corresponding packet is sent to
the neighbors of nodex.

The ideas behind the algorithm are best described by the
example shown in Fig. 1. NodeX (the node performing
the coding algorithm) has in its buffer symbolss1, s2, s3
ands4. From Fig. 1 it is clear that some of these symbols
can also be found in the buffers of the three neighbors
of X . It follows that there are only two possible output
packets which are optimal in the sense that they maximize
the number of neighbors able to recover a new symbol
immediately upon reception:p = s1 ⊕ s2 or p = s2 ⊕
s3. In both these cases, all neighbors are able to recover
a new symbol from the received packet, since they have
one and only one of the symbols therein. Moreover, no
other combination of symbols can provide a packet that
immediately provides a new symbol to every neighbor.

We now analyze the behavior of the Opportunistic
algorithm. The initial setS (from which we can choose a

X

N 1 N 2 N 3

S 1 S 2 S 3 S 4

S 4S 1 S 2 S 2 S 4S 3

B x :

B 1 : B 2 : B 3 :

Fig. 1. An example of a network, in which
node X has to make coding decisions based
on the buffer state of 3 neighbors: N1, N2

and N3. For each neighbor, the figure depicts
only that part of the buffer which contains
symbols that are also stored in the buffer of
node X.

symbol to be mixed in the packet) isS = {s1, s2, s3, s4},
due to the fact that none of the neighbors has recovered
all the symbols in the buffer of nodeX . Thus, in the first
iteration, each symbol inS can be chosen with probability
1/4. Suppose that the algorithm choosess∗ = s1 (again
with probability 1/4). Then, we have thatC = {s1}
and R(C) = {N2, N3}. Recall thatR(C) is the set of
neighbors that have recovered all but one of the symbols in
C (in this case, it is the set of neighbors who have not yet
recovered symbols1). SinceS is the set of symbols that (a)
all the neighbors inR(C) have already recovered and (b)
have not yet been chosen, we have thatS = {s2}. In the
second iteration, sinceS = {s2}, the algorithm chooses
s∗ = s2 and setsC = {s1, s2}. Thus,R(C) is equivalent
to the entire set of neighbors and, since there are no more
symbols recovered by the ensemble of neighboring nodes,
we have thatS = ∅. Hence, the algorithm stops and outputs
the packetp = s1⊕s2, which can be classified as an ideal
packet.

We have seen that the algorithm outputs an ideal packet
if the first chosen symbol corresponds tos1 (and that
this happens with probability1/4). Analogously, if the
algorithm choosess3 first, thenC = {s3} andR(C) =
{N2, N3}, yieldingS = {s2}. Hence, in the next step the
algorithm chooses symbols2 which will lead toS = ∅. It
follows that if the algorithm starts by choosing symbols3,
then we get the ideal output packetp = s2 ⊕ s3.

Suppose now that the algorithm starts by choosing
symbol s2. In this case, we have thatC = {s2} and
R(C) = {N1}. SinceS is the set of unselected symbols
recovered by the ensemble of neighbors inR(C), we have
that S = {s1, s3, s4}. Hence, in the second iteration,
the algorithm has a probability1/3 of choosing each of

the symbols inS. If the algorithm chooses symbols1
(respectively, symbols3), based on the same arguments
as in the previous cases, we deduce that the output packet
will be p = s1⊕s2 (respectively,p = s2⊕s3), which is an
ideal packet. In case the algorithm choosess4, the output
will not be an ideal packet. Thus, the probability that the
algorithm outputs an ideal packet is given

1

4
+

1

4
+

1

4

(

1

3
+

1

3

)

=
2

3
.

It is worth noting that in this algorithm, the sole
criterion for the choice of symbols to be mixed in the
output packed is to ensure that a node which is able to
recover a new symbol from the current setC (constructed
up to the given iteration), will continue to be able to
recover a new symbol from the instances ofC that are
constructed after that iteration. In other words, after the
choice of the first symbol (which is performed randomly),
the algorithm simply ensures that the number of neighbors
that are able to recover a new symbol does not decrease
with the next decisions.

III. Optimized Coding Algorithms

In the following, we present two algorithms for the
encoding process, both based on the knowledge of the
recovery status of the neighboring nodes. In order to
increase the speed of information dissemination, our al-
gorithms make coding decisions that by design allow the
neighboring nodes to recover another information unit
immediately upon reception of a new coded packet.

A. Greedy algorithm

The first algorithm gives priority to the symbols that
are rarest within the neighborhood. The key is to find the
combination of original symbols that maximizes the num-
ber of neighbors that are able to decode a new information
unit.

Algorithm 2 Greedy algorithm

C = ∅
chooses∗ = arg max

s∈Bx

|R({s})|

q = 0
while |R(C ∪ {s∗})| ≥ q

q = |R(C ∪ {s∗})|
adds∗ to C
chooses∗ = arg max

s∈Bx\C
|R(C ∪ {s})|

end
p =

⊕

s∈C

s

transmitp.

As shown in Algorithm 2, the choice of the first
symbol is very different from the Opportunistic algorithm
(Algorithm 1). Instead of a random choice, the Greedy
algorithm selects the symbol that maximizes the number
of nodes that are able to decode a new symbol if a packet
of degree one is sent. This corresponds to maximizing
|R({s})|. If there are multiple symbols that satisfy this
condition, the algorithm chooses one of them randomly. As
we will see later on, a proper choice of the first symbol is
crucial for a good performance. In fact, we will show that,
if the nodes send packets of degree one (i.e. plain symbols)
and use the selection criteria of our protocols, the resulting
performance is already quite close to the performance of
the Opportunistic algorithm.

Taking a closer look at the loop of this algorithm, we
realize that after choosing the first symbol, the algorithm
proceeds by selecting among the symbols yet to be chosen
the element that maximizes the number of neighbors able
to decode a new symbol from the packet, which is obtained
by XORing this new symbol with all the symbols selected
so far. This can be written as|R(C∪{s})|. After choosing
this candidate symbol (a symbols∗ = arg max

s∈Bx\C
|R(C ∪

{s})|), the algorithm will check if there is a gain in
adding this candidate symbol to the set of symbols to be
mixed in the output packet. Notice that, for the algorithm
to continue, we do not require that neighbors that could
previously recover a new symbol will continue to be able
to do so; the algorithm continues as long as the number of
neighbors able to recover a new symbol does not decrease
from one step to the next one.

Denote byp∗ the packet obtained by XORing all the
symbols chosen so far (i.e., all the symbols in the current
set C) and denote bys∗ the candidate symbol. If the
number of neighbors that are able to decode a new symbol
from p∗ ⊕ s∗ (which is represented by|R(C ∪ {s∗})|) is
less than the number of neighbors that are able to decode
a new symbol fromp∗ (which is represented byq), i.e. if
|R(C ∪ {s∗})| ≥ q, the algorithm stops and produces a
packet that combines all of the symbols selected thus far.

Going back to the scenario illustrated in Fig. 1, we see
that the algorithm starts by choosing the symbols∗ that
maximizes the size ofR({s}) over all s in the buffer of
nodeX , i.e. that maximizes the number of neighbors that
do not have the symbols∗. Clearly,s∗ is therarest symbol
in the neighborhood. It follows that the algorithm ends
up choosings1 or s3, since each of them is present in
the buffer of only one of the neighbors. If the algorithm
chooses symbols1, we have that|R({s1})| = 2. In the first
iteration, the algorithm setsq = 2 andC = {s1}. Next, the
algorithm selects the symbols∗ as the one that maximizes
the size ofR(C ∪ {s}) over all s 6= s1. More specifically,
it will choose the symbol that maximizes the number of
neighbors that are able to recover a new symbol from the

packet obtained when XORing this candidate symbol with
all the symbols inC. In this case, sinceC = {s1} and
all 3 neighbors can recover a new symbol froms1 ⊕ s2,
this candidate symbol iss∗ = s2. Now, the algorithm
checks if the number of neighbors that can recover a new
symbol increases when compared to the previous step. In
this case, sinceq = 2 neighbors recovered a new symbol
and adding the candidate symbol increases this number
to 3 (i.e. |R(C ∪ {s2})| ≥ 2), the algorithm continues by
updatingq to q = 3 and adding the candidate symbol to the
packet:C = {s1, s2}. Now, the algorithm chooses the next
candidate symbol using the same rule, i.e. to maximize the
number of neighbors that are able to recover a new symbol.
In this case, this symbol can bes3 or s4. In either case,
we have that only one neighbor will be able to recover
a new symbol if the candidate symbol is added, thus we
will have |R(C∪{s∗})| = 1. In the subsequent step, since
|R(C ∪ {s∗})| < 3 = q, the algorithm stops and outputs
the packetp = s1 ⊕ s2, which is an ideal packet.

Notice that in the first choice we had two options:s1
ands3. We saw that ifs1 is chosen, the algorithm outputs
the ideal packetp = s1 ⊕ s2. Using analogous arguments,
it is easy to see that ifs3 is chosen in the first step,
the algorithm outputs the packetp = s2 ⊕ s3, which is
also an ideal packet. Thus, we have that in this example,
with probability 1, the Greedy algorithm outputs an ideal
packet.

Similarly to the Opportunistic algorithm, the Greedy
algorithm evolves in each iteration by selecting a symbol
to be added to the set of symbols that will form the output
packet. After the choice of the first symbol, the algorithm
ensures that the number of neighbors that are able to
decode new symbols does not decrease with the next
decisions. Beyond the choice of the first symbol (which
has a significant impact on the performance as we will
see latter on), the selection procedure targets the symbol
that will maximize the number of neighbors that are able
to decode, whereas the Opportunistic algorithm make this
selection in a purely random fashion.

B. Equalizing algorithm

The Greedy algorithm presented in the previous section
is prone to lead to an uneven distribution of information. In
the worst case, some nodes that are not well connected to
the rest of the network might receive mostly packets they
cannot decode, since they lack some of the information
units that all the other nodes already have. These nodes
would be served by the greedy algorithm only after all
other nodes have decoded all of the information, leading
to a high worst case delay. The way to prevent this from
happening is to equalize the recovery level among the
neighbors instead of maximizing it in a greedy fashion.

The so called Equalizing algorithm pursues mainly the
goal of giving new decodable information to the neighbors
that have recovered the fewest information units, thus
increasing the minimum number of recovered packets per
node.

Algorithm 3 Equalizing algorithm

C = ∅
B = Bx

R∗(C) = {j : C ⊆ Bj}
while |B| > 0 and |R∗(C)| > 0

chooseJ = arg min
j∈R∗(C)

|Bj |

S = B ∩BJ

chooses∗ = argmax
s∈S

|R(C ∪ {s})|

adds∗ to C
B = B ∩BJ

end
p =

⊕

s∈C

s

transmitp.

IN Algorithm 3, R∗(C) = {j : C ⊆ Bj} represents
the set of neighbors that have all the symbols inC. In
each step, the algorithm chooses the neighbor that has the
least recovered packets among those not yet considered.
Then, the algorithm selects one of the symbols that this
particular neighbor has not yet recovered (and that all
the previously chosen neighbors did recover, thus ensuring
that the previously chosen neighbors can still decode the
packet). This symbol is added to the packet to be sent.

The algorithm needs to keep track of the symbols that
neighbors chosen so far have already recovered. This is
captured by setB. One condition to stop the loop of the
algorithm is precisely the existence of symbols inB. If
there are no symbolsB, i.e. if there is no symbol that has
been recovered by all the nodes chosen up to a certain
iteration, no symbol can be added to the packet to be sent
without rendering at least one of the neighbors unable
to decode. The other condition for the loop to stop is
|R∗(C)| > 0, which means that the loop only continues if
there are still neighbors that have recovered all the symbols
in the output packet constructed so far. If there are no
neighbors in this condition, no further nodes will be able
to recover a new symbol irrespective of which symbol is
added to the packet.

In each iteration, the algorithm starts by inspecting all
nodes that have recovered all the symbols in the packet
constructed so far (i.e. neighbors inR∗(C) which implies
that no neighbor can be chosen twice) and finding the
one that recovered the least number of symbols. More
specifically, we choose the neighborJ that satisfiesJ =
arg min

j∈R∗(C)
|Bj |. After making this selection, the algo-

rithm calculates the set of symbols that can still be added
to the packet. These symbols must have been recovered
by all the previously chosen neighbors(i.e., symbols inR)
and cannot have been recovered by the neighbor that was
chosen in the current iteration (i.e., symbols not inBJ).
Thus, the set of candidates is defined byS = R ∩BJ .

Next, from this set of candidate symbols, the algorithm
selects the one that maximizes the number of neighbors
that are able to decode a new symbol, assuming that the
output packet results from the XOR of all symbols inC.
After this choice, the algorithm adds the symbol to the set
C and updates the setR. The new setR will be the set
of symbols shared by all the neighbors that were chosen
before the current iteration (namelyR) and possessed by
the new chosen neighbor (BJ), i.e. R = R ∩ BJ . When
the loop is completed, the algorithm computes the packet
to be sent by XORing all the symbols inC.

Once again, we will use the scenario in Fig. 1 to
clarify the main steps of the algorithm. The algorithm starts
by settingC = ∅, B = {s1, s2, s3, s4} and R∗(C) =
{N1, N2, N3} (recall that R∗(C) represents the set of
neighbors that have already recoveredall of the symbols in
C). In the first iteration, the algorithm starts by checking
which neighbor has the smallest buffer, i.e. the one with
the smallest number of recovered symbols. In this case,
the chosen neighbor isN2, since it only recovered symbol
s2. Then, the algorithm computes the set of symbols that
this node does not have in its buffer:s = {s1, s3, s4}.
The goal is to provide a new symbol to this particular
neighbor. Hence, the first chosen symbol is a symbol from
S and, since we also want to provide (if possible) new
symbols to other neighbors, the algorithm chooses the
symbol that is more rare within the neighborhood, among
all the symbols inS. In this case, we have two options:
s1 or s3. Suppose that the algorithm choosess∗ = s1. We
have thatC = {s1} andB = {s2}, i.e. B is the set of
symbols that nodeN2 has already recovered. It is necessary
to keep track of the symbols that all the neighbors chosen
by the algorithm have already recovered to ensure that the
neighbors with the smaller number of recovered symbols
will be able to recover a new symbol from the resulting
output packet.

Next, in the second iteration, the algorithm chooses
the neighbor that has the smallest number of recovered
symbols among all the neighbors that have all the symbols
in the current instance of setC, i.e. among the neighbors in
R∗(C). In this case,R∗(C) = {N1} and thus the chosen
neighbor isN1. Now, the set of symbols that can be added
to C is the set of all symbols that all the previously chosen
neighbors have in their buffers,B, and that the neighbor
chosen in the current iteration does not have in its buffer,
B1. Thus, in this case, we have thatS = {s2} and, hence,
C = {s1, s2}. Notice that there are no further symbols

that have been recovered by all the chosen neighbors, i.e.
B = {s2} ∩ {s1, s3, s4} = ∅. Thus, the algorithm cannot
continue and consequently outputs the packetp = s1⊕s2,
which is an ideal packet.

In the first iteration, we could have chosen symbols3
instead ofs1. Using similar arguments, it is easy to see
that, if s3 is chosen, the algorithm outputs the packet
p = s2 ⊕ s3, which is also an ideal packet. Therefore, we
again have that with probability1 the Equalizing algorithm
outputs an ideal packet in our example.

IV. Simulation Results

In this section we present and discuss the performance
of the aforementioned coding algorithms in various sce-
narios. The main part of the analysis assumes the simple
decoding algorithm.

We discuss the enhancement of performance provided
by the use of a full decoding scheme at the end of this sec-
tion. The following performance metrics are of interest for
the analysis of the algorithms. The recovery rate of a node
is the number of original packets recovered by the node as
a function of the total number of packets received by the
node. It measures the speed of the dissemination process
and thus the overall efficiency of the protocol. This metric
is crucial in communication networks, especially for delay-
sensitive applications such as real-time media streaming,
where the disseminated segments must be recovered by
the receivers within strict time intervals. We average the
recovery rates over all nodes and repeated the simulations
several times so as to get tight confidence intervals. For
the recovery rate shown in the next plots, the confidence
intervals are all within±2%. These intervals are omitted
from the figures for the sake of readability.

The codeword degree is measured as the number of
original symbols which are combined to form a (coded)
packet and we calculate theaverage codeword degreeover
all nodes. For the analysis of the single-hop scenario we
also considerpacket delayas defined in Definition 2 of
[10]. The delay that a receiver experiences is the total
number of received packets that do not allow immediate
recovery of a new original symbol. Again we consider this
delay averaged over all nodes. Finally, theinformation po-
tential is the number of original symbols that are available
at a given neighboring node, but not at the node itself.
This metric is useful for analyzing the overlap between
the information recovered by a target node and by its
neighbors. It provides a measure of the efficiency of the
coding process and gives an insight into the degree of
freedom available for making coding decisions.

The simulation results have been obtained using a
custom C++ simulator. It provides an ideal (collision-free)
MAC layer, with a sequential or random scheduling of

0 50 100 150 200 250
0

20

40

60

80

100

Number of information packets received per nodeA
ve

ra
ge

 r
ec

ov
er

ed
 s

ym
bo

ls

Greedy

Equalizing

Opportunistic

ANC

0 50 100 150 200 250
0

5

10

15

Number of information packets received per node

A
ve

ra
ge

 c
od

ew
or

d
de

gr
ee

Greedy

Equalizing

Opportunistic

ANC

Fig. 2. Recovery rate (top) and average code-
word degree (bottom) for the single-hop sce-
nario.

packets. All transmissions use physical layer broadcast.

A. Single-hop Scenario

In this setting, a single source node broadcasts100
original symbols to its100 neighbors over independent
erasure channels and, as in [10], perfect feedback is avail-
able from the receivers to the source. For all the algorithms
in our analysis, i.e. Greedy, Equalizing, Opportunistic and
ANC, the source node starts by sending out all the original
symbols in uncoded form. It is only after this initial
stage that the source node sends encodings of the original
symbols as described in Sections II and III. The erasure
probability is set to0.5.

In Fig. 2, the Greedy algorithm shows the best perfor-
mance in the single-hop scenario. With this algorithm, all
nodes achieve the full recovery of the100 original symbols
within 150 information packets received. From the first
100 uncoded packets the receivers miss around 50 original
packets and they differ from node to node due to the
random erasure pattern. This allows the Greedy algorithm
to increase the degree of the coded packets compared to the
Opportunistic and ANC algorithms between 50 received
packets and 120 received packets. When the process ap-
proaches the full recovery state, the number of nodes still
missing some packets decreases and low degree codewords
are sufficient to serve these nodes. Given the diversity of
missing information among all the receivers and the large
amount of information potential of the neighbors (due to
the erasure pattern), the degree of freedom for making
coding decisions lets the source node perform the coding
that best allows a large number of receivers to immediately
recover a new symbol from the sent packet.

The Equalizing algorithm has a considerably worse
recovery rate than the other algorithms. The reason is

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Number of information packets received per nodeA
ve

ra
ge

 r
ec

ov
er

ed
 s

ym
bo

ls

Greedy
Equalizing
Opportunistic
ANC
Greedy Degree 1

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

Number of information packets received per node

A
ve

ra
ge

 c
od

ew
or

d
de

gr
ee

Greedy
Equalizing
Opportunistic
ANC
Greedy Degree 1

Fig. 3. Recovery rate (top) and average code-
word degree (bottom) for 100 nodes on a
static grid.

visible in Fig. 2, bottom, where Equalizing starts using
higher and higher codeword degrees quite early on. Since
it is designed to provide an immediately decodable packet
to the neighbor(s) which recovered the least number of
original symbols, many other neighbors are not able to de-
code the packet — their composition of recovered packets
differs from those poor nodes. Focusing only on the poor
nodes results in a packet that despite its high degree is
useful only for few receivers.

Surprisingly, the performance of ANC and of the Op-
portunistic algorithm is almost the same for most of the
simulation. The Opportunistic algorithm, which allows the
source node to use the neighborhood status information
to make the coding decisions, performs just slightly better
than ANC. Due to the large information potential of the
neighbors and to the huge diversity of missing information
among the receivers, the choice of which symbols to
encode is not crucial, as long as the number of symbols
that are combined is the same. Only at the very end, the
information obtained from the receivers by the Opportunis-
tic algorithm allows the source node to send the last few
missing symbols without wasting time sending packets that
carry encodings of randomly picked symbols.

Focusing the analysis on thepacket delay, we note that
the Greedy algorithm achieves the lowest packets delay of
only 30 not useful packets (averaged over all receivers),
followed by the Opportunistic algorithm with75, ANC
with 90 and Equalizing with100, as could be expected
from the previous analysis.

B. Multi-hop Scenario

In the multi-hop scenarios, each of the100 nodes gen-
erates one original symbol that is intended to be delivered
to every other node in the network.

1) Static grid: In this setting, nodes are placed on
a static grid (that wraps around) and each node has
eight neighbors to communicate with. In Fig. 3, top, the
algorithm with the best performance is the Greedy one (as
in the previous scenario), but now the difference to the
performance of the Equalizing algorithm is much smaller.
From the analysis of their respective average codeword
degrees, in Fig. 3, bottom, we see that the coding degree
of our two algorithms is very similar, except for the very
end where the Equalizing algorithm takes longer than
the Greedy algorithm to increase the coding degree for
recovery of the last missing symbols.

The high degree of correlation of the information re-
covered by the neighbors, due to the wrap around and
the symmetrical topology, and the consequently minor
diversity of information stored by the neighbors compared
to the single-hop setting, makes the use of packets with
high degree ineffective. Moreover, choosing which original
packets to combine has a huge impact on the performance
of the dissemination process. To visualize this, we also
show the recovery rates achieved by the algorithms cor-
responding to Greedy and Equalizing when we limit the
codeword degree to one, i.e., only an uncoded packet is
sent. In the top graph of Fig. 3, we plot only Greedy
with codeword degree one, but both of the algorithms
perform the same. Even in this limited case, the recovery
rates of our algorithms are very close to the recovery
rate of the Opportunistic algorithmwith coding. The few
degrees of freedom for making coding decisions, typical
of this setting, limit the performance of the Opportunistic
algorithm, where the first symbol is chosen randomly.

Finally, the impact of using neighborhood recovery
status in the coding decisions is obvious when we compare
the recovery rate of the ANC algorithm with the recovery
rates of the other algorithms. For instance, the total number
of received packets necessary to achieve full recovery is,
in the case of ANC, several times larger than in the case of
Greedy, while the average codeword degree is quite similar
for most of the values of received packets.

2) Static random and clustered networks:In this sec-
tion, we consider two different scenarios: static random
topologies with an average density of 8 nodes per com-
munication range, and clustered networks. These static
networks are relatively sparse, which means that the infor-
mation potential of neighbors is smaller than in the grid
network and that the diversity of information stored by the
neighbors is lower. The high degree of correlation among
the original symbols recovered by the nodes explains
why the Greedy, Equalizing and Opportunistic algorithms
perform similarly (Fig. 4). No degree of freedom for
making specific coding decisions is left to these algorithms,
so that the differences are small. Also in such settings,
ANC cannot perform well given the extremely low level

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Number of information packets received per nodeA
ve

ra
ge

 r
ec

ov
er

ed
 s

ym
bo

ls

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

Number of information packets received per node

A
ve

ra
ge

 c
od

ew
or

d
de

gr
ee

Greedy
Equalizing
Opportunistic
ANC

Greedy
Equalizing
Opportunistic
ANC

Fig. 4. Recovery rate (top) and average code-
word degree (bottom) for the static random
network, 100 nodes.

of diversity of information among nodes. In Fig. 5, top,
we show the low information potential. Only Greedy and
Equalizing increase the diversity of information among
neighbors at the beginning of the simulations, as expected
from the description of their coding mechanism in Section
III. After 75 packets received, all algorithms experience
the same neighborhood information potential (due to the
natural progressive lowering of the diversity of informa-
tion over time). The differences of the performance in
terms of recovery rate, among Greedy, Equalizing and
Opportunistic algorithms increase slightly for larger node
densities (not shown here). Such settings are closer to the
characteristics of a grid topology concerning the degrees
of freedom for making coding decisions.

The delay experienced by nodes using the Greedy
and Equalizing algorithms in static sparse random and
clustered networks shows an interesting result. For each
setting in analysis, the average delay is practically the same
for the two algorithms, however the worst delay (i.e. the
delay experienced by the node with the highest delay) of
the Greedy algorithm is up to5% higher than the worst
delay of the Equalizing algorithm. Since the Equalizing
algorithm will always try to provide an immediately de-
codable packet to the neighbor with the lowest number
of recovered original symbols, this will obviously improve
worst case delay.

3) Moderate mobility: In this scenario, we consider
nodes moving according to a random waypoint mobility
model with speeds uniformly distributed in the interval
[2, 4]m/s. Again, the node density allows on average for
eight neighbors per node. We assume perfect information
about the neighbor recovery status.

In Fig. 6, top, we notice that the performance of the
algorithms under consideration in terms of recovery rate
is somewhat similar to the one observed in the static

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

Number of information packets received per node

In
fo

rm
at

io
n

po
te

nt
ia

l

Greedy
Equalizing
Opportunistic
ANC

0 50 100 150 200 250 300
0

10

20

30

40

50

Number of information packets received per node

In
fo

rm
at

io
n

po
te

nt
ia

l

Greedy
Equalizing
Opportunistic
ANC

Fig. 5. Neighborhood information potential
for static random network (top) and moderate
mobility scenario (bottom).

0 50 100 150 200 250 300
0

20

40

60

80

100

Number of information packets received per nodeA
ve

ra
ge

 r
ec

ov
er

ed
 s

ym
bo

ls

Greedy

Equalizing

Opportunistic

ANC

0 50 100 150 200 250 300
0

2

4

6

8

10

Number of information packets received per node

A
ve

ra
ge

 c
od

ew
or

d
de

gr
ee

Greedy

Equalizing

Opportunistic

ANC

Fig. 6. Recovery rate (top) and average code-
word degree (bottom) for the mobile sce-
nario, 100 nodes.

grid setting (Fig. 3). Due to the mobility of the nodes,
the correlation among the original symbols recovered by
neighbors is much lower in the case of moderate mobility
than in the case of a static grid or static random networks.
An insight into the differences of information potential of
neighbors for two extreme cases is given in Fig. 5: on the
top the random static network shows a lower diversity of
information among neighbors than in the mobile case, bot-
tom, where the information potential with our algorithms
can achieve very high values of up to40 − 50, whereas
for the other protocols the measured values are close to
0. As seen in the previous section, our algorithms allow
nodes to maintain a high diversity of information in the
neighborhood and thus a high degree of freedom for the
coding decisions.

It is also important to notice that the coding degree of
the Equalizing algorithm is always higher than the coding
degree of the Greedy algorithm. This observation and the

fact that the recovery rate of the Greedy algorithm is higher
than the recovery rate of the Equalizing algorithm let us
conclude that the Equalizing algorithm builds packets with
a too high codeword degree, rendering these packets not
immediately decodable. We will see later on in this paper
that, if we allow the use of a full decoding process, i.e.,
all the packets in the buffer (decoded and undecoded) are
considered for the decoding algorithm, the recovery rate of
the Equalizing algorithm can actually surpass the recovery
rate of the Greedy algorithm.

C. Performance gains using a complete
buffer decoding mechanism

In this section, we investigate the benefits of full
decoding, which is more efficient (in the sense that it
does not discard useful packets) but also more costly in
terms of energy, memory requirements, and processing.
Up to now, we were considering a scheme were only the
immediately recovered original symbols were considered
for the simple decoding process. Here, all the packets
received (decoded and undecoded) are taken into con-
sideration when performing the decoding of the received
packets. In the following figures, we omit the plot of the
average codeword degree for the sake of readability of
the recovery rate. Also, the average codeword degree of
the algorithms using a full decoding scheme is almost the
same as the one with the simple decoder, except for a slight
increase of the average codeword degree.

As we already mentioned in the previous analysis, it
is expected that the recovery rate significantly increases
with the full decoding scheme, since the algorithms often
produce packets that are not immediately decodable for
some neighbors but that are innovative. The node is not
able to recover a new original symbol from the received
information packet since it did not yet recover the required
other original symbols that form the coded information
packet. By storing these not immediately decodable but
innovative packets in the buffers and considering these
packets in the decoding process, nodes can find these
packets helpful later on, when more and more (innovative
or immediately decodable) packets are received, increasing
the recovery rate of the algorithm. This benefit can be
observed in Fig. 7, where the recovery rate of the algo-
rithms using a full decoding mechanism (including the
Systematic Random Network Coding algorithm) is plotted
for the single-hop scenario.

Comparing the results obtained with this full decoding
scheme to the results obtained with a simple decoding
scheme, we can observe a major improvement of the
recovery rate of the Equalizing algorithm. With the full
decoding scheme, the Equalizing algorithm has a recovery
rate that slowly increases after the initial phase (where

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

110

Number of information packets received per node

A
ve

ra
ge

 r
ec

ov
er

ed
 s

ym
bo

ls

Greedy full

Greedy simple

Equalizing full

Equalizing simple

Opportunistic full and simple

ANC full

ANC simple

Systematic

Fig. 7. Recovery rate for the single-hop sce-
nario with simple and full decoding schemes.

the nodes first send the original symbols uncoded once)
and, at around80 packets received, shows a “smooth”
step behavior that is typical of the random network coding
algorithms (e.g. Systematic Random Network Coding).
The Equalizing algorithm reaches the full recovery state
before the Greedy algorithm. However, the recovery rate
of the Greedy algorithm is higher than the one of the
Equalizing algorithm before the step behavior takes place.

We also consider the packet delay when using a full
decoding mechanism. The delay presented by Greedy with
this decoding scheme is10 lower than the delay obtained
when using the simple decoder, with a total averaged delay
of 20. In [10], none of the algorithms proposed for the
single-hop scenario is able to achieve such a low delay
(in the same conditions as used here). The Equalizing
algorithm experiences only an average delay of40 packets,
ANC of 70 and the Systematic Random Network Coding
of 50 as in [10].

After analyzing the performance enhancements
achieved by using a full decoding scheme in the single-
hop scenario, we now discuss the results obtained for
the multi-hop scenario with moderate mobility. We have
chosen this particular setting of the multi-hop scenario
because the performance of the algorithms in the other
settings is similar to the one presented in Fig. 3, although
there are some differences that should be pointed out.
With a full decoding scheme, the Greedy and Equalizing
algorithms have quite similar performance. Moreover, the
enhancements achieved by the other algorithms when
using a full decoding scheme are negligible except for
the ANC algorithm, for which the performance is still far
from the performance achieve by our algorithms.

In Fig. 8, we can again see that in the moderate mobility
scenario and with a full decoding scheme, there is a major
improvement of performance of the Equalizing algorithm.
The recovery rate of the Equalizing algorithm comes very

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

110

Number of information packets received per node

A
ve

ra
ge

 r
ec

ov
er

ed
 s

ym
bo

ls

Greedy full

Greedy simple

Equalizing full

Equalizing simple

Opportunistic full and simple

ANC full and simple

Fig. 8. Recovery rate for the multi-hop mo-
bile network, with simple and full decoding
schemes.

close to the recovery rate of the Greedy algorithm until
around 80 packets received (similar to the behavior in
the single-hop scenario). After this value, the Equalizing
algorithm is faster in recovering new original packets,
reaching the full recovery state10 packets before the
Greedy algorithm. It is also interesting to notice that there
is no significant difference in terms of recovery rate be-
tween the two decoding mechanisms in combination with
the Greedy algorithm. This behavior was expected, since
the Greedy algorithm was designed for immediate decod-
ing. Few not immediately decodable packets mean that
a complete buffer decoding mechanism can just slightly
outperform a simple decoder.

V. Conclusions

In this paper we proposed two coding algorithms which
exploit feedback information on the recovery status of
neighboring nodes. Through the analysis of a wide range
of settings in our simulations, we show that the Greedy
algorithm consistently outperforms all other algorithms in
terms of number of immediately decodable packets, which
is fundamental for delay-sensitive applications in wireless
networks such as real-time media streaming. Moreover,
satisfactory results of the Greedy algorithm are already
obtained using just a simple decoder, whereas for the
Equalizing algorithm the use of Gaussian elimination im-
proves the performance significantly. However, using the
Equalizing algorithm is beneficial in some inhomogeneous
(clustered) topologies, where the worst case delay is lower
than that of the Greedy algorithm at a similar recovery
rate.

The algorithms proposed in this paper focus on im-
mediate decodability, and hence take the decoding delay
as the sole optimization criterion. As a next step, we

intend to explore the design tradeoff between delay and
throughput in more detail. The perceived quality of a video
transmissions is largely dependent on the right balance
between the two. An algorithm which imposes slightly
less stringent delay requirements and allows decoding after
reception of a fixed number of packets (as opposed to
just one packet), will provide higher throughput, which
may improve the overall perceived quality. We further
assumed instantaneous feedback in the evaluation of the
algorithms. The analysis of the impact of imperfect and
delayed feedback on the performance of network coding
algorithms is left as an important item for future work.

References

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. on Information Theory, vol. 46, no. 4, pp. 1204–
1216, July 2000.

[2] P. A. Chou, T. Wu, and K. Jain, “Practical network coding,”
in 41st Allerton Conf. Communication, Control and Computing,
Monticello, IL, US, Oct. 2003.

[3] C. Fragouli, J.-Y. L. Boudec, and J. Widmer, “Network coding: An
instant primer,”ACM Computer Communication Review, Jan. 2006.

[4] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan,
“Priority encoding transmission,”IEEE Transactions on Information
Theory, vol. 42, no. 6, pp. 1737–1744, 1996.

[5] A. Shokrollahi, “Raptor codes,”IEEE/ACM Transactions on Net-
working (TON), vol. 14, pp. 2551–2567, 2006.

[6] S. Sanghavi and M. LIDS, “Intermediate Performance of Rateless
Codes,” inProceedings of the IEEE Information Theory Workshop,
Tahoe City, CA, September 2007.

[7] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth
Codes: Maximizing Sensor Network Data Persistence,” inACM
SIGCOMM, Pisa, Italy, Sep. 2006.

[8] D. Munaretto, J. Widmer, M. Rossi, and M. Zorzi, “Resilient Coding
Algorithms for Sensor Network Data Persistence,” in5th European
Conference on Wireless Sensor Networks, EWSN 2008, Bologna,
Italy, Jan.-Feb. 2008.

[9] S. Katti, H. Rahul, W. Huss, D. Katabi, M. Medard, and
J. Crowcroft, “XORs in The Air: Practical Wireless Network
Coding,” in ACM SIGCOMM, Pisa, Italy, Sep. 2006.

[10] L. Keller, E. Drinea, and C. Fragouli, “Online Broadcasting with
Network Coding,” in 4th Workshop on Network Coding, Theory,
and Applications, NetCod 2008, Hong Kong, China, Jan. 2008.

[11] T. Ho, R. Koetter, M. Medard, D. R. Kerger, and M. Effros,“The
benefits of coding over routing in a randomized setting,” inProc. of
the IEEE International Symposium on Information Theory (ISIT),
Yokohama, Japan, June/July 2003.

[12] D. Munaretto, J. Widmer, M. Rossi, and M. Zorzi, “Network
coding strategies for data persistence in static and mobile
sensor networks,” in International Workshop on Wireless
Networks: Communication, Cooperation and Competition (WCN3
2007), Limassol, Cyprus, Apr. 2007. [Online]. Available:
http://icapeople.epfl.ch/widmer/files/Munaretto2007Persistence.pdf

http://icapeople.epfl.ch/widmer/files/Munaretto2007Persistence.pdf

	Introduction
	Review of Existing Coding Algorithms
	Degree distribution based algorithm
	Opportunistic Algorithm

	Optimized Coding Algorithms
	Greedy algorithm
	Equalizing algorithm

	Simulation Results
	Single-hop Scenario
	Multi-hop Scenario
	Static grid
	Static random and clustered networks
	Moderate mobility

	Performance gains using a complete buffer decoding mechanism

	Conclusions
	References

