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Abstract

We present the DECODE technique to determine from a
remote receiver whether a set oftransmitters are co-moving,
i.e., moving together in close proximity. Co-movement in­
fonnation can find use in applications ranging fronz in­
ventory tracking, to social network sensing, and to opti­
mizing mobile device localization. DECODE detects co­
moving transmitters by identifying correlations in commu­
nication signal strength due to shadow fading. Unlike lo­
calization systems, it can operate using measurements from
only a single receiver. It requires no changes in or coopera­
tion from the tracked devices other than sporadic transmis­
sion ofpackets. Using experiments from an office environ­
ment, we show that DECODE can achieve near perfect co­
movement detection at walking-speed mobility using corre­
lation coefficients computed over approximately 60-second
time intervals.

1 Introduction

Many location-aware applications benefit from higher­
level information about the movement of transmitters. One
instance of such higher-level information is co-movement,
which describes whether a set of transmitters are moving
together on a common path. While it is straightforward to
derive co-movement relationship from position coordinates
and trajectories generated by a localization system, suffi­
ciently accurate and precise data is not always available.
Global Positioning System (GPS) accuracy is frequently de­
graded in urban canyons [5] or not used in portable devices
due to its energy consumption. For indoor environments,
localization systems require the presence of multiple land­
marks or receivers, which adds infrastructure cost. Coarse
co-movement information can also be obtained from con­
nectivity through short-range radios [7]. This, however, re­
quires tracking software to be installed on all mobile de­
vices, it can not easily be inferred through infrastructure so­
lutions alone.
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Overview of Decode: In this paper, we study a co­
movement detection technique that operates solely on com­
munication signal strength traces, requires only a single re­
ceiver (or landmark), and does not rely on modifications
of the tracked devices (under the assumptions that the de­
vices will periodically transmit messages to communicate).
It exploits commonalities in the received signal power fad­
ing patterns observed from a set of co-located transmitters.
The wireless communications literature [17] distinguishes
shadow and multi-path fading effects that attenuate a signal
in addition to the path loss due to communication distance.
Shadow fading refers to obstacles in the environment that
attenuate the transmitted signal, when it travels through the
object. The magnitude of this effect depends on the mate­
rial and width of the object (e.g., about 10dB attenuation
was observed when an outside antenna was moved inside
of a vehicle [10]). Multi-path fading describes the effect
that objects in the environment reflect and scatter the trans­
mitted signal, so that the signal often arrives at the receiver
along multiple paths. The signal components constructively
or destructively interfere, leading to fast changes in received
signal strength. Also, if the position of the receiver changes
by merely one-half the wavelength of the communication
frequency used (59mm for ISM Band 2.4GHz [14]), it will
experience a very different multi-path fading channel, re­
sulting in signal strength changes that can exceed 20dB. As
transmitters or receivers move, the time varying attenuation
due to these effects will be unique for each path. Two re­
ceivers co-moving with a separation of less than one-half
wavelength, will experience nearly identical signal power
curves and thus can be distinguished from transmitter pairs
separated by larger distances. For high communication fre­
quencies in the unlicensed band, however, only few trans­
mitters will be sufficiently close to allow such straightfor­
ward detection.

Thus, this paper presents the DECODE technique, which
allows detection of co-moving transmitters through similar­
ities in the shadow fading component of the received sig­
nal. These similarities persist even if the separation between
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transmitters is larger than one-half the wavelength. DE­
CODE records, at one receiver, the signal power changes
over multiple frames emitted from each of several transmit­
ters. It then applies a three-step detection algorithm, which
begins with extracting periods of high signal variance from
each of the traces. It then filters out fast fading effects and
calculates correlation values over the resulting data for each
transmitter pair. High correlation indicates co-movement of
the transmitter pairs.

Uses of Co-Movement Information Many applications
can benefit from co-movement information. Some of the
important ones are:

Mapping Devices to Persons: Many location-aware ap­
plication such as Friend finders are tracking devices
as a proxy to infer the position of the device owner.
The proliferation of mobile devices and distinct radio
technologies on each mobile device make monitoring
this mapping of devices to their owners increasingly
cumbersome. For example, as a mobile device moves
from outdoors to building location it may be tracked
by a variety of different technologies, where each uses
a different identifier (usually the radio MAC address)
to identify the device. By monitoring co-movement
of different transmitters a localization system may be
able to infer which devices belong to the same owner,
or which addresses represent the same device.

Social Network Mining: Recent work [7] has sought to
infer social relationships from mobile device connec­
tivity patterns. Applications for such techniques in­
clude automatically determining access control poli­
cies and viral marketing. Current techniques moni­
tor Bluetooth advertisement messages to determine
when and how long devices from different owners
meet. This requires software on mobile devices. The
co-movement techniques could also extract this infor­
mation through external observations (from a commu­
nications base station).

Localization optimizations: Knowing that two mobile de­
vices move together helps collaborative positioning
mechanisms that provide lower energy consumption or
better accuracy. For example, one device could power
down its GPS receiver to conserve energy, while the
other device's receiver still provides accurate position
updates. In challenging environments for localization,
position estimates may also be improved through re­
dundancy.

The remainder of the paper is organized as follows: In
Section 2, we review related research and Section 3 presents
the DECODE technique. In Section 4, we discuss our ex­
perimental methodology and results. Concluding remarks
are given in Section 5.

2 Related Work

The previous work on detecting co-located and co­
moving objects have either been based on absolute location
of the transmitters obtained using localization indoors and
GPS outdoors or from proximity sensing using short range
infrared (IR) or Bluetooth devices. We know of no other
work that infers co-location or co-movement directly from
signal strength measurements. In this section we divide the
related work into 2 main categories.

Location based inference: There have been active
prior efforts in determining the locations of transmitters.
RADAR [1] which works for 802.11 uses RF Fingerprint
information observed at three receivers and performs a near­
est neighbor matching algorithm to determine the location
of the transmitters with a three meters median accuracy.
[8] uses Bayesian learning algorithm on RF fingerprints ob­
served at three or more receivers to obtain a median 802.11
localization accuracy of 3-4 meters. The most accurate
802.11 location system to date is [12] which uses Hidden
Markov Model and Bayesian inference derived from obser­
vations at nine different receivers yielding a median accu­
racy of one meter. Further, the average localization accu­
racy employing RSS in a 802.15.4 (Zigbee) network [4] and
an active RFID system [3] is about the same with median er­
rors around 3-4m when using four receivers. All of these lo­
calization approaches need three or more receivers to work
in concert to perform co-location detection . Whereas our
scheme only needs to work with one receiver.

Proximity Based inference: Proximity based co­
location inference techniques mainly consist of using short
range IR or Bluetooth devices to estimate distance between
the transmitters. Reality Mining project [7] [6] used Blue­
tooth capable GSM phones to record the other nearby blue­
tooth devices and transmit them to the central server for in­
ferring social interaction patterns. SpotOn system [9] used
radio signal attenuation to estimate the relative distance
between the special tags. Though these techniques look
attractive for co-location detection, they requires tracking
software on the devices themselves and are effective only
for detecting devices that have the same technology. Our
scheme is more generic as it involves measurement of RSSI
which is common to GSM, WLAN, Zigbee, Bluetooth.

3 DECODE SYSTEM DESIGN

The environment in which wireless communication takes
place affects the received signal power (i.e., Signal-to-Noise
ratio). The key idea underlying the DECODE technique is
exploiting shadow fading, signal attenuation due to objects
blocking the path of communication. Two transmitters in
close proximity will be similarly affected by surrounding
buildings, furniture, or passing people. Therefore, the ob-
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Declare Tj and Ti+1move independently

3.1 Alignment and Filtering Steps

Time alignment. The following co-movement detec­
tion seeks to compare RSSI values observed at the same
time from different transmitters. The packets originating
from transmitters attached to different devices may not be
synchronized in time. Even if one attempts to synchronize
transmitters attached to the same device, the inherent chan­
nel access delays will cause packets to arrive at slightly dif­
ferent times. Depending on wireless channel conditions,
packets are also lost due to collisions or path loss. Thus, the
time alignment step synchronizes and interpolates samples
received from two transmitters. Given the packet traces for
two transmitters, our implementation matches every packet
from the first transmitter with the last prior packet trans­
mission from the second transmitter. If a sample is missing
from the second transmitter, this procedure interpolate the
missing sample with the last observed sample from the sec­
ond transmitter.

Extracting high variance periods. Recall that DE­
CODE focuses on periods of mobility because during these
periods it can observe correlated signal changes due to large
scale fading. Several techniques have been proposed to de­
tect mobility [18, 13, 15, 11]. Of these, we choose the
straightforward signal strength variance threshold detection
technique. DECODE divides the RSSI traces into blocks. It
then extracts and concatenates all blocks where the variance
exceeds the specified threshold. We empirically determined

ing steps of the DECODE system. A receiver measures the
received signal strength for signals emitted from the trans­
mitters. It reports a transmitter identifier, signal strength
and a reception timestamp for each observation to the DE­
CODE processing unit, usually over an existing wired net­
work infrastructure. For each transmitter, DECODE first
performs time alignment and interpolation to facilitate later
processing in the face of missing samples. It then extracts
periods of high signal variance, which are likely to corre­
spond to movement of transmitters. In the next step, it uses
moving window averaging to eliminate fast fading compo­
nents from the received signals of all transmitters. Finally,
correlation coefficients are calculated for each transmitter
pairs and correlation values exceeding a specified threshold
indicate co-movement of a transmitter pair.

In our prototype, we have implemented DECODE by
monitoring the RSSI indicators reported for each packet
reception by the receiver. RSSI has been shown to be a
good indicator of channel quality [19], hence it should pro­
vide adequate information about fading patterns. RSSI is
also available across all wireless technologies, which allows
measuring co-movement across different transmitters.

In the following subsections, we give details of each of
the components of DECODE.

All pairs Y
processed?

Transmitters
T(1 ),T(2),T(3),T(4)

I
(())) ((()))
T1 T2
T3 T4

((())) ((()))

•.. (···)k-1 ,(txmitteUD, tstamp, RSSI)k' (···~+1 ...

Receiver K

Figure 1. System diagram and data flow

served signal power from these transmitters should be cor­
related.

Received signal strength, however, also significantly
varies due to multi-path fading. It can introduce received
signal strength changes of more than 20dB between loca­
tions separated only by half the wavelength of the carrier
frequency, if no line-of-sight path to the transmitter is avail­
able. These variations render the similarities due to shadow
fading difficult to detect. To address this challenge, DE­
CODE uses a filter that reduces or removes multi-path ef­
fects by calculating the mean of the signals observed from
the moving path of a transmitter.

Movement also helps detection of shadow fading simi­
larities, because co-moving transmitters will experience re­
ceived signal strength changes due to shadowing at simi­
lar points in time (e.g., two co-moving transmitters would
pass a building comer at the same time). Intuitively, higher
speed of the transmitters will increase the frequency of these
changes and thus facilitate co-movement detection.

Figure 1 illustrates the system design and key process-
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3.2 Detection of co-movement

4 Experimentation

where Bx and By are the sample standard deviations. The
correlation co-efficient lies in the interval [-1, 1], where
o indicates no correlation, +1 indicates maximum positive
correlation, and -1 indicates maximum negative correlation.
We empirically detennined a correlation coefficient thresh­
old of 0.6 (see section 4.2), values that exceed this threshold
indicate co-movement.

I*Receivers I

Figure 2. Floorplan of the experiment envi­
ronment and the node placement

up pairwise transmitters in our expreriments to show how
DECODE works, but our approach could be applied to a set
of transmitters that are co-moving.

Two of the authors carried one laptop each (that contains
two WiFi cards each) and conducted the experiment. The
experiment was one-hour long with alternative static and
mobile periods. In that one hour duration, the authors were
walking at a speed of 1ft/sec for about 20-minutes. We call
this experiment Slow Mobility. We chose very slow speeds
because this represents the most challenging case. The same
one hour experiment was repeated once more where the
moving speed of the transmitters was increased from 1ft/sec
to 4-5ft/sec (normal human walking speed). We refer to this
second experiment as Walking-Speed Mobility.

(1)
~ XiYi - nxfi

TxY= ~-----
(n - l)Bx By

DECODE determines co-movement by monitoring
whether two transmitters experience similar changes in
RSSI. To this end, DECODE calculate a correlation coef­
ficient, which measures the strength of a linear relationship
between the two RSSI streams. DECODE uses the Pear­
son's product moment correlation co-efficient [2], a pre­
ferred method for quantitative measures such as the RSSI
traces used. For n samples each from two random variables
X and Y, Person's product moment correlation coefficient
T x,y is defined as

the optimal variance threshold to be three and the period
over which it has to be estimated to be 5s.

Filtering multi-path fading. Variance due to fast fading
should be removed from the RSSI traces to allow calcula­
tion of correlation primarily over large scale fading compo­
nents. DECODE uses a moving window averaging process
with a window size of one second for the elimination of fast
fading components.

The measured environment is a typical office environ­
ment with partitioned cubicle offices. We use the ORBIT
nodes [16] to setup IEEE 802.11b/g(Wifi) receivers at 4 dif­
ferent locations inside the office space as shown in Figure 2.
The Wifi receivers were configured to monitor Channel 1 in
promiscuous mode.

We used four IEEE 802.11b/g cards as transmitters
where a pair of WiFi cards were placed together in the
first laptop and the other pair of WiFi cards were placed
together in the second laptop as illustrated in Figure 2. The
WiFi cards generated ICMP ping packets on channell at
the rate of 10packets/sec. We use the ORBIT infrastructure
for capturing and logging each IEEE 802.11 packet from
these transmitters and store them in a postgres database.
For each packet, we logged the transmitter's MAC address,
the receiver's MAC address, RSSI and the time when the
packet was captured. We also recorded the ground truth
about the mobility of the transmitters. We note that we set

4.1 Effectiveness of DECODE

To evaluate the effectiveness of DECODE, we first ex­
amine the detection rate and the false positive rate in de­
termining the co-mobile transmitters. Figure 3 depicts the
detection rate and the false positive rate as a function of
time with respect to each receiver for the 802.11 network
for both Slow Mobility as well as Walking-Speed Mobility
experiments.

We compute the correlation coefficient for the samples
accumulated over the last Ts seconds and if the computed
correlation coefficient is larger than 0.6, the pair of trans­
mitters are declared to be co-mobile. Otherwise, this pair of
transmitters are declared to be not moving together. A de­
tailed discussion of the choice of the threshold is presented
in Section 4.2.We then estimate Detection rate as the per­
centage of times DECODE correctly reports Co-Mobility
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4.2 Sensitivity to Sampling Rate and Cor­
relation Coefficient Threshold

In this section, we study the sensitivity of our scheme
with respect to the different sampling rates and various cor­
relation coefficient thresholds.

The sampling rate is defined as rate at which the trans­
mitter transmits packets. We study the impact of varying
the sampling rate on DECODE's effectiveness at detecting
Co-Mobility.
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Figure 3. Effectiveness of DECODE in detect­
ing Co-Mobility

when the pair of transmitters are indeed moving together
and False positive rate as the percentage of times DECODE
incorrectly reports Co-Mobility when the Transmitters are
NOT moving together.

Figure 3 shows that in both the Walking-Speed Mobility
and Slow Mobility experiments, the detection rate increases
to 100% and the false positive rate drops to 0% as Ts in­
creases. This is because, with more time, a better shadow
fading profile that is common to the two co-mobile trans­
mitters but completely different for the two non-eo-mobile
transmitters can be extracted.

We found that the mobility speed also has an impact on
the time required to achieve high detection rate and low
false positive rate. In the Walking-Speed Mobility experi­
ment, it takes about 130 seconds to achieve 100% detection
rate with 0% false positive rate. Whereas it takes around
370 seconds to achieve the same in the Slow Mobility ex­
periment. This indicates that, with a higher moving speed,
more of the shadow fading effects could be observed within
a shorter duration and since we are essentially capturing the
shadow fading effects for detecting co-mobile transmitters,
a high detection rate could be achieved quicker in the ex­
periment conducted under the walking speed. The results of
the Slow Mobility experiment represent the worst case de­
tection performance of DECODE. In the next sections, we
provide our analysis for the Walking-Speed Mobility exper­
iment since it represents more typical scenarios for devices
carried by humans.

Figure 4. Sensitivity of DECODE to Sampling
rate.

Figure 4 presents the detection rate and false positive
rate as a function of time for packet sampling rates of 0.5
pkt/sec, 1 pkt/sec, 5 pkt/sec, and 10 pkt/sec observed at
Receiver-2. We do not present the results from other Re­
ceivers as the performance is very similar. The threshold of
the correlation coefficient is empirically determined to be
0.6. We found that for the sampling rates of 1 pkt/sec, 5
pkt/sec, and 10 pkt/sec, the time taken to achieve 100% of
detection rate and 0% of false positive rate is similar, about
130 seconds, although when the sampling rate is 0.5 pkt/sec
(Le., one packet every 2 seconds), the time to reach 100%
detection rate increases marginally to 150 seconds. This is
encouraging as it indicates that DECODE is not very sensi­
tive to the sampling rates.

We next analyze the sensitivity of DECODE to the var­
ious thresholds T of correlation coefficients. Choosing an
appropriate threshold will allow our detection scheme to be
robust to false detections. Figure 5 presents the detection
rate and the false positive rate when T equals to 0.4, 0.5, 0.6,
0.7 and 0.8 respectively. As expected, we observed that the
detection rate takes longer to reach 100% as the threshold
goes up, while the false positive rate drops to 0% quicker.
When T is 0.6, the false positive rate remains below 10% at
all times and the detection rate reaches 100% at almost the
same time as that of smaller thresholds 0.4 and 0.5. Hence,
we chose a correlation coefficient threshold of 0.6.
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In this work we presented DECODE, a system that de­
tects co-moving wireless devices. DECODE's strategy is
founded on observing the correlation coefficient of streams
of RSSI values from the transmitters.

Given one minute of mobile data, DECODE can drive
the true positive rate to 100% and the false positive rate to
0%. However, a key finding of this work is that mobility
is critical for our approach, and that the DECODE's effec­
tiveness scales with both the time and speed of the devices
mobility. We also showed that DECODE's performance is
insensitive to the sampling rate and a sampling rate of 1
packet/sec for 60 seconds was sufficient to achieve a near
perfect co-movement detectioin at Walking Speeds indicat­
ing that the approach is practical.

320


