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ABSTRACT. The transport capacity of a dense ad hoc network witibdes scales like
v/n. We show that the transport capacity divided#y. approaches a non-random limit
with probability one when the nodes are i.i.d. distributedite unit square. We prove that
the transport capacity under the protocol model is a subeedtuclidean functional and
use the machinery of subadditive functions in the spirit e to show the existence of
the limit.

1. INTRODUCTION

Consider a wireless network afnodes in a unit square on the plane. Finding the ca-
pacity region of this setup is an unsolved problem. Transpapacity is a metric which,
in a loose sense, indicates the sum rate of the network wilerporating the notion of
distance. It was shown ial[1] and [2] that the transport cap&€C) is ©(/n). More pre-
cisely whenno cooperative communication techniques are ugadept for pure relaying
of packet), the transport capacityis bounded by [1, 2]

Cov/n < T(X,) < C1vn

whenX, = {z1,---,z,} aren nodes uniformly distributed on the unit square and
is large. The lower bound is provided by Franceschetti etsling percolation theory.
When cooperative communication techniques are used,ahsgort capacity scales like
[B]. When one restricts the network to act like a packet nétwdthout any cooperative
techniques (except packet relaying), TC exhibits a nicevggtnc behavior. While it has
been proved that TC scales likén, the question whether the limit

T(X,
(1) lim (Xn)
n—o00 \/ﬁ
exists remained open when thenodese;, 1 < ¢ < n are i.i.d distributed in a unit square.
In this paper we show thdfl(1) converges to a constant withalility one. This technique
can be easily extended to show that
lim T(X,)/n? /4= A, as.

n—oo
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when the nodes; are distributed i.i.d if0,1]¢, d > 2 and A, is a constant depending
only on the system parameters and the dimengidfle show that transport capacity has a
geometric flavor similar to the minimum spanning trees (MEclidean matching (EM)
problem and Euclidean travelling salesman problem (TSR .ekistence of a limitis more
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of a mathematical interest, but the techniques used in pgdtie limit will help in a better
understanding of scheduling and routing mechanisms.

The paper is organized as follows. In Secfibn 2, we introddeeommunication model
and the definition of TC. In Sectidd 3, we present the geowsdtgroperties of TC and
derive the limit. In Theorern]2 we prove the convergence teghén the nodes are i.i.d
uniformly distributed on a unit square. Theorein 3 providssralar result when the nodes
are i.i.d distributed with a general PO x).

2. SYSTEM MODEL

We assume the protocol model [1] for communication betwaenrtodes, i.e., a hode
located atr; can communicate successfully to a node located;f the ball centered
aroundz; with radiusj|z; — z;|, 3 > 1, does not contain any other transmitter. When the
communication is successful, we assume one packet of iafitwmis transmittd

Definition 1. Transport Capacity: Fom nodes{z1, s, -+ ,x,} C R2, the transport
capacity of these nodes is defined as

T ({1,229, -+ ,x,}) = sup Z ijlzi — ;]
(i,5)€[1,2..n)?

where the supremum is taken over the supportable rate gair§he setS can also be
thought of as the set of all scheduling and routing algorishrmthe setS contains sched-
uling algorithm with fixed source and destination paiPs; denotes the information rate
that nodez; can communicate to; (we don’t count the relaying nodes). Observe tinat
definition of T'({z1,-- - , 2, }) depends only on the location of the nodgsl < i < n.
We make the following assumptions:

(1) Time is discretized.
(2) Message set for each source destination pair is indemend
(3) No cooperative communication techniques are used.
4 T({z:})=0
We will consider two cases. One with no constraint@nand the other with the following
constraint.
Constraintl: \;; > 0 for somej for everyi, i.e.,max; A\;; > 0, Vi

Notation Let B(x,r) denote a ball of radius centered around. For a set4, the com-
plement is denoted by the séf. For a finite setd, |A| denotes the cardinality of the set
A. We will use(A — B) to denote the set of transmissions with transmitterd iand
receivers inb.

3. LiMIT THEOREMS

In this section we show the existence of the lirhit (1) usingigdrom subadditive se-
qguences. A sequende,, } is subadditive ifa,,+,, < a,, + a,. By a theorem of Fekete,
we have thatim a,,,/m = inf (a,,/m) exists. Similar results hold when the sequence is
superadditive. Most of the geometrical quantities like ldreggth of a minimum spanning
tree onn points, or a Euclidean matching efpoints are not strictly subadditive. They
have a small correction factor, i.e., of the foum ., < an, + an + ¢(m,n). If the growth

lBasically we are neglecting noise. Neglecting noise canentiad achievable rate unbounded. So we cap the
link capacity to unity. Alternatively we can assume a padfénformation transmitted.



of ¢(m, n) can be controlled, the existence of the limit can be proveldeithe underlying
sequences are random variables, the existence of the diibivided by a classical result
of Kingman [4]. Steele has used such a frame work to provesttstemce of the limit of
a weakly subadditive sequences in the geometrical seBhdhe geometrical quantities
which exhibit such subadditivity are coined “Subadditizigclidean functionals”. We will
use the framework of Steele to prove the existence of the (i For doing so, we first es-
tablish the weak subadditivity of TC and other required prtips. We start by introducing
the following bound on TC which was proved In [6]. We stateoit §onvenience.

Lemma 1. [Sphere packing bound] The transport capacityrofiodes{z1, 2, - ,2,}
located in a squaré0, t]? is bounded by t\/n, whereC is a constant not depending on
the location of nodes ot.

Proof. See Section 2.5 in [6] O

3.1. Basic properties of TC. In this subsection, unless indicatéd, = {1, 22, -+ ,z,}
are deterministic points on the plane. From the definitioff’'pfve can considef” as a
functional on finite subsets @?Z. We then have

(A0) T (X,) is a continuous function ofz, z2, - - - , , } and hence measurable.
(A1) T (aX,)=aT (X,)foralla>0.
(A2) T(X,+z)=T(X,)forallxz € RZwhereX,,+z = {z1 + z,22 + 2, , 7, + 7}
(A1) and (A2) implyT is a Euclidean functional.
(A3) Monotone propertyl” (X,, U {z}) > T (X,,). The above monotone relation
does not hold true with constraint
(A4) Finite variance:
VarT ({z1, 22, - ,Zn}) < 00

whenz; are independently and uniformly distributed pn1]. This follows
from Lemmdl.

The next lemma provides an estimate, which is used to bounddtrection factor in the
subadditivity of TC.

Lemma 2. Consider the scenario in which nodes in a squére- [0,¢]> c R? can only
be transmitters that have to communicate with receiversidatthe square in a single
hop. If we restrict the maximum Tx-Rx distance ta:pe then the transport capacity in
this setup is upper bounded byt.

Proof. For a transmitter receiver pdity, y, ) denote

5—1
Dy = Usciine(zr,yr) B <I, ( 5 )|Ik — Ykl

i.e., the(ﬁgl) |z — yx| neighborhood of the line joining;, andyy . See Figur€ll. For all

the successful Tx-Rx pairs, the regiabg are disjoint. The proof of the above is identical
to Theorem 3.3in [6]. In our case we have that the transmsitte inside the squaj@ t]>.

Let the contending transmitter-receiver distanceghers, - - - ,r, }. Since the receivers
are outside the box and each transmitter-receiver paitieatisoundary, we have
-1
26 (ri+ro+--+mr,) <4t

2
Hence the single hop transport capacity in this case is uppanded byt /(5 — 1) O
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FIGURE 1. lllustration of the Proof. The coloured regions représBnp
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From the previous lemma we observe that the TC is constréinéue perimeter of the
domainA which contains the nodes, when the transmissions are fresetfid — A°). In
some sense this indicates that TC is maximized when the carication is local, i.e., short
hops. In the next lemma we prove that the bottleneck in a maptnetwork for achieving
TC is the maximum packing of scheduling on a plane. Loosetakmgunconstrained
TC metric is more suitable for a single-hop network.

Lemma 3. Multihop to single-hop conversidtrlattening the netwoik Any scheme which
achieves the TC consists of only single hops, i.e., evelygbazaches the destination from
source in a single hop.

Proof. Suppose a flow,; is helped by nodes. Now instead of assisting this flow, each of
thesen nodes send their own independent packets for a single hgstree. By simple
triangle inequality this procedure guarantees a singlesobigme that achieves the same
or larger TC. O

In the next lemma we prove a form of subadditivity. We use it that the network
can be visualized of as a single-hop network and the idedhtbdtC is maximized by local
communications. See Figdrk 2, for a graphical illustratbthe proof.

Lemma 4. [Cutting Lemmé Consider a squarel = [0,¢]?> C R?andletX = {z; ...z} C
A denote a set of nodes. DivideA into m? squares of equal sides with lengthn and
denote each square by;. We then have

T(X) <> T(XNA)+Cmt

=1

Proof. Let some scheme achieve the TCXf By Lemmd_ B the scheme that achieves TC
is a single hop scheme. We now focus on a single sqdareThere are three types of
transmissions(4; — A;), (4; — A¢) and(A4AS — A;). See Figur€l2. The contribution
of transmissions from; into A; to the TC, can be upper boundedByX N A4;). Hence
the total contribution by 4; — A;), 1 < < m? is upper boundédoy -7 T(X N A;).
The only transmissions which involvé;, to be accounted afel; — AS) and(AS — A4;).
Denote the contribution of these transmissions to the T@ biet F/(Ax) denote the set

2This is true since we consid&(X N A;) as only a function ofX N A;.
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FIGURE 2. Proof technique: The blue hashed circles (dark hashed) co
respond to (4; — A;) and the TC contribution can be bounded by
T(A;). The yellow unhashed circles correspondgtb, — AS). How-

ever these cannot contribute much to the TC by Lefima 2. Théamozx
contribution from them iscm?t/m = emt. There is a trade-off between
(A; — Af) and the large transmissions denoted by hashed yellow region
on the top corner. Observe that when the Tx-Rx distance etgréhan

a = 2v/2t/(m(B —1)), there can be a maximum of one transmission per
square (as in the green comb circle on the right corner).

of feasible transmitters in squark, with receivers indg. By the sphere packing bound

we have ,

> Y kepsor

k=1 (z,y)€F (Ar)
Letby = >, y)er(ay 1% — yl- So we require to bound = sup {E?jl bk} where the
supremum is taken over all the feasible transmissions Heattimber of squares with all of
their transmission distance less thas 2v/2t/(m(3—1)) ben. Denote this set of squares

by C, c {1,---,m?}. So we haveC,| =7 and7 = sup {Zkeca b + Y kece bk}.
Let A, € C5. We then haveF(Ay)| = 1. Hence), . by is upper bounded by (since
the maximum number of transmittersig® — n)

city/m? — 1
For the other se€,, with Tx-Rx distances less than by Propositiod 2, the contribution
> rec, bi to the transport capacity is upper bounded by

t

Co—1)
m
So we have :
T <city/m2 —n+ca—n, 0<n<m®
m
The maximum value of the right hand side for the given ranggisfctm. O

Theorem 1. Let {Qi :1<i < m2} be a partition of the squarf, 1]2 into squares with
edges parallel to the axis and length*. LettQ; = {z;2 = ty,y € Q;}.



(A5) Subadditivity: LetX = {x1, x5 - - -z, }. We then have

2

(2) T(X N[0,t%) <Y T(XNtQ:) + Ctm
=1
Proof. This follows immediately from Lemnia 4. O

Equation[(2), does not imply subadditivity, but only a weakem of it. Nevertheless
it is denoted as subadditive property for convenience.

Theorem 2. Letxz;,1 < i < n, andz; are i.i.d uniformly distributed irf0, 1]2. If Aij IS
not constrained then

Q i Rt g,

with probability one.As is a constant depending only gh

Proof. The conditions (Al) to (A5) indicate thdt is a monotone, Euclidean functional
with finite variance and satisfies subadditivifyl (3) follfrom the subadditive Euclidean
convergence theorem by Michael Steéle [5, Thm 1]. O

Observe that in the above theorem, monotonicity’aé necessary. Hence it does not
hold with constraints or\,;, i.e., constraint 1. To overcome this we require to prove the
smoothnessf T'.

Let@;,i € {1,2, 3,4} be a partition of the unit square infoequal squares. By Theo-
rem2 we have

(A6)
4
Z (FNQ;)+C

i=1
whereF is any finite set if0, 1]2. The above result follows from (A5) but we numbered it
for convenience. In the next Lemma we prove the smoothneE$.4f with respect to the
cardinality of A. Observe that this sense of continuity is different fromAO

Lemma 5. (A7) [Smoothness]: For finite point sef§ G C [0, 1] (observel’ andG need
not be disjoint), we have

4) IT(FUG) Q)| < e/|F)

wherec is a constant that does not dependEmndG.

Proof. We use the same trick as we did in Theofdm 4. We flatten the newid” U G.
The transmissions can be partitioned i@ — G), (FF — F), (G — F), (F — G).
The contribution of the transmissioi& — G) to TC can be upper bounded BYG).
Observe that the maximum cardinality of the remaining tnaissions can b&F’|. So we
have

T(FUG) < T(G)+cV/|F|
If we do not assume any constraint &gy, then we are done by the monotonicity.
Constraint 1 has to be satisfied, we n have to prove

T(FUG) > T(G)—cy/|F|

We use time sharing to prove this. By Lemfja 1, we hay&) < ¢1+/|F|. So we can
assumel’(G) > T(F) (otherwise there is nothing to be proved). We use time sbarin



between the set of nodes,andF'. By time sharing the constraint that each node transmits
some data of its own is satisfied. So we obtain a transportcasu

(5) AT(G)+ (1 =NT(F)
Choose
1
1-)\ = T .
T(F)

SoifT(G) > 2T(F), we have(l — \) < 1 and
T(G) = (T(G) =T(F)(1 = A)
= T(G)-T(F)
Otherwise we have < T(G) — T(F') < T(F). So from [5), we have
T(G) = (T(G) = T(F)(1 =)
T(G)-=T(F)(1=A)
T(G)-T(F)
i.e., any time sharing will give a transport capacity gretttanT(G) — T'(F). So by time
sharing we have constructed a scheme which obeys consltraimd has a TC of at least
T(G) — T(F). SinceT(F U G) is the supremum over all such schemes we have,
T(FUG) > T(G)-T(F)

(@
T(G) = eV |F|

2
2

where(a) follows from the sphere packing bound on the Bet O

(B-1) We also have the following. L&t andG be any finite subsets ¢, 1]2. Then
T(F) - T(G)|

INE

IT(F)-T(FNG)|+|T(G)-T(F NG|

AVIFNEN G +VIFNF NG}
< VE{VIFXFNO+G\(Fa)|
= V2¢/|FAG]

where(a) follows from triangle inequality an¢b) follows from Lemmab.

We now use the theorem from Rhéeé [7] to prove the existendaedlinit when Con-
dition 1 is satisfied. From the conditions (A1) to (A8) we hdve following convergence
of the mean and concentration around the mean. This reddk bgen with Constraint 1
unlike Theorenh 2.

Lemma 6. Let X,, = {x1,x2,--- , 1, } denoten i.i.d nodes in[0, 1]2. For the transport
capacity we have that

—~
<
=

lim =L Kn) _ g,
n—oo \/ﬁ

and

©) B(T(X,) ~ET(X,)| 28) < Cexp (—clg)



FIGURE 3. The hashed region is the boundary with thickness
2y/log(n)/n. We neglect all transmissions in the inside region with

length greater thag/log(n)/n.
Proof. Follows from [7, Thm 1]. Here we do not require monotonicitydahe complete
subadditive hypothesis. Conditions (A6) and (A7) replduese two. O

If we choose to bet,/n, we have the right hand side &1 (6)dsp(—C1tn). Equation
(6) also implies complete convergence i.e., foreal 0

(2

n>1

>e)<oo

3.2. Non uniform distribution of nodes. In the previous subsection, we have proved the
existence of the limit when the nodes are uniformly distiélolion an unit square. In this
subsection we prove the existence of the limit and show ligiom to A, when the nodes
are distibuted with a PDF(x). In Lemmd4, we proved an upperbounditoX,,) by the
transport cpacity of disjoint subsets #f. We now prove a lower bound t6(X,,) by
similar subsets of,,.

Lemma 7. [Asymptotic Glueing LemmnieConsider two bounded disjoint sets B C R?
and an infinite sequence of nodgs;}. Let X,, = {x1,z2, -+ ,2z,} be a subset of the
sequence. We then have

(7) T(X,NA)+T(X,NB)
(8) < T(X.N(AUB))+o(Vn)

Proof. Consider the flattened networks df and B which achieve the TC ofA and B
respectively. Wlog we can assume we can assiii) = O(y/n) andT'(B) = ©(y/n)
(otherwise there is nothing to prove). We have to find a schaumsh that[{I7) is satisfied.
Consider the following. At any time, neglect all transmiss with transmitter receiver
distance greater thatylog(n)/n. The loss in TC by removing these transmissions is
n/log(n). Thisis because, the loss is given hyax (Z( d; ) with the following

i,4)eT Y
constraints

{ Z(i,j)e’]’ dzzj <A

dij>1/M



whereT is the set of all feasible transmissions with Tx-Rx distagieater thar/n/ log(n).
The solution to the above problem {gAn/log(n). See Figur€l3. Now neglect all the

nodes along the boundary @f and B in a strip of width2,/log(n)/n. The maximum
penalty because of this is

c 1og(n)\/ﬁ = cy/log(n)

n
Now operated and B networks together except for the nodes in the strip as mesdio
above and the transmissions with Tx Rx lengths greater {fig(n)/n. So we are still
left with a transport capacity of (that can be achieved byuthien).

T(A)+T(B)—c @ — c2v/log(n)
(vn)

B
= T(A)+T(B)—o
We can operate the neglected stripsicdnd B, the neglected transmissions and the others
in a time sharing fashion with time shares

1 1 1 1 1
n’ 3n’ 3n’ 3n
In the resulting network Constraint 1 is satisfied. O

We have the following lemma required to prove the limit whiee hodes are not uni-
formly distributed. We can generalize the previous Lemma digsjoint squares to prove
the following.

Lemma 8. (A-9) Let@;, 1 < i < s be a finite collection of disjoint squares with edges
parallel to the axes and let; € R2, 1 < i < oo an infinite sequence. Let,, =
{x1, 22, -+ ,2,}. We then have

D T(XnNQ) < T(XnNUL Qi) +o(vn)

=1
Proof. Follows from Lemma&l7. O

We now prove the limit theorem when the nodes are i.i.d. iBisted with ablocked
distribution. A blocked distribution is of the formp(z) = Y7, 1¢(;)(z) whereQ(i) are
disjoint squares with edges parallel to the axes. We usedhmbeneous property of TC
and the glueing lemma to prove the nextlemma. Also obseatéth) looks like a simple
function. Extending the result to general distributiongfisnore technical nature and is
stated in Theorem 3.

Lemma 9. LetY;, 1 < i < n be a sequence of i.i.d random variables with bounded
support and no singular pafB]. Let the absolutely continuous part be givenddy:) =

> i1 low)(z) whereQ(i) are disjoint cubes with edges parallel to the axes. Vgt=
{Y1,---,Y,} One then has

. Tn) D
lim ~n —Ag/Rd Vo(z)d

n—00 n

Proof. We follow the method provided in [5]. Without loss of genésalwe assume that
the support of RW; lies in [0, 1]2. Since theQ) (i) are disjoint we have by Theordmh 2,

©) TV, < Y T(VunQ(i)+Cs

=1



We have thad,,NQ(7) is uniform on@(7) except for the un-normalized measutéQ)(i)).
Using (A-1) and Theoreiid 2, we have

: TRLQM) :
nhﬂngo V2i=1 1aw (W5) A2/m(Q(D))

By the law of large numbers we have,

3 1ow) (y5) ~ naim(Q(0)) a.s

j=1
So
Jim TEORO) L, (i)
So using[(®), we obtain
lim nbgro)o T\(/yﬁn) > Ay / Vo(x)dr
By Lemmd8,
(10) T(Va) 2 Y T(Vu N Q1)) + o(v/n)

=1

By using a similar procedure oh{10), we have a similar resullim inf and hence the
lemma follows. O

The next theorem characterizes the limiting behavior of Timwthe nodes are not
uniformly distributed.

Theorem 3. Lety; be i.i.d random variables, with PDF(z) (i.e., no singular part w.r.t
Lebesgue measure) and bounded support. We then have

lim T2y ym) = A V f(x)da
R2

n—o00 \/ﬁ
Proof. Follows from (B-1), LemmAal9 and Theorem 3iri [9] (Observe thewe theorem is
not proved when the measureigfthas singular support). O

We immediately observe that the constant ., 1/ f(z)dz is maximized wheny; are
uniformly distributed.

4. CONCLUSION

In this paper we have shown that the transport capacityraddes distributed i.i.d with
bounded support, when scaled $%: approaches a non-random limit. The existence of a
limit is more of a mathematical interest, but the techniqussd in proving the limit will
help in a better understanding of scheduling and routingraisms.
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