
UC Davis
UC Davis Previously Published Works

Title
Results-Oriented Security

Permalink
https://escholarship.org/uc/item/15t7f8cq

Authors
Bishop, Matt
Ford, Richard

Publication Date
2011-10-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/15t7f8cq
https://escholarship.org
http://www.cdlib.org/


Results-Oriented Security

Matt Bishop
Dept. of Computer Science

University of California at Davis
Davis, CA 95616-8562 USA

bishop@cs.ucdavis.edu

Richard Ford
Harris Institute for Assured Information

Florida Institute of Technology
150 W. University Blvd, Melbourne, FL 32901 USA

rford@fit.edu

Marco Ramilli
D.E.I.S.

University of Bologna
Via Venezia, 52 - 47023 Cesena ITALY

marco.ramilli@unibo.it

Abstract

Current security practice is to examine incoming
messages, commands, data, and executing processes for
attacks that can then be countered. This position paper
argues that this practice is counterproductive because
the number and variety of attacks are far greater than
we can cope with. We propose a results-oriented ap-
proach, in which one focuses on the step of the attack
that realizes the compromise. Thus, the manner in which
the compromise is effected becomes less important than
the actual result, and prevention, detection, and recov-
ery efforts are focused on that.

1 Introduction

Computer security practitioners have long studied
how attacks work. Their goals have been twofold. First,
to understand the attack in order to detect it; what are
the particular characteristics of the input (whether it be
typed commands, commands from a network, malicious
or malformed data, or other inputs) that allow someone
to identify it as dangerous? Second, how do we foil the
attack—for example, by disrupting some aspect of the
attack to prevent its consummation? This “observe and
analyze” approach also may reveal information about
the source or the nature of the attack, such as the lo-
cation of the attacker.

Beneficial as it is, this approach implies that exploita-
tion is a discrete event. It also assumes that the charac-

teristics of the attack can be detected. This means that
they are either unusual in some way, or known in some
way. The first (unusual) is the basis for anomaly-based
intrusion detection methods, as well as the more infor-
mal “hey, this doesn’t look right!” feelings that lead sys-
tem managers to uncover insider attacks. The second
(known) is the basis for both misuse detection, in which
a mechanism looks for the “signatures” of the attack, and
for specification detection, in which a mechanism looks
for any unexpected behavior as evidence of an attack. In
all three cases, the defenders must know what is “usual,”
what is “bad,” or what is “good.”

While one would expect these to be known in ad-
vance, such an expectation is unrealistic. New at-
tacks evade misuse detection and incomplete or incor-
rect specifications cause specification-based detection to
miss attacks. Establishing a baseline for “normal” or
“expected” requires a set of attack-free data and an en-
vironment in which users’ profiles change either pre-
dictably or not at all which typically is not true in ones
where detecting attacks is critical.

An alternate approach is to look for the results of the
attack. What does the attack do? One can consider the
result at a high level of abstraction—for example, en-
abling an unauthorized user to obtain root access—and
look for that. The problem is the myriad of ways that
such a goal can be attained (compromise of a sudo con-
figuration file, alteration of a passwd file, exploiting a
buffer overflow, etc.) make monitoring the high-level
goal very difficult. But monitoring a low-level goal, for
example one of the ways in which the high-level goal



can be attained, is eminently practical. Doing so offers
several advantages over detecting attacks.

First, in order for an attack to be successful, it must
attain some goal. If we can detect the attempt to attain
the low-level goal, we identify that an attack is occur-
ring. From that, we can often work backwards to de-
termine what the attack was. Second, by focusing our
resources on the goal, whether we detect the specific at-
tack while it is under way or not is irrelevant. The key
point is that , should an attacker come up with a new way
to realize the goal, or modify an existing attack to evade
current detection mechanisms, we lose little because we
still detect the result of the attack. Third, we are forced
to analyze what we are trying to protect, in order to de-
termine the (low-level) goals. This has a salutary effect
on our understanding of the security of the system.

Throughout this paper, we assume that one can de-
scribe high-level events that are considered security
breaches; these events are the “goals” of the attacker.
We note that characterizing (or even identifying) all such
goals is a non-trivial problem endemic to all of secu-
rity; security policies are rarely exhaustive a priori, but
rather are defined a priori and then modified as ex-
perience demonstrates new compromises, and as new
needs and requirements of the organization are identi-
fied. Thus, the application of results-oriented security
must evolve to reflect the current set of security threats
and requirements, and consequently the current set of
attacker goals. This problem arises in other contexts,
notably specification-based intrusion detection [14].

It is important to distinguish our work from deriving
vulnerabilities, which has been the focus of much recent
work [4–6,18]. For us, the details of the attack are irrel-
evant. What matters is what the attack ultimately does.
Knowing about vulnerabilities and attacks helps when
analyzing potential goals of attacks, which augment pol-
icy and goals. However, for detection, we focus solely
on the intermediate and final goals of the attackers.

2 Attack Detection

When we think about attack detection, we tend to
think about determining whether something is “bad” or
“good”. “Good” is not designed to harm us, and “bad”
is. To protect a system, simply decide what is bad and
what isn’t.

Unfortunately, distinguishing between “good code”
and “bad code” using static analysis is anything but sim-
ple. Cohen [2] demonstrated this was equivalent to the
halting problem. This is further complicated by attacks
such as buffer overruns that blur the lines between exe-

cutable code and data, making it unclear how the system
will actually handle a particular piece of input without
viewing it in context.

Despite these difficulties, our existing protection
techniques generally focus on this sorting process. Virus
scanners work by attempting to detect patterns of mali-
cious behavior in emulated environments, or by look-
ing for signatures of known-malicious sections of code
(for an overview, see Szor [28]). Recently, vendors have
begun leveraging the cloud and the presence of ubiqui-
tous connectivity to see how well known a particular file
is (the idea being that common files are less likely to
provide the user with an unpleasant surprise), but once
again, this relies on being able to tell that a piece of bi-
nary data is executable.

While these approaches provide a powerful way of
reasoning about the probable danger from executable
objects, many exploits do not enter the system as exe-
cutable files. Thus, the protective measures must also
examine data for its risk, making these defenses yet
more difficult. Data is not supposed to stay the same; it
changes from request to request. Data is often strangely
structured. Data is, essentially, messy.

Technologies like deep packet inspection [10, 12, 22]
and detection of embedded shell code [8, 23] can help,
but given the intimate interaction of the data with the
host system, it is very difficult to predict behavior in situ
reliably [15, 27]. Nevertheless, our networks are archi-
tected around this “attack detection” paradigm, where
we base our defenses on the fallacy that we can reliably
sort good from bad at the border of our system or our
site.

Given the challenges of detection based on appear-
ance, people have put significant effort into detect-
ing malicious behavior within services and executables
based on their actions. Behavioral analysis examines
what actually happens on the machine, typically on a
per-process basis, to determine if an attack is underway.
For many applications, this is quite effective. For exam-
ple, behavioral detection works well for virus detection
and prevention [7, 13].

While behavioral analysis ameliorates some of prob-
lems, the approach still focuses on sorting out the good
from the bad, and detecting and stopping attacks within
a narrow temporal and spatial window. The Shield sys-
tem [31] provides an excellent example of what behav-
ioral detection methods can do. Shield uses runtime in-
strumentation to detect when the system is in a position
where a vulnerability is about to be exploited, and then
modifies execution at this point. This works for known
attacks, but it does not handle unknown attacks.



Finally, the success of zero-day attacks indicates that
current attack detection methods are far from complete.
Zero-day attacks exploit previously unknown vulnera-
bilities. According to McQueen et al. [16], the num-
ber of such vulnerabilities in existence on any given day
may be as high as 2500. Not knowing these vulnerabili-
ties, we cannot characterize attacks that exploit them.

So, instead of looking for conditions showing that a
particular attack is under way, we view the system holis-
tically, searching for changes of state we care about.

3 Result Detection

THe detection methods above depend upon the attack
taking specific steps. Therein lies the problem: if the
attacker can disguise these steps, the detection mecha-
nisms become ineffective. Either they generate a large
number of false positives, or are susceptible to false neg-
atives.

Consider an attack to be a sequence of steps A =
a1 . . . an. An attack detection mechanism looks at
the sequence and finds a matching subsequence B =
ai . . . ai+k. Ideally, B is unique to A; that is, it will
only occur when A occurs. We now construct a generic
method for evading the detection of B. As the attack de-
tection mechanism looks for B in a particular environ-
ment, we must disrupt the mechanism’s ability to recog-
nize B. There are two ways to do this.

First, replace B with something equivalent but suffi-
ciently different to avoid detection. For example, com-
puter malware that introduces variability using encryp-
tion aims at achieving this goal. The response has been
to look not for the malicious code but for the decryption
routines; and the counter is to make these decryption
routines polymorphic.

Second, disguise B in some fashion so that the detec-
tion mechanism cannot identify B. For example, most
anti-malware software looks for previously-identified
patterns in single files, or subsequences of behavior (ac-
tions) in a single process or a process and its descen-
dants. In the first case, one can simply rewrite the mal-
ware so that the subsequences are split over multiple
files, and not reassembled until execution. In the sec-
ond case, independent processes can execute different
parts of the sequences of actions, coordinated so that
the result is the same as if the sequence of actions had
been executed directly. This approach is not confined to
malware; Wagner and Soto [30] show how to do this to
evade many host-based intrusion detection systems.

More formally, consider a requires/provides model of
attack detection [29]. In such a model, the component

parts (bytes forming the attack, or actions forming the
attack) are leaves in a tree. As each leaf is found, the at-
tack meets requirements of intermediate steps, and these
intermediate steps are represented as internal nodes.
These intermediate steps provide additional capabilities
that meet some requirements of “higher-up” intermedi-
ate goals. This continues until the final goal, represented
by the root of the tree, has all its requirements satisfied.

Attack detection mechanisms work by examining the
leaves (component parts), and from them inferring the
intermediate nodes, and ultimately that the requirements
of the root of the tree may be satisfied, thus realizing
the attack. Of course, a new organization of component
parts leads to a different attack tree, but an astute at-
tacker can counter this by rearranging or repartitioning
those components, leading to an “arms race” that makes
defenses at best ineffective and at worst triggering alerts
on so many innocuous actions that the rate of false pos-
itives renders them useless.

Rather than focus on detecting the leaves of the attack
trees, we focus on the root. As that is the compromised
state, we instrument the system to detect when that goal
is reached. Even if the goal is reached using some dif-
ferent (and possibly unknown) sequence the detection
method works because it looks for the attack result and
not the attack itself.

The limitations of detecting damage at the leaves is
perhaps best illustrated by an example. Imagine that we
are attempting to ward off a physical attack—all majors
blows are blocked by our defenses. However, smaller
attacks and injuries are let through; eventually, even
though no single event was sufficient to cause us serious
injury, the combined impact of the small attacks will be
sufficient to cause us deadly harm. Thus, it is crucial to
view the combined impact on the system, not simply the
individual result of any single action.

This result detection mechanism can be designed in
one of two ways. The first is state auditing, in which
the system state is examined for violations of the secu-
rity policy. This method is appropriate when the compo-
nents of the state affecting security are few, and can be
readily checked, or when periodic scans are considered
sufficient. Tripwire [11], configured to target specific
files, is an example of such a mechanism.

A variant of state checking, which may be more ef-
fective in some cases, is to check state after a particular
action. In this case, only those components of the state
affected by the action need to be checked. For example,
when an action to alter the Windows Registry is found,
the system either allows the action to proceed and then
checks the Registry to see if it is in a compromised state,



or emulates the action and determines whether the action
would put the Registry into such a state [24].

The difference between this second form of result de-
tection and ordinary attack detection lies in what is be-
ing detected. Consider a polymorphic encrypted virus.
The generic decryption technology used to detect these
viruses typically loads the suspect executable into an
emulator. The emulator periodically uses heuristics to
analyze the memory for malware. It does not check that
the malware has done anything; it looks simply for the
malware [17]. Result detection would check for the re-
sult. Similarly, heuristic-based intrusion detection sys-
tems look for patterns of behavior, such as system call
patterns [9] or function references [20].

To demonstrate this approach, we present three exam-
ples of attacks using malware that attack detection will
fail to catch but results detection will catch.

4 Examples and Analysis

Given a signature -based attack detection mechanism
(including behavioral signatures), one can construct an
attack that will either not be detected by existing signa-
tures or whose detection will trigger a large number of
false positives. In other words, one may be able to iden-
tify the attack from a signature, but that same signature
will not uniquely identify the attack; it will also match
innocuous, and in some cases common, actions.

These attacks grew from two observations. First, sig-
natures used by anti-malware systems must distinguish
between malicious and benign programs. Second, both
attack and non-attack programs and processes ultimately
use the same “building blocks,” namely computer in-
structions. Thus, signatures must distinguish attacks and
non-attacks based on specific instructions ordered tem-
porally. Unless they track every instruction in order of
execution, anti-malware systems must make simplifying
assumptions—and these assumptions can be negated.

Consider static signatures that, when found in a file,
cause anti-malware systems to report that the file con-
tains malware. Partition the file into several pieces such
that no single piece contains a malware signature, but
such that loading them together in memory recreates the
malware. Attack detection fails because the signature
will not be detected as it is never in the file [25].

Now look at behavioral signatures. Here, a series
of actions provide a basis for an anti-malware system
to assert that a process contains malware, because that
series matches a signature of execution. The computa-
tional overhead of monitoring all processes in real time,
and analyzing all possible combinations of commands

that occur, is simply too high to be practical. So anti-
malware systems focus on related processes—parents
and descendants, or siblings. One can then take the
program with the embedded malware, split it into sev-
eral programs that run independently but communicate
in various ways (such as IPC, which may well associate
the processes enough to enable anti-malware systems
to detect the co-ordination, or covert channels, which
will not) so that the effect of all the processes execut-
ing is the same as the single original program. This also
evades many anti-malware systems, because the signa-
ture will not be detected as it lies scattered over several
processes [26].

These attacks involve executing files constructed to
avoid signature detection, or running processes con-
structed to avoid behavioral signature detection and that
result from executing downloaded files. In both cases
a co-ordinator must assemble the downloaded files and
execute them. But, as noted above, those files are simply
collections of data and computer instructions. We sug-
gested that they might be obtained directly from existing
files or processes.

The second set of attacks does exactly this. The
concept of “gadgets” has grown directly from an ex-
ploit technique known as “Return Oriented Program-
ming” (ROP). As chipsets have become more sophisti-
cated, various countermeasures have been put in place to
make exploitation of vulnerabilities more difficult. The
use of the “no execute” attribute, for example, attempts
to prevent an attacker from executing data, and “stack
cookies” try and detect buffer overruns that cross stack
frames. Such countermeasures basically prevent typical
attacks that overrun a return address on the stack (dis-
cussed, for example, by AlephOne [1]) and transfer con-
trol to the attacker-supplied buffer.

Given that buffer overruns remain a common pro-
gramming error, attackers began exploring new ways
to exploit them, and eventually settled on ROP. Here,
an exploit does not contain the actual executable code
needed to carry out an action, but instead leverages code
already extant on the system. Sometimes ROP uses
well-known API calls to carry out its work, at other
times it carries out its mission using small fragments of
code (called “gadgets”).

Defending against this technique focuses on disal-
lowing usable code fragments at build time [19]. Never-
theless, the idea of gadgets does raise some interesting
questions, and highlights the importance of results anal-
ysis. Arguably, especially for a Trojan Horse, the vast
majority of the code that executes the attack could actu-
ally be code that already exists on the system. In fact,



one can create an exploit using ROP that is never exe-
cuted, but only alters the execution path of code already
resident on the system.

This leads us to an interesting discussion. Consider
a piece of stand-alone malware. This attack code is sent
in its entirety to the host machine, and when run formats
the first fixed disk. Clearly, it is malware, and should
be classified as such. Now consider data input which
overruns a buffer adjacent to a function pointer, direct-
ing flow to an-already extant piece of code on the system
that formats the first fixed disk. The exploit contained no
code; it just contains some padding data (which is typ-
ically irrelevant) and the address of a function. Is this
something which we should detect (is it malware?) and
more importantly does it make sense to even try and de-
tect it? We argue that the system must be viewed holisti-
cally. The data is not malware—the combination of the
errant data and the environment is.

We note that this concept is not new per se. Cohen’s
original work on computer viruses [2, 3] always consid-
ered a computer virus to be a combination of the en-
vironment (machine) with a set of instructions. Thus,
there is nothing technically incorrect about considering
our data-only attack to be malware, but it is not neces-
sarily helpful to do so.

4.1 Bad Good Code

As touched on above, part of the challenge comes
from our insistence on determining whether particular
things—in isolation—are good or bad. Such classifica-
tions tend to imply intent, and determining the intent of
the attacker is not really possible. The best we can do,
in the absence of being able to ask the author himself, is
guess.

In the case of gadgets, this classification scheme is
stretched to the point of breaking, and the unnatural con-
tortions it requires of us become evident.

Consider, for example, a piece of attack code (for il-
lustration, we use a JPG file that triggers a buffer overrun
in a viewer). This attack code makes use of ROP tech-
niques and gadgets its author has previously identified
in the viewer. Here, then, the viewer is vulnerable, but
the attack itself is found in the JPG.

However, let us assume that the attacker has some
(limited) control over the code for the viewer. Perhaps
it is an open source project, or the attacker works for
the viewer’s manufacturer. Regardless, the control the
attacker has over the source code in not complete, as the
code for the viewer must in either case pass peer review.

Based on his analysis, the attacker determines the
viewer is vulnerable to a buffer overrun, but lacks the

presence of a certain gadget to make this vulnerability
exploitable. He modifies the source code, changing po-
tentially just one or two bits of the compiled output, cre-
ating the necessary preconditions for the exploit. Is the
viewer now “bad”? Should it be detected, in addition to
the JPG which contains the attack? Can we even now
honestly say the attack is contained in the JPG, when in
actuality, the attack code, at least in part, has been in-
cluded in the viewer?

Taking this a step further, the attacker could actually
embed all the functionality he needs in the viewer, ex-
cept for the actual redirection that sets the chain in mo-
tion. Thus, our “exploit” code is actually just a buffer
overrun and one associated address. All other function-
ality now exists in the viewer. Here, most researchers
would instantly argue the viewer was in fact a Trojan
Horse, and the JPG simply the trigger.

These two points represent two ends of a continuum.
As the attacker deliberately builds in gadgets, the attack
uses more code already extant on the system. Looking at
the binary, or possibly even the source, it is impossible
to tell that the code has been written to facilitate the ex-
ploitation of a vulnerability elsewhere in the codebase.

This thought experiment is interesting for two rea-
sons. First, it highlights the intimate linkage between the
JPG and the application or service it exploits. Second, it
illustrates the futility of attempting to search incoming
information (be it data or code) for exploits.

From an attackers perspective, the idea of deliber-
ately embedding gadgets is attractive. They will not be
found by traditionally vulnerability scanning tools that
focus on source code analysis (indeed, they may not “ex-
ist” in source form at all, but in the compiled code). With
care, the code that enables them will pass a code review
by another coder. Finally, this code can be spatially and
logically separated within the binary, like tumblers in a
combination lock. They will be hard to find by fuzzing
or other automated testing techniques, and represent a
beautiful latent back door that can be opened at will.

Finally, some of this functionality may not be in the
code at all. Careful (and slight) misdocumentation of
API side effects allows the attacker to have the code ap-
pear to be perfect based on documented functionality.
Thus, detection by inspection (as opposed to behavior)
requires considerable context within the system.

4.2 Result Detection

These attacks techniques focus on the attack detec-
tion method, and illustrate the difficulty of anticipating
all possible attack vectors. An attacker with knowledge



of the defenses can examine ways to evade those mech-
anisms. In general, detection mechanisms work in three
ways:

1. Catch attacks at the perimeter, when they are in-
jected into the system. As noted above, these can be
evaded. In particular, the evasion mechanisms need
to distinguish attacks from non-attacks with an ac-
ceptable rate of false positives—a rate that does not
overwhelm the analysts.

2. Catch the attacks during execution. This problem
is similar, except that instead of instructions, the
detection mechanisms look for temporal sequences
of actions in related processes. By distributing the
actions over multiple unrelated processes, the at-
tack detection mechanism can be evaded.

3. Catch the results of the attack. Here, the focus is
not on the attack but on how it causes a deviation
from correct behavior.

Table 1 summarizes the primary differences in these
approaches. Each technique has advantages and disad-
vantages. None is necessarily a replacement for the oth-
ers, but combinations should provide robust protection.

When malware executes, it may not violate any part
of the security policy. However, when the attacker car-
ries out an action that does violate the policy, a result-
oriented approach will detect it. Centering detection on
goals we care about should provide protection of the
things that matter.

The need is even more striking with gadgets. The
“attack code” is already resident on the system, in
innocuous forms; indeed, eliminating it would break
harmless, and in some cases essential, programs. So de-
tection would have to focus on executing that code. But
given the complexity of distinguishing between “good
executions” and “bad executions,” this seems infeasible.
Extending the analysis to the limit leads to a situation in
which any execution and any program is suspect, pro-
ducing an overwhelming number of false positives.

Consider another example, that of network-based
data exfiltration. Attack detection methods would look
for processes that might open files containing sensitive
data, or scan files looking for sequences of code that
could open such files. The result detection approach
may take one of two forms.

First is simply to monitor the boundaries that sensi-
tive data should not cross (noting, of course, that these
boundaries may be different for each sensitive datum).
When the defensive mechanism detects the crossing, it
blocks the flow of the sensitive information, and reports

the problem. This approach, which is essentially to de-
fine the set of messages that may cross the boundary,
is imperfect. For example, encrypted data requires spe-
cial handling. Variants of this method (such as isolating
networks on which the data lies) improve technological
defenses, but leave procedural defenses grounded on im-
perfect human beings.

A second form of the result detection approach is to
monitor all accesses to the sensitive files through the use
of watchdogs or some similar technology. That the file
be opened and the data read is a necessary step in the at-
tack. Filters and other mechanisms can reduce the num-
ber of false positives, but as with all security mecha-
nisms, imperfections remain. Yet this method will pro-
duce no false negatives, because if the data is not ac-
cessed, it cannot be exfiltrated.

Developing detection mechanisms that analyze attack
results rather than attacks requires a discipline of anal-
ysis. First, the specific compromised states must be
identified; then, the specific commands, system calls, or
other actions must be enumerated. A goal-based analy-
sis approach similar to that for developing systems de-
signed for forensic analysis [21] is appropriate here.

5 Conclusion and Future Work

This paper argues for a focus on the outcome of the
attack rather than the attack itself. This has three advan-
tages. First, it identifies entry into a compromised state,
which is after all the definition of a violation of secu-
rity (and of a successful attack). Second, it reduces the
complexity of the detection mechanisms because those
mechanisms need not look for potential attacks, which
requires a large number of signatures or multiple heuris-
tic mechanisms. Detectors can either check for known
good states, or states that are known to be bad. Third,
it forces the developer of the detection methods to take
into account the environment in which the attack is to be
realized—something essential for dealing with the lim-
iting cases of the gadgets, identified above.

Instances of this approach have always existed. For
example, Tripwire [11] scanned file systems and re-
ported anomalies that may have been the result of at-
tacks. However, our approach has a different perspec-
tive: we look for those indications that are specifically
tied to compromising the system rather than scanning
for anomalies. This reflects the difference between
anomaly-based and specification-based intrusion detec-
tion [14]. The former, and past work involving looking
for results, looked for unusual events and presupposed
they indicated attack. The latter, and our approach, look



Technique Philosophical
Approaches

Attacker
Countermeasures

Advantages Disadvantages

Anomaly
Detection

“What’s different is
bad”

Blend traffic/behav-
ior in with normal
behavior. Deliber-
ately create false
positives.

Capable of detecting
new attack modali-
ties, provided they
look “different” to
normal behavior.

The underlying as-
sumption (different
== bad) can give rise
to unacceptable false
positive rates.

Signature
Detection

“Find the things we
know are bad”

Server-side meta- and
polymorphism.

Very reliable for
known attacks.

Very poor against
new attacks.

Behavioral
Detection

“Determine where
good or bad based on
actions”

Mimicry of benign
operations, spread
attack over multiple
small objects/actions.

Quite good at detect-
ing new attacks, ac-
ceptable false posi-
tive rates.

Too focused on be-
havior of individual
objects instead of the
system holistically.

Results De-
tection

“Make sure undesir-
able events do not
happen to protected
things”

Come up with goals
which are consonant
with the concept of
system behavior.

Detects the part of the
exploit we care about
– the violation of the
data/system.

Difficult to quantify
the potential goals of
the attacker for many
cases.

Table 1. Table of results-oriented detection techniques

for results known to be the result of attack.

One difficulty is that many compromised states are
unknown. This means that the relationship between
the implementation of the system and the security policy
is not fully understood. But this is essentially the same
problem as not having signatures for all attacks available
which is the current state of the art, as the term “zero-day
vulnerability” implies. So this problem is no worse than
one existing in current attack detection mechanisms, and
in fact is probably more tractable.

An interesting question is how the false positives and
negatives for the results-oriented approach compare to
those of the attack-oriented approach. Another inter-
esting one involves examining vectors for distributing
attacks using gadgets. In a way, it is like building a
combination lock into an application. Each little part
looks innocuous, but given the right sequence, the lock
springs open. The distributed nature has several ben-
efits for the attacker. First, the spatial and potentially
temporal distribution makes these parts very hard to
find. They will resist analysis using fuzzing and static
analysis tools. Second, some of the distributions could
even include errors in documentation, where an API is
slightly, but deliberately, misdocumented. That would
allow the parts of the attack code to pass code reviews.
Finally, a group of attackers might be able to use differ-
ent libraries, shared objects, and compilers on a platform
like Linux to develop an attack that is very difficult to de-
tect unless the mechanisms look for the results. This is
disturbing, to say the least, and calls for the attack-result

detection paradigm we have developed here.

Acknowledgements: Matt Bishop thanks the National
Science Foundation for the support of grants CCF-
0905503 and CNS-1049738 to the University of Cali-
fornia at Davis. All opinions are those of the authors
and not necessarily those of the National Science Foun-
dation.

References

[1] AlephOne. Smashing the stack for fun and profit.
Phrack, 7(49), 1996.

[2] F. Cohen. Computer viruses: Theory and experiments.
Computers & Security, 6(1):22–35, Feb. 1987.

[3] F. Cohen. A Short Course on Computer Viruses. John
Wiley & Sons, Inc., New York, NY, USA, 1994.

[4] M. Costa, M. Castro, L. Zhou, L. Zhang, and
M. Peinado. Bouncer: Securing software by blocking
bad input. In Proceedings of the 21st ACM SIGOPS Sym-
posium on Operating Systems Principles, pages 117–
130, Dec. 2007.

[5] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante: End-
to-end containmanet of internet worm epidemics. ACM
Transactions on Computer Systems, 26(4):9:1–9:68,
Dec. 2008.

[6] J. R. Crandall, Z. Su, S. F. Wu, and F. T. Chong. On de-
riving unknown vulnerabilities from zero-day polymor-
phic and metamorphic exploits. In Proceedings of the
12th ACM Conference on Computer and Communica-
tions Security, pages 235–248, 2005.



[7] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D.
Tenaglia. A behavioral approach to worm detection. In
Proceedings of the 2004 ACM Workshop on Rapid Mal-
code, pages 43–53, 2004.

[8] B. Gu, X. Bai, Z. Yang, A. C. Champion, and D. Xuan.
Malicious shellcode detection with virtual memory
snapshots. In Proceedings of the 2010 IEEE INFOCOM,
pages 1–9, Mar. 2010.

[9] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 6(3):151–180, 1998.

[10] D. Jain, K. V. Lakshmi, and P. Shankar. Deep packet in-
spection using message passing networks (extended ab-
stract). In R. Lippmann, E. Kirda, and A. Trachtenberg,
editors, Proceedings of the 2008 Symposium on Recent
Advances in Intrusion Detection, volume 5230, pages
419–420, Sep. 2008.

[11] G. H. Kim and E. H. Spafford. The design and imple-
mentation of tripwire: A file system integrity checker.
In Proceedings of the Second ACM Conference on Com-
puter and Communications Security, pages 18–29, 1994.

[12] S. Kim and J.-Y. Lee. A system architecture for high-
speed deep packet inspection in signature-based network
intrusion prevention. Journal of Systems Architecture,
53(5-6):310–320, May 2007.

[13] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A.
Kemmerer. Behavior-based spyware detection. In Pro-
ceedings of the 15th USENIX Security Symposium, Aug.
2006.

[14] C. Ko, M. Ruschitzka, and K. Levitt. Execution monitor-
ing of security-critical programs in distributed systems:
A specification-based approach. In Proceedings of the
1997 IEEE Symposium on Security and Privacy, pages
175–187, May 1997.

[15] J. Mason, S. Small, F. Monrose, and G. MacManus. En-
glish shellcode. In Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security, pages
524–533, 2009.

[16] M. A. McQueen, T. A. McQueen, W. F. Boyer, and M. R.
Chaffin. Empirical estimates and observations of 0day
vulnerabilities. In Proceedings of the 42nd Haeaii In-
ternational Conference on System Sciences, pages 1–12,
Jan. 2009.

[17] C. Nachenberg. Computer virus-antivirus coevolution.
Communications of the ACM, 40(1):46–51, Jan. 1997.

[18] J. Newsome, D. B. anbd Dawn Song, J. Chamcham, and
X. Kovah. Vulnerability-specific execution filtering for
exploit prevention on commodity software. In Proceed-
ings of the 2006 Symposium on Network and Distributed
Systems, Feb. 2006.

[19] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-free: Defeating return-oriented program-
ming through gadget-less binaries. In Proceedings of
the 26th Annual Computer Security Applications Con-
ference, pages 49–58, Dec. 2010.

[20] S. Peisert, M. Bishop, S. Karin, and K. Marzullo. Anal-
ysis of computer intrusions using sequences of function

calls. IEEE Transactions on Dependable and Secure
Computing, 4(2):137–150, Apr. 2007.

[21] S. Peisert, M. Bishop, and K. Marzullo. Computer foren-
sics in Forensis. SIGOPS Operating Systems Review,
42(3):112–122, Apr. 2008.

[22] P. Piyachon and Y. Luo. Efficient memory utilization
on network processors for deep packet inspection. In
Proceedings of the 2006 ACM/IEEE Symposium on Ar-
chitecture for Networking and Communications Systems,
pages 71–80, 2006.

[23] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Comprehensive shellcode detection using
runtime heuristics. In Proceedings of the 26th Annual
Computer Security Applications Conference, pages 287–
296, Dec. 2010.

[24] D. Povey. Optimistic security: A new access control
paradigm. In Proceedings of the 1999 New Security
Paradigms Workshop, pages 40–45, Oct. 2000.

[25] M. Ramilli and M. Bishop. Multi-stage delivery of mal-
ware. In Proceedings of the 5th International Confer-
ence on Malicious and Unwanted Software, pages 91–
97, Oct. 2010.

[26] M. Ramilli, M. Bishop, and S. Sun. Multiprocess mal-
ware. In Proceedings of the 6th International Confer-
ence on Malicious and Unwanted Software, 2011.

[27] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis,
and S. J. Stolfo. On the infeasibility of modeling poly-
morphic shellcode. In Proceedings of the 14th ACM
Conference on Computer and Communications Security,
pages 541–551, 2007.

[28] P. Szor. The Art of Computer Virus Research and De-
fense. Addison-Wesley professional, Boston, MA, USA,
Feb. 2005.

[29] S. J. Templeton and K. Levitt. A requires/provides
model for computer attacks. In Proceedings of the 2000
New Security Paradigms Workshop, pages 31–38, 2000.

[30] D. Wagner and P. Soto. Mimicry attacks on host-based
intrusion detection systems. In Proceedings of the 9th
ACM Conference on Computer and Communications Se-
curity, pages 255–264, Nov. 2002.

[31] H. J. Wang, C. Guo, D. R. Simon, and A. Zugen-
maier. Shield: Vulnerability-driven network filters for
preventing known vulnerability exploits. ACM SIG-
COMM Computer Communications Review, 34(4):193–
204, Aug. 2004.




