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Abstract—The astonishing spread of Android OS, not only in
smart phones and tablets but also in IoT devices, makes this
operating system a very tempting target for malware threats.
Indeed, the latter are expanding at a similar rate. In this respect,
malware fingerprints, whether based on cryptographic or fuzzy-
hashing, are the first defense line against such attacks. Fuzzy-
hashing fingerprints are suitable for capturing malware static
features. Moreover, they are more resilient to small changes in
the actual static content of malware files. On the other hand,
dynamic analysis is another technique for malware detection
that uses emulation environments to extract behavioral features
of Android malware. However, to the best of our knowledge,
there is no such fingerprinting technique that leverages dynamic
analysis and would act as the first defense against Android
malware attacks. In this paper, we address the following question:
could we generate effective fingerprints for Android malware
through dynamic analysis? To this end, we propose DySign, a
novel technique for fingerprinting Android malware’s dynamic
behaviors. This is achieved through the generation of a digest
from the dynamic analysis of a malware sample with respect
to existing known malware. It is important to mention that: (i)
DySign fingerprints are approximates of the observed behaviors
during dynamic analysis so as to achieve resiliency to small
changes in the behaviors of future malware variants; (ii) Finger-
print computation is agnostic to the analyzed malware sample
or family. DySign leverages state-of-the-art Natural Language
Processing (NLP) techniques to generate the aforementioned
fingerprints, which are then leveraged to build an enhanced
Android malware detection system with family attribution. The
evaluation of the proposed system on both real-life malware and
benign apps demonstrates a good detection performance with
high scalability.

I. INTRODUCTION

The rapid growth in technologies triggers the development
and evolvement of mobile devices to enhance both economic
and social interactions. Hence, mobile applications (referred to
as apps henceforth) running on smart devices are gaining ubiq-
uity due to their convenience. For instance, nowadays users
purchase products online and in retail stores at their fingertips
using such apps like Apple pay app. However, the growth
of the mobile market apps has increased the concerns about
apps’ security. Android[1] is one of the most adopted mobile
OS in smart devices, especially in the emerging Internet of
Things (IoT) world through Brillo [8], an Android-based IoT
system. However, this IoT mega-trend makes Android security
more crucial than ever before. This is due to the fact that
IoT devices are everywhere and control important services in
cars[2], TVs[6], watches[7], etc. Consequently, this has moti-

vated malware writers to launch attacks against mobile apps.
These attacks may cause direct financial losses or sensitive
data leakages since some apps perform monetary transactions
using sensitive information such as credit card numbers and
passwords. Malware attacks targeting smart devices may also
harm IoT devices. This deployment coverage made Android
more tempting for cyber-attackers. For example, according
to G DATA [10], 1, 548, 129 and 2, 333, 777 new Android
malware were discovered in 2014 and 2015, which represents
approximately an average of 4, 250 and 6, 400 new malware
per day respectively. Furthermore, about 53% of malware are
SMS Trojans designed to steal funds and personal information
from Android-based mobile devices [22].

In this context, it is a desideratum to develop a scalable,
efficient, and accurate framework that tackles two distinct
problems: (i) Malware detection - distinguishing malicious
from benign applications, and (ii) malware family attribution
- assigning malware samples to known families.

Problem Statement: In the literature, malware analysis
may be categorized into static and dynamic analyses. In static
analysis, fingerprints are the first defense line against malware
attacks. Two common static analysis techniques are used for
fingerprinting Android malware, namely, cryptographic and
fuzzy/approximate hashing techniques. Using cryptographic
hashes may be easily defeated by the tiniest change in malware
Android packaging (APK). The Fuzzy/approximate hashing
technique is more resilient to small changes. Moreover, it
has the possibility of detecting malware variants produced by
APK repacking. On the other hand, dynamic analysis misses a
fuzzy fingerprint, similarly to APK file fuzzy fingerprint, that
could effectively capture Android malware run-time behaviors
instead of APK static content. Dynamic analysis is commonly
used to obtain dynamic features that are fed to a classifier
to detect Android malware or cluster them according to
their families. However, this dynamic analysis process suffers
from the following main drawbacks: i) The detection needs
an intermediate, which is the learning model, between the
dynamic analysis of malicious Android APK and the new app
to check its similarity; ii) in most cases, the extracted dynamic
features are driven by the malware dataset. Accordingly, we
choose features that give the most accurate model. Although
these features could fingerprint the malware family of the
dataset, it is hard to predict if extracting the same features
from other Android malicious apps could fingerprint them.
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As such, malware or family-agnostic features are needed in
order to have a resilient fingerprinting technique; iii) directly
using dynamic analysis output to compare between malware
dynamic behaviors lacks portability due to the inconsistent
sizes of the output. Moreover, there is no defined approach
for similarity computation.

The aforementioned drawbacks induce the need for a dy-
namic analysis based fingerprint with a fixed size to achieve
portability and compute similarity between malware dynamic
behaviors. Such fingerprint should be agnostic to the malware
sample or family. Hence, the fingerprint extraction approach
needs to be general enough to cover most of the essential
information of the dynamic analysis output in most Android
malware. In addition, it needs to be scalable to compute a
digest relatively to the known malware and achieve a fast
detection decision. To the best of our knowledge, there is
no such a fingerprinting technique that abstracts the dynamic
analysis in one digest for the purpose of Android malware
detection.

Approach Overview: In this paper, we propose a novel
fingerprinting approach, namely DySign, which aims at gen-
erating a signature that is based on the dynamic analysis of
Android malware apps. In particular, the proposed approach
aims at achieving the following properties: (i) DySign fin-
gerprints are approximates of the observed behaviors during
dynamic analysis so as to achieve resiliency to small changes
in the behaviors of future malware variants; (ii) fingerprint
computation is agnostic to the analyzed malware sample or
family. We choose these properties since they allow our pro-
posed approach DynSign to efficiently detect malware variants
and other samples of the same family efficiently. The key
idea of DySign lies in the fact that Android malicious apps,
such as SMS Trojans, tend to have similar overall dynamic
behaviors, which are distinguishable from the behaviors of
benign apps. In addition, apps targeted by a given malware
tend to share similar behaviors than apps that are targeted
by different malware families. In a sandboxing environment,
malware runtime behaviors are translated into an analysis
report. Therefore, malicious apps with similar behaviors would
produce similar analysis reports. In the context of DySign, we
leverage the output of Android malware dynamic analysis us-
ing sandboxing environments to generate relative fingerprints
from the known Android malware apps analysis reports. More
precisely, DySign leverages state-of-the-art Natural Language
Processing (NLP) techniques to produce the aforementioned
fingerprints using the bag of words model in the DySign
generation from the analysis reports. Considering the latter
as a word makes DySign completely agnostic to the malware
sample or family. Furthermore, we leverage DySign to build
an enhanced Android malware detection system with family
attribution. DySign is evaluated on both real-life malware
and benign apps and the obtained results demonstrate high
detection and attribution performances.

Contributions: In summary, this paper makes the following
contributions:

1) We introduce DySign, a novel fingerprinting system for

automatically generating dynamic fingerprints for dy-
namic analysis of Android malware apps.

2) We leverage state-of-the-art of Natural Language Process-
ing (NLP) techniques in order to propose an approach that
is resilient to change in the dynamic behaviors of Android
malicious apps.

3) We conduct a large-scale evaluation of DySign using
8, 639 malicious and benign apps. Our evaluation demon-
strates that DySign achieves a good detection perfor-
mance with high scalability.

The remainder of this paper is organized as follows: Section
II presents some usage scenarios of DySign. Section III gives
a light background on Android OS. Section IV details our
methodology. We evaluate DySign in Section V. In Section
VI, we discuss the related work. In Section VII, we provide
some concluding remarks on this research together with a
discussion of future research.

II. USAGE SCENARIOS

The main aim of DySign is to generate an approximate
fingerprint from the dynamic analysis of malicious apps. The
fingerprint is generated with respect to a database of known
apps analysis. Our main concern after accuracy is scalability
of the fingerprinting since DySign is intended to be the
first fingerprint’s defense line, along with static file fuzzy
fingerprint, to tackle the overwhelming volume of malicious
apps on a daily basis. DySign has two main usage scenarios:
i) Mobile OS monitoring: In this scenario, we have a set of
installed apps that run in a given smart device (the number
of apps could be fixed in the case of an IoT device since
it is mono-task with a deterministic goal). Having a runtime
report database of the these apps would help DySign to
periodically fingerprint the behaviors of these apps in order to
check for the existence of abnormal behaviors. In this scenario,
DySign could raise an exception of behavior change after a
suspicious update or a hack; ii) Cloud service analyzer: In this
scenario, DySign is used as a core of cloud checking service
of the received analysis reports, either automatically or by user
submission, from the Android device of suspicious apps. The
goal is to match the runtime analysis against malicious apps.
These scenarios are general applications of DySign. However,
we believe that it can be extended to many other usages due
to the simplicity and scalability of DySign.

III. BACKGROUND

A. Android Architecture

Android has been settled by Android Open Source Project
(AOSP) team, maintained by Google and supported by the
Open Handset Alliance (OHA) [13]. It encompasses the Orig-
inal Equipment Manufacturers (OEMs), chip-makers, carriers
and application developers. Android apps are written in Java.
However, the native code and shared libraries are generally
developed in C/C++ [4]. The typical Android architecture
consists of Linux kernel, which is designed for an embedded
environment consisting of limited resources. On top of Linux



kernel, the native libraries developed in C/C++ support high-
performance third-party reusable shared libraries. Moreover,
Android apps written in Java are translated into Dalvik
bytecode. It is specifically optimized for resource-constrained
mobile OS platforms.

B. Android Threats

Once the app is installed, it may create undesirable conse-
quences for the device security. Following are some examples
of malicious activities that have been reported: i) Personal-
information leakage occurs when users give dangerous per-
missions to malicious apps and unknowingly allow access to
sensitive data and its exfiltration without user knowledge or
consent; ii) malicious apps can also spy on the users by mon-
itoring their voice calls, SMS/MMS, recording audio/video
without user knowledge or consent; iii) compromising the
device to act as a bot and remotely control it through a server
by sending various commands to perform malicious activities.

IV. DYSIGN METHODOLOGY

A. Fingerprint Computation

Our ultimate goal is to automatically fingerprint Android
malware based on dynamic analysis. To this end, we use
natural language processing techniques, where we consider the
output of the dynamic analysis as a plaintext file and model
it as a bag of words. The latter treats the text document as a
set of words separated by predefined delimiters such as spaces
and curly-brackets. Given a set of analysis report bag of words,
we compute a relative fingerprint for each report based on the
word frequency in one document and the rest. In other words,
we distinguish between the reports by giving a high weight
to the words with a high frequency in the given report and
low frequency in the others. The result is a vector of words’
weights for each analysis report. To compute DySign’s vector,
we leverage the so-called Term Frequency-Inverse Document
Frequency tf-idf [14], a well-known technique adopted in the
fields of information retrieval and natural language process-
ing. The latter computes vectors of inputted text documents
by considering both the frequency in the individual documents
and in the whole set. Let D = {d1, d2, . . . , dn} be a set of
text documents, where n is the number of documents, and let
d = {w1, w2, . . . , wm} be a document, where m is the number
of words in d. The tf-idf of a word w and document d is the
product of term frequency of w in d and the inverse document
frequency of w, as shown in Formula 1. The term frequency
(Formula 2) is the occurrence number of w in d. Finally, the
inverse document frequency of w (Formula 3) represents the
number of documents n divided by the number of documents
that contain w in the logarithmic form. The computation of
tf-idf is very scalable, which suites our needs (Section V).

tf-idf(w, d) = tf(w, d)× idf(w) (1)

tf(w, d) = |w ∈ d, d = {w1, w2, ...wn} : w = wi| (2)

idf(w) = log
|D|

1 + |d : w ∈ d|
(3)

The result of tf-idf is a set of vectors V = {v1, v2, . . . , vn}
(DySign fingerprints) of word weights for each document d ∈
D. Computing the similarity using DySign is straightforward
using the cosine similarity as shown in Formula 4.

cosine-similarity(v1, v2) = cos(θ) =
v1 · v2
||v1||||v2||

(4)

How DySign could be used for Android malware detection
and family attribution? We answer this question through an il-
lustrating example, in which we compute DySign fingerprints
from the analysis reports of malware samples from Drebin
malware dataset [17], [40] along with benign apps downloaded
from Google Play [11]. The example is summarized in Table
I and Table II. How DySign is used for malware detection is
illustrated in Table I, where we compute the similarity between
malware analysis reports and benign ones. This example shows
the potential of DySign in distinguishing between malware
and benign apps.

# App1 App2 TFIDF Cosine

1 00453ca8 (FakeInst)1 com.BigBawb.coin.apk 0.19
2 00453ca8 (FakeInst) com.interestcalculator.apk 0.21
3 21262a59 (FakeInst) com.sleggi.MiFreetime.apk 0.16
4 00453ca8 (FakeInst) 21262a59 (FakeInst) 0.42
5 00453ca8 (FakeInst) com.sleggi.MiFreetime.apk 0.27

1 First 8 characters from malware hash and its malware family.
TABLE I

INSIGHT OF DYSIGN ANDROID MALWARE DETECTION

As shown in Table II, DySign could be used to segregate
between Android malware families by requiring a higher
similarity between the fingerprints of the same malware family.
Based on these insights, we generalize and build a system
on top of DySign for Android malware detection and family
attribution.

# Malware1 Malware2 TFIDF Cosine

1 090b5be2 (Plankton)2 bedf51a5 (DroidKungFu) 0.56
2 149bde78 (Plankton) bedf51a5 (DroidKungFu) 0.46
3 090b5be2 (Plankton) 149bde78 (Plankton) 0.71

2 First 8 characters from malware hash and its malware family.
TABLE II

INSIGHT OF DYSIGN ANDROID MALWARE FAMILY ATTRIBUTION

How DySign is agnostic to malware samples and families?
DySign is agnostic by design since no features are extracted
specifically for a given malware family or sample. In other
words, DySign considers the analysis report as a bag of words.
It only considers the frequency of the word in a document
relatively to the other ones. This ensures that the extracted
DySign information is broad enough to cover most malware
samples and without relying on specific features.
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B. Architecture Overview

In this section, we present the architecture of DySign
framework for Android malware detection, built on top of
DySign’s fingerprint. There are two main processes in DySign
framework, as depicted in Section 1. i) The first process is
building the analysis report database. The initial phase of this
process consists of a bulk sandboxing and reports insertion
into a database of known Android malware (Algorithm 1).
Afterwards, the process proceeds as a continuous task of
updating the report’s database with new apps (Algorithm. 2).

Algorithm 1: First Setup of Analysis Report Database
Input : MalDataset: APK Files of Known Malware

BenDataset: APK Files of Some Benign Apps

begin
foreach Apk ∈MalDataset do

Report← SandBoxing(Apk);
WordBag ← getWordBag(Report);
SaveDatabase(WordBag);

end
foreach Apk ∈ BenDataset do

Report← SandBoxing(Apk);
WordBag ← getWordBag(Report);
SaveDatabase(WordBag);

end
LunchUpdateProcess ()

end

Algorithm 2: Updating Analysis Report Database
Input : NewUpdateApp: Update App File (APK)

begin
while True do

if ∃ NewUpdateApp then
NewReport← SandBoxing(NewUpdateApp);
WordBag ← getWordBag(NewReport);
SaveDatabase(WordBag);

end
end

end

ii) The second process is the detection process, in which we
check the runtime behaviors of newly received apps against
known malware behaviors. First, the new app is executed in a
sandboxing environment during a time T to get the analysis
report. The latter will be used along with the database reports
to compute the DySign fingerprint using tf-idf. Finally, we

compute the similarity between the DySign fingerprint of the
new app and the existing fingerprints to identify whether it
is malicious or not and its family in case it is malicious.
The complete DySign process is presented in Algorithm 3.
Using DySing’s fingerprint, we do not only detect malware but
also attribute the unknown samples to their Android malware
families. Further, we can also ascribe a family to the unknown
samples if we already have samples of this family in DySign’s
dynamic analysis database. Algorithm 3 describes the process
of generating a dynamic fingerprint.

Algorithm 3: DySign Framework Detection Process
Input : Database: Analysis Reports Of DySign Database

NewApp: New App File (APK)
Output: Decision: {Bengin or Malicious}

Family: Android Malware Family

begin
NewReport← SandBoxing(NewApp);
dbV ectors,NewV ector ← TFIDF(dbReports,NewReport);

MaxSim← 0;
Decision← Benign;
Family ← ∅ ;
foreach V ec ∈ dbV ectors do

Sim← Similarity(V ec,NewV ector);
if Sim > MaxSim then

MaxSim← Sim;
Decision← getDecision(V ec);
Family ← getAndroidFamily(V ec);

end
end
return Decision, Family;

end

A cornerstone in DySign framework is the sandboxing sys-
tem, which heavily influences the produced analysis reports.
We use DroidBox [9], a well-established sandboxing environ-
ment based on the Android software emulator [3] provided
by Google Android SDK [5]. Running the app may not lead
to a sufficient coverage of the executed app. As such, to
simulate the user interaction with the apps, we leverage Mon-
keyRunner [12], which produces random UI actions aiming for
a broader execution coverage. However, this makes the app
execution non-deterministic since MonkeyRunner generates
random actions. Therefore, this yields different analysis reports
for every execution, where the accuracy of the results may
vary. To tackle this issue, we run the app in a sandboxing
environment for a long time T in order to assure the maximum



of information in the resulting report. However, a long time
T could lead to execution bottleneck since DroidBox can only
handle one app at a time. In this context, executing the dataset
apps in a sandboxing environment during the initial setup of
a reports database is a computation bottleneck in DySign.
This is because of the defined time T , during which the app
needs to run in order to get the analysis report. Hence, the
initialization phase could take a very long time (may reach few
days). To overcome this challenge, we develop a multi-worker
sandboxing environment to exploit the maximum available
resources and boost the initialization setup.Another problem
is the similarity computation, which could be a bottleneck
for the DySign framework and could lead to inefficient
matching against new unknown apps. To address this issue,
we resort to LSH K-Nearest Neighbor (KNN) [19]. Similarity
computation needs to be conducted in an efficient way that
is much faster than the brute-force computation. To this end,
we leverage Locality Sensitive Hashing (LSH) techniques, and
more precisely LSH Forest [19], a tunable high-performance
algorithm for similarity computation. The key idea behind LSH
Forest is that similar items hashed using LSH are most likely to
be in the same bucket (collide) and dissimilar items in different
ones as we will explain it in the next Section.

C. Locality-Sensitive Hashing

Our system employs Locality-Sensitive Hashing (LSH) for
feature reduction [26], [19]. The main idea in LSH is to define
a hash function h such that h(s1) = h(s2) if the two sets
of chains s1 and s2 are similar [16]. The hash is calculated over
all sets of traces, and only those with similar hash values are
clustered (hashed) to the same bucket. In the case of similarity,
similar traces will be hashed to the same bucket. In our case,
we assume that most dissimilar pairs will never hash to the
same bucket, and therefore will never be checked. Once all
traces have been hashed to a corresponding bucket, any bucket
containing more than one hash value is identified and a list
of candidate traces is extracted. Finally, similarity analysis
is performed to rank the candidate pairs obtained from the
previous steps. To create the signature from traces, we must
use one of the hash function pairs. We choose minhash due
to its efficiency. When using minhash (with N unique hash
functions) as signatures to represent the register chains, LSH
can be used by splitting the minhash values into a signature
matrix with b bands consisting of r rows each. Depending
on the number of used bands, the number of minhash values
for a given band will be the number of minhashes divided by
the number of bands (N/#bands). The number of rows will
be equal to the number of register chain minhash signatures.
Finally, for each band b, the minhash values (the portion of
one column within that band) are hashed to one bucket of a
larger number of buckets.

V. EXPERIMENTAL RESULTS

In this section, we present the evaluation results of our
proposed system. The implementation subsection shows the
setup of our experiments. To evaluate the performance of

malware detection using DySign, we use a mixed dataset,
i.e., malware and benign apps. As for the evaluation of the
attribution performance, we use a malware-only dataset.

A. Implementation

For modularity purposes, DySign is implemented using
separate Python scripts, which altogether form our analytical
system. The scripts are used for parsing, cleaning, and tf-
idf computation. We develop a multi-sandboxing system on
top of DroidBox to be able to execute multiple Android apps
simultaneously by leveraging the multicore CPUs to have
numerous instances of DroidBox. We also use MonkeyRunner
to simulate UI interaction with the user. SQLite has been used
to store the features due to its efficiency and ease of use.

B. DataSet

The first step towards the evaluation of DySign is to
select appropriate datasets that can be utilized for Android
malware fingerprinting. Obtaining representative datasets is a
fundamental challenge, and there is certainly a strong need
for standard ones. Hence, the utilized dataset consists of: i)
malware-only dataset using the well-known Drebin dataset
[17], [40], and ii) mixed dataset using Drebin dataset along
with benign apps downloaded from Google Play [11]. Statis-
tics about the dataset are presented in Table III and Table
IV. In TableIII, we use a subset of 3, 414 Android malware
samples, from Drebin dataset, distributed on 8 families IV.
From this dataset, we exclude all malware families with only
few samples due to the high skewness of the dataset. This
would prevent having, for instance, a family with 800 samples
and other families with only 1, 2, or even 20 samples.

Drebin Dataset Drebin Mixed With Benign
Total Size 3414 8639
Malware 3414 3414
Benign / 5225

TABLE III
ANDROID DATASET DESCRIPTION

Malawre Family Number of Samples

0 FakeInstaller 866
1 DroidKungFu 611
2 Opfake 566
3 Plankton 515
4 GinMaster 314
5 BaseBridge 295
6 Iconosys 127
7 FakeDoc 120
8 Benign Apps 5225

TABLE IV
DATASET DESCRIPTION BY MALWARE FAMILY

C. Results

To evaluate our approach using the previous datasets, we
split the training data into ten sets, reserving one set as a
testing set and using nine sets as training sets. We repeat this
process numerous times. We use precision (P) and recall (R):



P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2× P ×R

P +R
(5)

Detection Performance: Since the application domain tar-
geted by DySign is much more sensitive to false-positives
than false-negatives, we employ the F-measure, where the
results of F1 measure are summarized in Table V. We use two
types of datasets: (i) The mixed dataset, used for detection
performance assessment, and (ii) the malware-only dataset,
used to assess DySign’s family attribution, as shown in Table
V. The obtained results show that our approach achieves good
detection and attribution performance in short time.

F1-Score Precision Recall Time
Mixed (Detection) 85% 94% 78% 4min 45s

Drebin (Attribution) 80% 82% 79% 2min 20s
TABLE V

DETECTION AND ATTRIBUTION PERFORMANCE OF DYSIGN
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Fig. 2. DySign Family Attribution Evaluation Using Confusion Matrix

Attribution Performance: Figure 2 presents the confusion
matrix for a more granular view of DySign’s family attri-
bution. The darker, in the matrix, is the diagonal, the more
accurate is the attribution. However, due to the unbalanced
malware families (Table IV), there are some cells in the
diagonal that are more darker because of the high number
of samples in that family in the testing set. For this reason,
we apply the log function on the original confusion matrix to
have clearer results. Notice that all the produced results are
based on the sandboxing reports of only T = 15s for each app
whether it is a malware sample or a benign app. Therefore, the
accuracy could be significantly improved by having a longer
time T .

Reports Size Analysis: Figure 3 shows the size distribution
of the analysis reports. Figures 3(a) and 3(c) show the size dis-
tribution in bytes for benign and malware reports respectively.
To enhance the readability of the results, we apply the log
function on the byte distributions. The results are shown in
Figures 3(b) and 3(d) for benign and malware reports. The
most noticeable is the size of the malware comparing with
benign reports. Malware reports tend to be bigger than benign
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Fig. 3. Sandboxing Output Size Distributions (Malware vs Benign)

ones. This difference happens in a very short time since we
execute the apps for only T = 15s. Our observations show
that: i) Malicious apps tend to have similar behaviors and
are generally eager to access the resources to perform their
malicious tasks as soon as they are executed. ii) Malware apps
tend to be self-driving, i.e., in most cases, they do not need UI
interaction emulator. Instead, for example, they try to connect
to a given IP address with a specific payload .

Accuracy Performance and Dataset Size: Figure 4 shows
the effect of the dataset size on the detection and family
attribution. It also shows the direct relation between the
number of samples in the dataset and the accuracy. The bigger
is the dataset, the more accurate are the results. However,
we could not test for higher scalability since we are limited
by the size of Drebin dataset after excluding small families.
According to the obtained results with our limited dataset, we
conclude that by having a bigger dataset, DySign framework
could achieve more accurate results. We let the validation of
such conclusion as future work with much larger datasets.

Scalability Analysis: DySign shows high scalability, as
summarized in Figure 5. First, DySign computation time is
very fast and linearly scalable with the number of reports. Our
system could compute tf-idf from 100, 000 analysis reports in
about 200s, as shown in Figure 5(c). Notice that we over-
sample from our dataset in order to get 100, 000 analysis
reports used in the scalability evaluation. Figure 5(b) shows
the linearity of LSH matching time with the number of reports.
Notice that for a 100, 000-report dataset, we match 10, 000
testing reports against 90, 000 reports in the training dataset.

VI. RELATED WORK

In this section, we briefly introduce the existing works
on Android malware analysis. They are categorized into
static [17], [32], dynamic [15], [23], and hybrid [20], [41].

Static Analysis Approaches: Static analysis techniques
perform code disassembling and decompilation without ac-
tually running it. This approach is undermined by the use of
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Fig. 5. DySign Framework Scalability Analysis

various code transformation techniques [30]. We may divide
static analysis based techniques into the following categories:
i) Signature-based analysis: This analysis deals with ex-
tracted syntactic pattern features [32], [36], [35], and create a
unique signature matching for a particular malware. However,
such signature cannot handle new variants of existing known
malware. Moreover, the signature database should be updated
to handle new variants. AndroSimilar [31] has been proposed
to detect zero-day variants of the known malware. It is an au-
tomated statistical feature signature-based method. However, it
is sensitive due to code transformation methods. ii) Resource-
based analysis: The Manifest file contains important meta-
data about the components (i.e., activities, services, receivers,
etc.) and required permissions. There are some methods that
have been proposed to extract such information and subject
it to analysis [24], [33]. iii) Permission-based analysis:
Discovering the dangerous permission request is not adequate

to proclaim a malware app, but nevertheless, permissions
mapping requested and used permissions are an important risk
identification technique [38], [18].

Dynamic Analysis Approaches. Dynamic analysis tech-
niques allow us to learn malicious activities. Android app exe-
cution is event-based with asynchronous multiple entry points.
It is important to trigger those events. Dynamic techniques are
divided into the following two categories: i) Resources usage
based: Some malicious apps may cause Denial of Service
(DoS) attacks by over-utilizing the constrained hardware re-
sources. Range of parameters such as CPU usage, memory
utilization statistics, network traffic pattern, battery usage and
system-calls for benign and malware apps are gathered from
the Android subsystem. Automatic analysis techniques along
with machine learning techniques are used [39], [37], [25]. ii)
Malicious behavior based: It is related to abnormal behaviors
such as sensitive data leakage and sending SMS/emails [28],



[21], [27], [34].

VII. LIMITATIONS AND CONCLUDING REMARKS

We have reported, in this paper, the first investigation of the
possibility of using dynamic features for Android malware fin-
gerprinting. DySign leveraged state-of-the-art machine learn-
ing and Natural Language Processing (NLP) techniques to
produce agnostic fingerprints. The evaluation of DySign on
both real-life malware and benign apps demonstrated a good
detection and attribution performances with high scalability.
Our work has a few limitations though. First, DySign finger-
printing approach is not deterministic, i.e., multiple executions
could lead to slightly different fingerprints. However, the
core information captured by such fingerprints is the same.
Second, DySign detection is limited by the Android malware
families in the analysis database, and therefore, it cannot detect
malware belonging to new families. We plan to address these
limitations in future work. In addition, we suggest exploring
the applicability of a hybrid model in our detection system.
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