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Abstract. We address the problem of creating entire and complete
maps of software code clones (copy features in data) in a corpus of binary
artifacts of unknown provenance. We report on a practical methodology,
which employs enhanced suffix data structures and partial orderings of
clones to compute a compact representation of most interesting clones
features in data. The enumeration of clone features is useful for malware
triage and prioritization when human exploration, testing and verifica-
tion is the most costly factor. We further show that the enhanced arrays
may be used for discovery of provenance relations in data and we intro-
duce two distinct Jaccard similarity coefficients to measure code similar-
ity in binary artifacts. We illustrate the use of these tools on real malware
data including a retro-diction experiment for measuring and enumerat-
ing evidence supporting common provenance in Stuxnet and Duqu. The
results indicate the practicality and efficacy of mapping completely the
clone features in data.

Keywords: Algorithm Design, Security, Analysis of Software Artifacts

1 introduction

In 2011 the security community identified a relation of provenance between the
Stuxnet and Duqu malware families Chien et al. [2012]. The relation was sub-
stantiated by laborious reverse engineering digital artifacts1 which reveled com-
pelling evidence of code sharing. These reports addressed the underlying question
of provenance in malware but left in question how much code sharing took place
and further whether computational methods could be designed to measure and
detect code sharing.

Scalable methods to triage and cluster malware using signatures have been
considered in Bayer et al. [2009],Jang et al. [2011],Kang et al. [2012] and Lakhotia
et al. [2013]; however each of these methods employ lossy data reductions. While

1 Artifacts are malware binaries, files, or digital evidence of a computer/network at-
tack.
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these methods focus much attention on understanding error rates to achieve
scalability, they leave open the question of whether the the tradeoff between
statistical power and scalability is necessary to achieve clustering methodology.

These problems provide a high level view of contemporary efforts in cyber
security. Common to both problems is the need to identify and map all com-
mon strings or shared code segments termed code clones within a limited set
of artifacts or against a reference data set of known artifacts. Calling on recent
advances in suffix-data structures and succinct data structures, we consider effi-
cient computational methods for mapping code clones (all copy features in data)
which are both complete for provenance studies and compact enough to scale to
large clustering problems.

Tree and Array construction and merge these advances with a practical model
for exact code clones leading to practical methods for malware identification and
triage and prioritization of reverse engineering resources.

1.1 Background.

This effort merges ideas from several distinct areas including: mathematics of
measure theory, algorithm design calling on advances in suffix data structures,
software engineering research which has recently suggested modes and models
for code cloneage, and cyber security research which provides the motivating
problems.

Code clones have been discussed in the area of software engineering where
clones arise from a limited number of generating events including copy and paste,
code reuse, common authorship, derived or augmented data, common linked ar-
tifacts, etc. For large software projects code cloning is an important factor for
software maintenance and while the engineering benefits of cloning are debated
there is general agreement that identifying clones is an important capability Kim
et al. [2005]. Clones can be efficiently identified in large-scale software projects
Kamiya et al. [2002] Li et al. [2004] where commercialized products have been
developed. Recently modeling clone evolution has become an active area of re-
search Antoniol et al. [2002] Livieri et al. [2007]. Definitions of code clones vary
across the literature and are a developing area of research (see Kim et al. [2005]
and Roy and Cordy [2007] for surveys). Our notion of code clones (presented
in the next section) is novel and designed to both model gross structural fea-
tures within the corpus using few quantities and be computable with suffix data
structures. We present a mathematical description of a measure space making
our notion of code clone comparable to all other formal notions.

The question of how to organize and represent a text corpus for optimized
retrieval and search has been motivated by diverse problems in areas of informa-
tion retrieval Amir et al. [1994], Blumer et al. [1987] and Ferragina and Grossi
[1995], pattern matching Weiner [1973], software analysis Baker [1993], and bio-
informatics Bieganski et al. [1994] Gusfield [1997] where there are several well
developed techniques based on suffix trees McCreight [1976] Ukkonen [1985],
compressed suffix trees Navarro and Mäkinen [2007], and suffix arrays Manber
and Myers [1990] and Manzini and Ferragina [2004]. In addition indexing for
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dynamic data sets Amir et al. [1994]; Ferragina and Grossi [1995] has been re-
ported. Significant to very large data sets are Ferguson [2012] where researchers
have considered applicationions of suffix data structures to data at scale.

In addition to the identification of longest common substrings (LCS), sta-
tistical analysis of the content space has been suggested Apostolico [2003] but
not developed to the extend that useful code-clones can be identified in malware
artifacts.While the topic of extending index-recallers to corpora is addressed in
Bieganski et al. [1994], Blumer et al. [1987], Ferragina and Grossi [1995] and
Gusfield [1997], with emphasis on suffix tree being central in Bieganski et al.
[1994] and Gusfield [1997], our contribution develops tree-traversal and indexing
arrays for quantities of entropy, length, multiplicity, and file coverage needed for
discovery (i.e. “calling”) of clones in software executables.

We further consider methods to represent a set of clones that is both compact
and complete. The use of suffix-trees for the analysis of set-algebra of corpus in-
dices has been studied from a formal concept analysis and data-mining approach
in Ferré [2007] where suffix trees are implemented to identify string-scales specific
to a set lattice.

We show that this merger of a mathematical measure space for code clones
combined with enhanced and tailored suffix data provides effective applications
to problems in cyber security addressing provenance studies and data clustering.

2 Definitions and Clone Model.

For a string λ over a finite alphabet Σ, let |λ| denote the string length, λ[j] ∈ Σ
the jth symbol, and λ[j : k] the substring λ[j]λ[j + 1] . . . λ[k − 1]. A corpus is
an ordered set of strings Ω = {ω0, ω1, . . . , ωn−1} over a common finite alphabet
Σ, therefore each string ωi ∈ Σ∗ for i ∈ {0, 1, . . . , n − 1}. The corpus size is
measured by the number of strings |Ω| = n, and the total length of corpus

||Ω|| =
∑n−1
k=0 |ωk|.

A corpus region is represented by a tuple (i, j, k) with i < |Ω| and 0 ≤
j ≤ k < |ωi|; the first index specifies the corpus element from which the region
is drawn (i.e. a given string ωi), while the second and third indices provide
the region within string ωi beginning with and including offset j and covering
up to but not including offset k. Associated with each corpus region (i, j, k)
is the sub-string: ωi[j : k] ∈ Σ∗. Let R denote the set of all corpus regions:
R = {(i, j, k) | i < |Ω|, 0 ≤ j ≤ k < |ωi|}. Assume the following functions:
File((i, j, k)) = i, Offset((i, j, k)) = j, and End((i, j, k)) = k providing the
coordinate projections for tuples in R.

We identify the relation between corpus-regions and observed sub-strings by
the content map:

Γ : R → Σ∗ : {(i, j, k)} → ωi[j, k].

We refer to the inverse of Γ as the region recaller; for any string λ ∈ Σ∗ a
subset of matching corpus regions is returned:

Γ−1 : Σ∗ → 2R : λ→ λ−1(Ω),
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with

λ−1(Ω) = {(i, j, j + |λ|) ∈ R : ωi[j : j + |λ|] = λ}.

If a string (over Σ) is not observed in the corpus, the region recaller returns
the empty set denoted ∅. The inverse of the empty string ε can be defined as R
without loss of generality or specificity. With Ω (and consequently Γ ) fixed, we
refer to λ−1(Ω) as the pullback and denote it as λ−1 for short. The pullback
of λ returns the corpus regions where the string λ is found.

The observed language of the corpus is the set of all strings with non-
empty pullback:

L(Ω) = {λ ∈ Σ∗ | λ−1 6= ∅}.

2.1 Mathematics of Clones.

Clones are the content strings found in multiple locations of a corpus; they
provide introspection and discovery opportunities for uncharacterized data. In
order to concretely discuss clone concepts we describe clones mathematically
as set systems in L(Ω). Let Ω be a fixed corpus; we will use λ−1 to mean the
pullback λ−1(Ω) for any λ ∈ Σ∗. We start by introducing simple notions of code-
clones and discuss how the different notions relate as nested sets. Next, we focus
on statistical features of cloneage needed to be effective in malware discovery.
Toward these goals we add additional qualifiers to enrich the concept of code-
clones. We present a general nested model of cloneage in four parameters that
will be used in applications for malware clone mapping, discovery, and measures.
We indicate the underlying mathematics of this model and justify why we chose
these clone quantities.

Simple Clone Concepts: A simple notion of code-clone is any snippet of
code identified in multiple locations or in multiple files. Two definitions capturing
these notions are:

M-Clone = {λ ∈ Σ∗ : |λ−1| > 1},

and

F-Clone = {λ ∈ Σ∗ : |{File(x) : x ∈ λ−1}| > 1}.

Note the dependencies in these models as (λ ∈ F-Clone) ⇒ (λ ∈ M-Clone).
While the statement |{File(x) : x ∈ λ−1}| > 1 is sufficient for |λ−1| > 1, it
is not necessary as λ may be found in each file of the corpus but never found
duplicated at multiple offsets within any file.

Both of these sets are efficiently accessible using Suffix Trees Gusfield [1997];
however, for the task of malware discovery these notions are ineffective because
a large volume of M-Clone and F-Clone may include byte padded sequences.
Thus, additional considerations including the statistics of entropy are needed to
distinguish a more interesting set of clones for discovery, triage and analysis.

To further generalize the notion of code clone we consider statistical measures
of string content, such as the Shannon Entropy function and how it may qualify
clones. Let λ ∈ Σ∗, for v ∈ Σ; let Xv(λ) = |{j < |λ| : λ[j] = v}| be an observed
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symbol count, and let θv(λ) = Xv(λ)
|λ| be the normalized symbol frequency. The

Entropy for λ may be defined as H(λ) =
∑
θv>0 θv log 1

θv
.

Using the entropy function, we obtain a more useful set of clones by conjoin-
ing a lower entropy threshold to clone criteria, that is:

M-Cloneh = {λ ∈ Σ∗ : (|λ−1| > 1) ∧ (H(λ) > h)},

with the associated multi-file clone class as:

F-Cloneh = {λ ∈ Σ∗ : (|{File(r) : r ∈ λ−1}| > 1) ∧ (H(λ) > h)}.

This extension to the clone model provides selectability against low entropy
strings such as null byte pads2 which are common in binary artifacts; however,
they are accidental clones which we must regard as uninteresting. In our exper-
iments low entropy strings are often the longest common substring (LCS) and
therefore a parameter such as h is necessary to recover meaningful signals from
suffix-arrays.

In addition to clone entropy H(λ), we further extend the concept of clones
to include quantities of clone length denoted as D(λ) = |λ|, clone multiplicity
denoted as C(λ) = |λ−1|, and file coverage denoted as F (λ) = |{File(r) : r ∈
λ−1}|,

Clone Model: We arrive at a general model of clones over the content
L(Ω) by letting the tuple 〈d, h, f, c〉 represent the following subset of L(Ω):

〈d, h, f, c〉 = {λ ∈ L(Ω) : (D(λ) > d) ∧ (H(λ) > h) ∧ (F (λ) > f) ∧ (C(λ) > c)}.

Letting variables d, h, f, c range freely we have described a clone class within
the context of the partial ordering of 2L(Ω) by sub-set containment.

For 〈d, h, f, c〉, 〈d′, h′, f ′, c′〉 ∈ 2L(Ω), we have the following nesting property:

〈d′, h′, f ′, c′〉 ⊆ 〈d, h, f, c〉 ⇔ (d′ ≥ d) ∧ (h′ ≥ h) ∧ (f ′ ≥ f) ∧ (c′ ≥ c).

Using the clone class in quantities d, h, f, c we may organize our simple clone
concepts with set inclusion indicated by arrows as follows:

M-Cloneh = 〈0, h, 1, 0〉 ← F-Cloneh = 〈0, h, 0, 1〉
↓ ↓

M-Clone = 〈0, 0, 1, 0〉 ← F-Clone = 〈0, 0, 0, 1〉
↓

L(Ω) = 〈0, 0, 0, 0〉

The clone class organizes the collection of clone sets in L(Ω) into a nested family
of cylinder sets. Cylinder sets (with set subtraction) may construct sets with each
quantity bounded below and above; for example 〈d1, h1, f1, c1〉 \ 〈d2, h2, f2, c2〉
specifies {λ ∈ L(Ω) : (d1 ≤ D(λ) < d2) ∧ (h1 ≤ H(λ) < h2) ∧ (f1 ≤ F (λ) <
f2) ∧ (c1 ≤ C(λ) < c2)}. Two-sided bounds for each quantity provide a richer

2 Zero padding a section of data is a common technique for file formats.
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class of clones; we will see that two sided bounded quantities are also computable
with a single pass over the suffix data structures in the Traverse-Tree method
presented in section 3.3. Closure under set operations (union, intersection, com-
plement) of the cylinder sets generates a sigma algebra and therefore provides a
mathematical measure space.

Justification of Clone Model. Closure of our clone class {〈d, h, f, c〉 : d ≥ 0, h ≥
0, f ≥ 0, c ≥ 0} with set negation, intersections (conjunctions), and unions (dis-
junctions) generates a sigma-algebra C which is a coarsening of 2L(Ω). Therefore
our notion of clones provide a measure space: 〈L(Ω), C〉 which approximates
〈L(Ω), 2L(Ω)〉 and may be compared to other formal notions of clones. Although
the dimension of this clone model is low with only four free variables we shall
argue that these are simple to build into suffix array indices and sufficient for
calling interesting sets of clones from malware artifacts. Further the low dimen-
sionality reduces the search for features of a corpus quantified as regions in the
parameter space of d, h, f, c. Functions file coverage F and clone multiplicity
C are monotonically non-increasing in the suffix-order relation on L(Ω); that
is to say, if ζ is a suffix of λ then F (ζ) ≥ F (λ) and likewise for C. However
as mentioned above they measure different notions of cloneage with ratios ex-
pressing a comparison of self-similarity to similarity in the corpus at large. The
clone length function D is monotonically increasing in the suffix-order relation as
D(ζ) < D(λ). Therefore setting minimum values of d, f, c works to select clones
from a corpus by using opposing criteria in the suffix-order on L(Ω). The clone
entropy function has no monotonic property in the suffix-order but is effective
in selecting against low string entropy. Entropy selection is useful for executable
modules which display wide variations including common null byte sequences.

3 Methodology: clone calling with arrays and
representation for clone sets.

The main result of this section is that we adapt suffix trees/arrays to call or
enumerate the members of 〈d, h, f, c〉 in time: O(||Ω|| log (|Ω|)). We further show
that clone sets 〈d, h, f, c〉 are reducible to a much smaller subset called a max-
clone representation by use of a suffix-relation on Σ∗. The max-clone represen-
tation admits to both meaningful visualizations and application of measures to
identify and infer provenance in artifacts (discussed in the next section). We
present a brief historical development of suffix data structures, subword trees,
and arrays to discuss the Traversal-Tree procedure which produces the ar-
rays enhanced with clone quantities. Our model for suffix data structures is
Ukkonen’s suffix tree Navarro and Mäkinen [2007],Ukkonen [1985] and Ukkonen
[1995] and we follow its terminology and developments; for further background
we suggest Navarro [1999]. Since suffix arrays may emulate suffix trees Abouel-
hoda et al. [2004] our method is possible for various suffix array implementations
as well. To be as general as possible we describe the minimum data requirements
of suffix-tree nodes to complete the Traversal-Tree method.
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3.1 Suffix Data Structures.

Given a set of strings S, an index tree (trie), such as the PATRICIA trie Mor-
rison [1968], is a tree graph which encodes a finite state automaton (FSA) for
acceptance of any input matching a member of S. Each string from S corre-
sponds to a path from the root node to a leaf, and paths are merged by shared
prefixes to form a trie (tree index). As an FSA, this structure may be considered
an Aho-Corasick string matcher.

The set of all suffixes of string ω is denoted by σ(ω) and defined as: σ(ω) =
{ω[0 : k] : k ∈ {0, 1, . . . |ω|}}. A Suffix trie for ω is constructed by creating a
PATRICIA trie on σ(ω).

The suffix trie may be used as an entire index of all substrings because any
substring of ω can be written as a prefix of a member of σ(ω). Further the
tree structure is meaningful for the problem of content mapping as the internal
branching nodes of the structure are in correspondence with redundant strings of
the text, the deepest internal branch of which is called the Longest Common
Substring (LCS) Gusfield [1997].

(a) (b)

Fig. 1. (a) Suffix trie and tree for ω =′mississippi′; states of the suffix trie are indicated
by nodes and state transitions by edges labeled with letters. Ukkonen’s suffix tree only
requires explicit states (black) and is able to emulate the implicit states (gray) of the
trie. The tree root node is in the center and the set σ(ω) is displayed in lexicographical
order starting at angle π

2
and rotating 2π in a clock-wise direction. Notice also the

deepest branching node in the tree corresponds to longest common string ′issi′. (b)
Suffix tree for ω =′mississippi′. Replacement of the transition labels with offsets and
length indices (referencing the input string ω) create the suffix tree. In addition each
node maintains a set of children branches and a suffix pointer (not shown).

The suffix trie data structure admits to a compact representation by removing
internal non-branching nodes and emulating transition-labels for implicit states
(see figure 1(a)). Further there is no need to store transition-labels as they can
be recovered from offsets (in ω), further reducing the space requirements for
suffix tree nodes (see figure 1(b)).
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For fixed and finite alphabet Σ, the resulting data structure is linear in
space O(|ω|) and constructed in linear time O(|ω|) Ukkonen [1995]. Further the
data structure can be traversed in linear time O(|ω|) to identify the deepest
branching node and equivalently the LCS of the text (see Gusfield [1997] for
additional details).

In addition to trees, suffix arrays are constructed in near linear to linear
time Kärkkäinen et al. [2006] Kim et al. [2003]; Ko and Aluru [2003] and may
emulate suffix trees Abouelhoda et al. [2004]; therefore what can be performed on
Ukkonen’s tree extends in principle to many array implementations as well. More
recently, succinct data structures have achieved greater compression of suffix
trees and arrays for lossless index re-callers Manzini and Ferragina [2004] Navarro
and Mäkinen [2007]; for example the Ferragina Manzini index structure (FM
Index Manzini and Ferragina [2004]) utilizes the Burrows-Wheeler transform to
compress the suffix array in memory.

3.2 Implementation: Construction of a Suffix Tree for Malware
Artifacts.

In order to scale the suffix tree beyond system external memory (EM) data
structures are possible Arge [1996] and Ferragina and Grossi [1995]. Beginning
from Ukkonen’s suffix tree algorithm, we implemented an external memory set
of c-programs for a corpus over the bytes alphabet Σ = {0, . . . , 255}.

We demonstrate an externalized version of Ukkonen’s suffix tree algorithm
augmented to support corpus indexing (by adding file index and local offsets
within the file) to leaf nodes. Below in Figure 2 we visualize a suffix tree data
structure constructed to analyze string structure in Aliser File Infector malware
artifacts.

3.3 Traversal of Ukkonen’s Suffix Tree to Create Clone Quantity
Arrays.

Throughout the remainder of this section we assume a fixed corpus Ω with
concatenated length ||Ω|| and number of artifacts |Ω|, letting ω = ω0◦. . .◦ω|Ω|−1
be the concatenation of artifacts in the corpus. The algorithm can generally be
applied to any content map capable of emulating a suffix tree with the following
minimum data fields for each node η of the tree: η.O to access the offset in ω,
η.C to access children of η, η.L to measure the length of the branch in the suffix
tree between η’s parent and η (i.e. the length of string ω[η.O : (η.O + η.L)])3.
It is not necessary but beneficial to have a suffix-link η.s pointing to the node
representing the suffix of η, and for leaf nodes the file identifier η.F and local
file offset η.o.

3 String ω[η.O : (η.O + η.L)] cooresponds with the state transition labels from η’s
parent to η.
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(a) zoom x10 (b) zoom x100

Fig. 2. Example: Suffix tree constructed for Aliser malware artifact family data (79
files, 6,643,712 bytes). Trees are lexicographically ordered starting from the branch cut
0 and winding counter clockwise to 2π. Notice that the bloom of wide branching and
deep paths near argument 0 in the tree corresponds with substrings prefixed with null
byte sequences; these are also low entropy strings.

Let η.C be the children of state η, sorted in order by the transition character
(i.e. the order of Σ). We denote the k’th child (zero based index) of η as η.C[k],
and assume the function: Child(η, k) which returns η.C[k] if k < |η.C| or ∅
otherwise. Note that |η.C| is bounded by |Σ| for all nodes of the suffix-tree. Let
root be the unique node not found as a child state for any other node.

Recall the correspondence of L(Ω) and paths in the suffix tree: for suffix
tree node η we indicate this relation with η̄ ∈ L(Ω) where η̄ is the path string
obtained by concatenating strings upon all branches from root to η.

Throughout the traversal we maintain a stack4 of tuples denoted as S. The
tuples in the stack are of the following form:

〈η, k, l, T, z, θ, δ〉.

With η a unique node identifier, k is a number between 0 and |η.C| indicating
how many children of η have been explored in post order, while l represents the
length of η̄ and supports the computation of the clone length function D(η̄). The
variable T represents the subset of corpus indices (file index) {0, 1, . . . , n − 1}
indicating the covering files for η̄ and supports the computation of the clone file
coverage function F (η̄). The quantity z counts the clone multiplicity function
C(η̄) by computing the total number of leaf descendents of η in the suffix tree.
The value θ is a vector over alphabet symbols in correspondence with Σ sup-
porting the computation of clone entropy function H(η̄). Let 〈0〉Σ be a count
vector (over symbols of Σ) with all values initialized to 0. Finally δ charts the
topological depth in the suffix tree counting the number of nodes between the
root and η.

4 Should the stack grow to sizes beyond system memory, externalized data structures
to support a large stack are possible.
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While the tree-traversal is a straightforward walk of the data structure, the
ordering of computations needed to compute clone quantities D,H,F,C for qual-
ifying in set 〈d, h, f, c〉 must be sequenced carefully so we distributed them into
PreOrderVisit and PostOrderVisit operations. We present the outline for
traversal:

Traverse-Tree

0: Push(S, 〈root, 0, 0, ∅, 0, 〈0〉Σ , 0〉 )

1: φ← ε

2: while Length(S)

3: do η, k, l, T, z, θ, δ ← Pop(S)

4: µ←Child(η, k)

5: if µ 6= ∅
6: Push(S, 〈η, k + 1, l, T, z, θ, δ〉 )

7: Push(S, 〈µ, 0, l, {}, 0, 〈0〉Σ , δ + 1〉 )

8: PreOrderVisit( S, φ)

9: else PostOrderVisit( S, η, l, T, z, θ, δ, φ)

While a node η has additional children to explore it will be pushed back onto
the stack with its child index incremented (line 6), and the kth child µ will
be pushed immediately after (line 7). When node η has exhausted the explo-
ration of children, flow-control reaches line 9 where quantities for the sub-tree
rooted at η will be aggregated upward to γ (the parent of η). In addition line
9 records a post-ordering of nodes in the tree, after which η will not re-enter
the stack again. In addition PostOrderVisit traverses the content of L(Ω)
in lexicographical order. This outline completes the description of the traversal
framework to compute clone quantities using suffix data structures.

Next we consider the PreOrderVisit which provides the opportunity to
initialize data for µ (child of η), extend the string φ with a contribution from µ
to arrive at µ̄, and update θ needed to compute the entropy statistics H(µ̄):

PreOrderVisit(S, φ)

0: µ, k, l, T, z, θ, δ ← Top(S)

1: if ( Leaf(µ) )

2: z ← 1

3: T ← T ∪ {µ.F}
4: l← −1

5: else

6: l← l + (µ.L)

7: λ← ω[µ.O : (µ.O + µ.L)]

8: θ ← θ + 〈λ〉Σ
9: φ← φ ◦ λ

In line 0 of PreOrderVisit we access µ’s variables stored at the stack’s top (line
7 of Traverse-Tree). The function Leaf may be implemented by checking
the predicate: (|µ.C| = 0). In lines 2-4 we treat the case when µ is a leaf:
quantities clone multiplicity z and clone file cover T are initialized and later
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will be aggregated upward during the PostOrderVisit, and quantity l is set
to −1 to indicate a suffix of ω and could be interpreted as “read to the end of
corpus.” Lines 6-9 handle computations required for internal branch nodes; these
include updating the string φ from η̄ to µ̄ (line 9) by extracting the string from
the corpus associated with the suffix link between µ and µ’s parent η (Line 7).
Updating the depth variable l from |η̄| to |µ̄| is performed in line 6, and updating
a running symbol count of φ is performed in line 8.

Next we consider the PostOrderVisit providing the last opportunity to
perform computations obtained from node η:

PostOrderVisit(S, η, l, T, z, θ, δ, φ)

0: γ, kγ , lγ , Tγ , zγ , θγ , δγ ← Top(S) % parent of η is γ

1: zγ ← zγ + z

2: Tγ ← Tγ ∪ T
3: Print( η, η.O, η.L, η.F, η.s, δ, 〈l, h( 1

z
θ), T, z〉 )

4: φ← φ[0 : lγ ] % return string to γ̄.

Notice that in line 3, the printing of 〈l, h( 1
z θ), T, z〉 are evaluations of D(η̄),

H(η̄), F (η̄), C(η̄). Line 2 and 3 of PostOrderVisit aggregate z the clone mul-
tiplicity and compute the clone file cover set T currently held by η upward to
γ (η’s parent) at the top of the stack at the time PostOrderVisit is called
(note that only a parent γ can precede a child η in stack insertion: see lines 6-7 of
Traverse-Tree). Line 3 writes the enhanced array to output and could provide
an opportunity to conduct further and more general analysis for clone member-
ship. Finally line 4 reduces the current content string φ to γ̄ by truncating η.L
symbols from η̄.

Lemma 1 Traverse-Tree is O(||Ω|| log (|Ω|)).

Proof: The total number of Pop’s (line 3 of Traverse-Tree) is bounded by
twice the number of edges in the suffix tree and therefore bounded by 4||Ω|| as
the maximum number of edges in a tree which is less than twice the number of
leaf nodes. Therefore, the loop is performed O(|ω|) times and the complexity con-
sideration is reduced to that of PreOrderVisit and PostOrderVisit. The
traversal guarantees that PreOrderVisit and PostOrderVisit are called
once per node.

Line 3 of PreOrderVisit and lines 2 and 3 of PostOrderVisit are
log (||Ω||) set operations. Lines 7-9 of PreOrderVisit can be analyzed by
amortizing across all nodes of the tree during traversal, since the load size of
λ over all nodes of the tree is no greater than loading the entire corpus. The to-
tal cost of all operations is therefore bounded by O(||Ω||). All other operations
in PreOrderVisit and PostOrderVisit are a O(1). Therefore the entire
runtime is bounded by O(||Ω|| log (|Ω|)). ♣

Note: More generally line 3 of PostOrderVisit could be replaced by any
method that is O(1) in the depth of stack S and O(log (|Ω|)) to get a slightly
stronger lemma allowing for additional analysis involving the relation between
a node η and its parent γ, or some limited size ancestral chain, for example:
η, η.P, η.P.P .
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Enhancing a Suffix Array with Clone Quantities. With the runtime for
Traverse-Tree resolved as O(||Ω|| log (|Ω|)) we now focus on the transforma-
tion of data that line 3 of Post-Order-Traversal yields. While it produces
a tabulated form of data that allows us to test node membership in 〈d, h, f, c〉,
it also achieves a full map of all suffixes printed in lexicographical order thereby
creating an enhanced suffix array augmented with quantities of clone length D,
clone entropy of H, clone file coverage F and clone multiplicity C.

In the subsequent section we show how this map can be used to support
measures leading to pairwise distance based on clones in common and clustering
based on common clones. We suggest the outline above as a framework to extend
notions of clones further; for example, measuring the distance to specific symbol
frequency vectors such as a topic vector or witness complex De Silva and Carlsson
[2004], which we plan to pursue as future work.

3.4 Max-Clone Representation.

Clone sets have an inherent redundancy which displays perplexing patterns re-
lated to the self similarity of the suffix tree data structure. To simplify matters
we describe a representation of a set 〈d, h, f, c〉 that is both easy to visualize and
minimal in that it selects the smallest subset of representatives from 〈d, h, f, c〉
for which all other members are suffixes of a representative with equal value
for F and C. We shall argue that knowing all members provides no additional
information beyond knowing the representation. We provide an indication of the
type of reductions the representation offers in practice.

Two nodes in the externalized suffix tree are suffix-related5, denoted µ ≺ ρ,
if ρ̄ = xµ̄ for some symbol x ∈ Σ. Given a specific clone set B = 〈d, h, f, c〉 we
can extend the suffix-relation ≺ to members with a level-set-suffix-relation ≺B
on all nodes of the tree as:

(µ ≺B ρ)⇔ (µ ≺ ρ) ∧ (µ̄ ∈ B) ∧ (ρ̄ ∈ B) ∧ (F (µ̄) = F (ρ̄)) ∧ (C(µ̄) = C(ρ̄)).

We define the max-clone representation of a clone class 〈d, h, f, c〉 as the
strings associated with maximal elements of the relation ≺〈d,h,f,c〉, and we de-
note the max-clone representation as 〈〈d, h, f, c〉〉. Computing the max-clone rep-
resentation is easily seen to be O(||Ω||); see the appendix for a graph algorithm
that computes the max-clone representation.

Justification: The suffix relation is a particularly appropriate order for reducing
the representation (to maximal clones), because any non-representative member
of the clone class is a suffix of a representative member with identical values of
F,C (level set). Furthermore in applications we argue that this representation
translates directly to the longest common strings of interest in data and we
provide examples of how the max-clone representation may be visualized in
figure 3 for Duqu and Stuxnet malware data.

5 Ukkonen’s construction includes suffix links.
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Reduction in practice: The max-clone representation is an effective data
reduction in practice. In figure 3 we present a visualization of a max-clones
for 〈1000, 2.0, 2, 2〉. In this case the number of nodes of the suffix tree quanti-
fied by 〈1000, 2.0, 2, 2〉 is 25,177, yet the max-clone representation comprises 7
clones located at 17 offsets in the corpus. The max-clone representation signals
what and where largest relations in data may be found. In this case the max-
clone representation selects 2.780868 × 10−4 fractional amount of clones from
〈1000, 2.0, 2, 2〉.

Conclusion: For corpus Ω the max-clone representation for 〈d, h, f, c〉 denoted
〈〈d, h, f, c〉〉 is computable in O(||Ω|| log (|Ω|)) by first building suffix-data struc-
tures, traversing the suffix-data with Traverse-Tree, and identifying maximal
elements of ≺〈d,h,f,c〉.

4 Applications and Results.

The remainder of the paper focuses on applications of our methodology to mal-
ware artifact data. We address the motivating problems and illustrate results
on actual malware data artifacts. We focus on the problem of Stuxnet and Duqu
(which represents a difficult challenge in cyber security) and show the use of clone
sets to identify and measure the evidence for provenance. Using the max-clone
representation 〈〈d, h, f, c〉〉, we sketch how to construct Jaccard similarity coeffi-
cients to compare artifacts in a pairwise manner. We present Jaccard coefficients
for this problem and the results indicate that the relation between the Stuxnet
and Duqu malware sets signals an overlap detectable with the Jaccard coeffi-
cient. Finally we consider the Jaccard similarity coefficients for cyber secruity
data and provide experimental designs in terms of coverage and compression.

4.1 Mapping Clone Features and Visualization.

In Figure 3 we assemble a set of binary artifacts (the driver artifacts) matching
anti-virus signatures for either Duqu or Stuxnet malware groups as studied in
Chien et al. [2012],Falliere et al. [2010] where reverse engineering techniques dis-
covered evidence supporting the hypothesis fo a common provenance or history
of development. While these discoveries were important to the security commu-
nity and also (from 2012 forward) to the mainstream media, the question of
identifying all the evidence supporting the findings remained open.

Conclusions: The visualization of data is useful for data triage and establishing
priorities for costly reverse engineering resources. For example in the image 3 a
high entropy string of sizable length in found in the slack section6 of binaries
including both Stuxnet and Duqu.

6 Slack sections are areas of data not reported by the program’s load table.
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Fig. 3. Example: Duqu vs Stuxnet: visualization of 〈〈1000, 2.0, 2, 2〉〉. Binaries of four
malicious code samples (two from the Duqu family and two from the Stuxnet family) are
illustrated as regions of an annulus. Small notches in the outer circumference mark the
beginning of a binary and can be viewed at approximate angles of: π

2
, 0 for the Duqu

samples and 3π
2
, π for the Stuxnet samples. Next files are divided into sections and

color coded by section name .text, .rsrc, .rdata, .data, INIT, reloc. Max-Clones from
〈1000, 2.0, 2, 2〉 are illustrated as counter-arcs passing through the interior region and
connecting orthogonally to the annular region representing the binary layouts. These
counter-arcs show the locations and length of max-clones when c > 1. An annular
region, just interior to the view of file formats, illustrates the copy number of each
cloned region with a red alpha channel. Partial transparency (alpha channel) helps
with signaling clone matches contained as substrings to larger matching clones.

4.2 Measurements of Shared Clone Features.

Using Figure 3, which illustrate 〈〈1000, 2.0, 2, 2〉〉, we can indentify and count
the distinct number of clones as 7 max-clones with 14 distinct offsets in the
corpus. In this section we develop the Jaccard similarity coefficient to measure
the percentage of content in common (given a clone class) in pairs of files. We
further illustrate how these measures may vary on the clone class 〈d, h, f, c〉.

Fixing the Corpus Ω = {ω0, . . . , ωn−1} and given a clone set 〈d, h, f, c〉, A
Jaccard similarity coefficient for all pairs of artifacts is fairly straightforward and
is computed as follows: For any subset I ⊂ {0, . . . , n− 1}, identify all the clones
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which have a region contained in all of the artifacts of I, so assume the function:

Cover (I) = {λ ∈ 〈〈d, h, f, c〉〉 : I ⊂ File(λ−1)}

with File(λ−1) = {File(r) : r ∈ λ−1}. For comparison of artifact i against a
subset I we count the number of indices of ωi covered by strings from Cover (I).

A(i, I) =

|ωi|∑
a=0

φ(ωi[a :],Cover(I))

with:

φ(ω[a :], S) =

{
1 if ∃b : ω[a : b] ∈ S
0 o.w.

We introduce the Jaccard similarity coefficient as J(I) =
∑

i∈I A(i,I)∑
ı∈I |ωi| and inter-

pret this as the percentage of a subset covered by the given clone set 〈d, h, f, c〉.
Pairwise Measures: Table 4 we compute the Pairwise-Jaccard by consid-
ering subsets I with |I| = 2. The pairwise measures are presented for a range of
different clone sets to give a sense of measure dependencies on clone quantities
d, h.

Jaccard similarity coefficient

clone-class 〈d, h〉
〈10, 0.25〉 〈1000, 0.25〉 binary
〈10, 2.0〉 〈1000, 2.0〉 duqu.45 sutx.1e stux.f8

duqu.0e
0.91 0.86 0.41 0.22 0.25 0.00
0.87 0.86 0.31 0.22 0.14 0.00

duqu.45
0.51 0.29 0.36 0.05
0.42 0.29 0.25 0.05

stux.1e
0.57 0.05
0.47 0.05

Fig. 4. Jaccard coefficients for pairwise binaries in Duqu-Stuxnet data set for clone
classes 〈d, h, f, c〉, with f = 2, c = 2. (b) Fractional amount of all data covered by a
clone from 〈d, e, 2, 2〉 for various values of d, e.

Conclusions: The Jaccard index applied to pairs of files such as in the exper-
iment with Stuxent and Duqu binary files may indicate shared provenance or
present evidence that shared provenance is a candidate mode for binaries with
unknown histories. In the above computation using clone class 〈1000, 2, 2, 2〉 the
measure of 29% pairwise identity across the family boundary turns out to be
a significant amount of clone features. Further the measure can be applied to
incoming samples and measured against a known dictionary of examples. Re-
sults from 5 provides useful information on how to set parameters for dictionary
matching.
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Fig. 5. Coverage: fractional amount of all data covered by a clone from 〈d, e, 2, 2〉 for
various values of d, e.

Set Algebra Measure: We construct a mixed data set including binaries
from four malware families including: Duqu, Poison Ivy, Stuxnet, and Zeus/Zbot,
and binaries from two operating systems: Linux and Win7. In table 6(a) we
list the mixed data set used in this experiment. In the experiment we let I =
{1, . . . , 16} be the artifact index with artifact cluster identity withheld. Using
the clone set 〈80, 0.6, 2, 2〉 we enumerate subsets of A ⊂ I with non-empty
Cover(A). For each subset of A ⊂ I we may compute the Jaccard similarity
coefficient J(A), and in Table 6(b) we present the rank ordering of the result.

Conclusions: The results reported in the experiment above indicate the useful-
ness of applying these measures to unknown data for triage or a first order pass
to identify topics in data sets. While we defer a statistical treatment to a future
effort the result above is useful in indicating the significance of the Duqu, Stuxnet
comparison and also indicates the expectation of increased measures of clones in
common in binaries chosen randomly from related activities.

Acknowledgments. We would like to thank the Members of Software Engi-
neering Institute: Chuck Hines, Jeffrey Havrilla, Leigh Metcalf and Rhiannon
Weaver for the many discussions about cyber security science. The research re-
ported here was supported by CMU SEI line funded research program.
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binary artifact id artifact cluster

duqu.0e 1
Duqu

duqu.45 2
linux.bzip2 3

Linux
linux.pwd 4
linux.sed 5
linux.su 6
linux.tar 7
pi.0a..67 8

Poison Ivy
pi.0a..cf 9
stux.1e..a5 10

Stuxnet
stux.f8..1e 11
win7.calc 12

Win7win7.shutdown 13
win7.soundrecorder 14
zbot.20..f6 15

Zeus
zbot.a8..8e 16

(a) Data

subset number of comment
J(A) A ⊂ I clones

0.882959 {1,2} 7 Duqu
0.819336 {8,9} 10 Poison Ivy
0.268531 {1,2,10} 9

Duqu vs Stuxnet0.122605 {2,10} 6
0.077236 {2,10,11} 7
0.076004 {10,11} 17 Stuxnet
0.036384 {1,2,10,11} 9 Duqu vs Stuxnet
0.028313 {4,7} 22

Linux

0.015117 {3,4} 2
0.013848 {3,5} 4
0.013570 {3,6} 2
0.009218 {5,6} 1
0.007921 {3,4,5,6,7} 4
0.007230 {13,14} 5 Win7
0.004880 {4,6} 1 Linux
0.004104 {1,2,11} 1 Duqu vs stux
0.003735 {4,6,7} 2

Linux0.003445 {3,5,6,7} 2
0.003074 {6,7} 1
0.002600 {12,13,14} 7

Win7
0.002521 {12,13} 6

(b) Discovered Topics

Fig. 6. Experiment using random artifacts shows that the measure J(A) for A ⊂ I
presents good recovery options for artifact triage. (a) Data set: a mixture of random
samples from several distinct sets. (b) Rank by J(A), (top 21 entries) with measure
≥ 0.025 shown.
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