
A Generic Framework for Parallelization of Network Simulations

George F. Riley Richard M. Fujimoto Mostafa H. Ammar

College of Computing

Georgia Institute of Technology Atlanta, GA 30332

friley,fujimoto,ammarg@cc.gatech.edu

Abstract

Discrete event simulation is widely used within the
networking community for purposes such as demon-
strating the validity of network protocols and architec-
tures. Depending on the level of detail modeled within
the simulation, the running time and memory require-
ments can be excessive. The goal of our research is to
develop and demonstrate a practical, scalable approach
to parallel and distributed simulation that will enable
widespread reuse of sequential network simulation mod-
els and software. We focus on an approach to paral-
lelization where an existing network simulator is used
to build models of subnetworks that are composed to
create simulations of larger networks. Changes to the
original simulator are minimized, enabling the parallel
simulator to easily track enhancements to the sequential
version. In this paper we describe our lessons learned
in applying this approach to the publicly available ns
[9] software package, and converting it to run in a par-
allel fashion on a network of workstations. This ac-
tivity highlights a number of important problems, from
the standpoint of how to parallelize an existing serial
simulation model and achieving acceptable parallel per-
formance.

1 Introduction

Simulation will remain the method of choice for
many network analysis problems. Although analytic
models are useful in many situations, the complexity
of modern networks combined with the inability to ap-
ply simplifying assumptions in many analysis problems
(it is well-known that Markovian tra�c assumptions
are often inappropriate and can lead to misleading re-
sults) limit the applicability of purely analytic meth-
ods. Even when analytic methods can be used, simu-
lation is often used to validate the models.

However, simulation tools have not been able to keep
up with the rapid increases in the size, complexity, and
speed of modern networks. Today, a packet level sim-
ulation of a gigabit network containing a few hundred
nodes can be expected to require hours, perhaps even
days, of CPU time to simulate only a few minutes of

network operation using a contemporary workstation.
Next generation Internet (NGI) simulationswill require
models containing millions to billions of network nodes
for scalability studies. Other simulations require long
periods of network operation to be simulated to cap-
ture statistics concerning infrequent (rare) events such
as cell loss probabilities in ATM networks. Advances
in CPU speed alone can only be expected to provide
perhaps an order of magnitude speedup over the next
few years. It is clear that a viable approach exploit-
ing scalable, parallel network simulation techniques is
needed to achieve the performance needed to simulate
these networks.

The parallelization of network simulations has been
studied for some time. Nicol et. al. discuss IDES,
a Java based parallel simulation in [11]. Ogielski et.
al. present the Scalable Simulation Framework (SSF)
in [5]. Perumalla et. al. describe TED, a process
oriented simulation system in [14] and [13]. Bagrodia
discusses theMaisie simulation environment in [2], and
Unger describes Telesim in [16].

Numerous demonstrations have reported order of
magnitude speed ups of simulation computations.
However, overall the impact of parallel simulation tech-
nology on the networking research community has been
minimal; sequential simulation remains the method of
choice by nearly all network modelers today. One prob-
lem that has slowed the adoption of parallel simulation
techniques is the need to adopt new, unfamiliar sim-
ulation languages and tools to exploit this technology.
Models for parallel simulation engines are not as ma-
ture as those for sequential simulators, and generally
have not gone through as rigorous validation e�orts as
the best sequential models. Even as parallel simulation
tools mature, sequential simulation tools and models
will also advance.

Our work focuses on a federated approach to parallel
simulation where extensions to existing sequential (or
parallel) simulation engines (speci�cally ns) are added
which will allow them to be interconnected to create
parallel simulators. Changes to the original simulator
are minimized so that the parallel simulation tool can
easily track new enhancements and additions to the
original simulators. Each simulator will be given net-
work topology and data ow characteristics which de-
scribe only a portion of the network being simulated.

1



Interface Interface Interface

Runtime Infrastructure

Mapping

Specification

A

B

C Model Repository

Simulator A Simulator B Simulator C

ns OpNetns

Conceptual Model

Figure 1. Conceptual Overview

Interaction between simulators is determined at run
time using techniques which we will describe. One ad-
vantage of this approach is that the memory of many
processors can be used in the simulation, thus allow-
ing larger network models to be simulated. Addition-
ally, models which have already been developed can be
reused. Further, because the parallel simulator is based
on existing sequential simulators, many existing tools
can be readily reused and modelers are presented with
a relatively familiar modeling environment.

This approach is not unlike that described by Nicol
and Heidelberger [10]. That work focused on paral-
lelization of queueing network simulations written in
a package called CSIM. However, as will soon be ev-
ident, more sophisticated techniques are required to
compose network simulations because global informa-
tion is often needed. Perhaps closer in spirit to the
work described here are e�orts such as the Department
of Defense High Level Architecture [7], however, that
work has been largely focused on military applications
(e.g., virtual environments for training and war game
simulations). Some work in applying the HLA concept
to network simulations is in progress [1].

Longer term, we envision a composable simulation
infrastructure where network simulations are routinely
constructed by extracting model components devel-
oped by others (possibly using di�erent simulation
packages) from other individual's web sites, con�gured
to create a large network simulation, and executed
on parallel and/or distributed computing platforms.
Model execution might take place locally on the user's
own computing facilities, or remotely on high perfor-
mance compute servers. In situations where it is di�-
cult to co-locate all of the sub-models due to porting
costs or the potential for release of proprietary infor-
mation, geographically distributed execution across the
Internet may be employed. Figure 1 shows a concep-
tual overview of our vision of how this can be done.

In this paper, we present an outline of the issues

that must be addressed by the designer of a compos-
able, distributed network simulation package and give
some proposed solutions. We give our experiences with
applying these solutions to the popular network simu-
lator ns. The remainder of this paper is organized as
follows. In section 2 we give a general methodology
which we used to construct a parallel simulation from
the original serial version. In section 3 we discuss the
issues that are faced by the network modeler when tak-
ing an existing serial simulation of a subnetwork and
composing it with models of other subnetworks so that
they can be run in parallel. In section 4 we discuss the
issues that a�ect the simulator itself which are required
to coordinate the events between the sub-models and
obtain correct results. In section 5 we discuss several
of the performance related problems we encountered
and discuss our solutions. In section 6 we give some
performance comparison results using our parallel ns
implementation. In section 7 we give some conclusions
from our research.

2 A Methodology for Parallelization

In this section, we formulate a general methodology
that can be applied to create a parallel version of a
serial simulation. We assume that the parallel simula-
tion is to be run on a shared memory, symmetric mul-
tiprocessor (SMP). An additional enhancement is sub-
sequently given to modify the methodology to create a
distributed simulation on a loosely coupled network of
workstations without shared memory. The basic steps
are as follows:

1. Determine how many physical processes (or
threads) will be assigned to run the parallel sim-
ulation.

2. Create a one-to-one mapping of the state vari-
ables in the serial simulation to the physical pro-
cesses of the the parallel simulation.

3. Maintain a separate event list for each physical
process.

4. Distribute events during the execution among the
physical processes.

5. Add mechanisms to insure the state managed by
the di�erent physical processes remains consis-
tent.

6. Perform any optimizations that may be needed
to increase performance.

Determine number of physical processes. Ide-
ally, on a system that has n CPU's, the serial simula-
tion could be split into n separate physical processes (or
threads), which each handling 1=nth of the workload.
Depending on how the physical processes are de�ned,
the entire simulation state may have to be replicated
into each physical process.

Create a mapping. Determine some mapping of
state variables to physical processes. In other words,
decide which of the physical processes will be responsi-
ble for maintaining which subset of the state space. In
the simplest case, one can just divide the entire state



space into n partitions (where n is the number of phys-
ical processes), and map the entities by the partition
number.

Maintain separate event lists. Each physical
process will only be concerned with events that a�ect
the state variables mapped to that physical process.
Thus events which a�ect other state variables can sim-
ply be ignored. Some form of synchronization protocol
is needed to determine when events are safe to process.

Distribute events. During the execution of the
simulation on each of the physical processes, any event
generated must also be mapped to a (potentially di�er-
ent) physical process for processing. This can be done
by examining the mapping of the state variable that
is the target for the generated event. If it is a non-
local event (mapped to a di�erent physical process),
then that event must be made known to the correct
physical process, by some event transfer mechanism.

Insure consistent state. During the processing
of each event one must insure that for any replicated
state variable that the state is consistent among the
physical processes. This can be done by simply insur-
ing that no physical process will generate events for
another physical process in the simulated past, and by
forwarding state change information between physical
processes using some communications mechanism be-
tween the physical processes. A synchronization pro-
tocol is needed for this task.

Perform optimizations. Once the previous steps
have been done, one can then begin to make optimiza-
tions to enhance performance. For example, it may
sometimes be determined that the complete simula-
tion model need not be replicated onto all physical pro-
cesses. In the case of ns (for example) we were able to
save considerable memory by only creating simulated
entities on each physical process that were mapped to
that physical process. However, this optimization did
cause other di�culties as described in section 3. Other
optimizations might be insuring that the mapping of
state space to physical processes gives su�ciently large
lookahead to allow for e�cient parallel event process-
ing, and to e�ciently determine which events are safe
to process.

The above methodology will allow any serial sim-
ulation to be modi�ed to run in parallel on a tightly
coupled SMP system. The addition of the a new step 0
given below will allow the serial simulation to be run in
parallel on a loosely coupled network of workstations.

Step 0, Replicate the entire simulationmodel.
Create a separate copy of the entire serial simulation
model on each of the distributed systems in the net-
work of workstations. By doing this, each physical
process will have any global state knowledge necessary
to complete the simulation, but will only be responsi-
ble for maintaining and modifying state variables that
are mapped to it. An obvious optimization is reducing
the state space maintained by each physical process to
perhaps only include state variables mapped to that
physical process. This optimization can cause di�cul-
ties however, as outlined in the next section.

H0

H1

R0

R1

Simulator A Simulator B

R2

R3

H2

H3

TCP Source 0

TCP Source 1

TCP Source 2

TCP Source 3

TCP Sink 0

TCP Sink 1

TCP Sink 2

TCP Sink 3

Figure 2. Simple Network Model

3 Describing the Simulation

In this section we discuss some of the issues which
must be addressed when describing a network simula-
tion to be run in a distributed fashion on a network
of workstations. These issues are a direct result of
the memory optimization discussed previously which
allowed us to not replicate the entire network model
on each physical process.

Consider the simple network shown in �gure 2 con-
sisting of four end hosts (H0 { H3) and four network
routers (R0 { R4), connected with physical communi-
cation links as shown by the solid lines. This simple
network model also has four logical dataow connec-
tions consisting of four \TCP Source" to \TCP Sink"
pairs, as shown in the �gure. Further consider that
the network modeler has decided to run the complete
model in parallel on two systems, simulator A and B,
splitting the model into sub-models as shown by the
dashed line. From the point of view of the modeler,
there are two basic problems which must be addressed
and solved, speci�cally:

1. De�ning physical connectivity
2. De�ning logical connectivity

3.1 Defining Physical Connectivity

If the network in �gure 2 were being simulated on a
single workstation using a serial simulator the descrip-
tion of the overall network topology is quite straight-
forward. Using the semantics of the network simulator
being used, the modeler would simply de�ne the sim-
ulation elements representing each of the eight nodes,
and then de�ne the physical links by referencing those
nodes as the endpoints of the links. The ability to de-
�ne a network topology of nodes and interconnecting
links is a fundamental requirement of any network sim-
ulator.

But now consider what problems face a modeler
when he decides to split the model into submodels A
and B (as shown in the �gure) and run those in paral-
lel, by composing two network simulators A and B. As
mentioned previously, we assume that only those nodes



that will be managed by simulatorA will be de�ned on
that simulator, in order to keep the memory require-
ments for each system as small as possible. Thus it is
obvious that it becomes problematic to de�ne a simple
physical link, such as the link from R0 to R2 in �g-
ure 2. By our assumption above, simulator A will not
have a node entity for node R2 and would not be able
to de�ne that endpoint for the physical link. A similar
problem would exist in sub-model B trying to describe
the physical link from R2 to R0 and the link from R2
to R1. The basic problem is that a network simulation
package designed to be run in serial on a single system
will assume the existence of a variable or object repre-
senting each and every network element being modeled,
and assume those objects can be referenced by name.
When decomposing a model in to distinct sub-models,
only those network elements which are within the same
sub-model can refer to each other by variable name.

Our solution to this problem is to borrow some well
known abstractions from the networking community,
namely that of an IP Address, and a Network Mask.
We propose that the syntax of the topology speci�ca-
tion in a network simulator be extended to allow the
speci�cation of these values for any link endpoint. In
the case where a link connects to a node declared in
a di�erent sub-model, then only the local endpoint of
the link need be speci�ed. We refer to this as a Remote
Link, or rlink. At runtime, the physical connectivity of
the rlinks can be determined by matching the network
portion of the IP Address.

3.2 Defining Logical Connectivity

In our model of �gure 2, we also are modeling
four logical dataow connections consisting of pairs of
sources and sinks. A network simulator might allow
for the declaration of an entity which generates data
(such as TCPSource0 in our example), the declaration
of a receiving end of the data ow (such as TCPSink0
in our example), and some way to specify that the two
ends have logical connectivity.

Again assuming that we want to decompose the
model into sub-models as in the previous section, we
are faced with a similar problem. We again assume that
a submodel will only de�ne and manage data ow end-
points for those nodes that are managed by the local
simulator. Simulator A will be unable to identify the
remote endpoint TCPSink0 of data source TCPSource0
since TCPSink0 is de�ned on a di�erent simulator.

To solve this problem, we again borrow well known
abstractions from the networking community, using an
IP Address and a Port number. We propose allowing
the speci�cation of an IP Address for a physical link
endpoint (as previously mentioned), and also allowing
the speci�cation of a binding of a logical connection
endpoint to a 16 bit port number unique within a node.
Then a logical data connection can be speci�ed by giv-
ing the IP Address and port number of the remote end-
point.

4 Implementing the Simulator

We now turn our attention away from issues of con-
cern to the network model creator, to those issues
which must be addressed by the simulator itself in or-
der to execute on a distributed platform. Of course,
of primary importance is that a distributed simulation
run on a set of simulators in parallel must produce
exactly the same results as a serial, single system sim-
ulator running the same model. In order to properly
coordinate the processing of network simulation events
between simulators, there must be support for inter-
system communication in three basic areas. Those are:

1. Determining Routing Paths
2. Event Time Management
3. Event Communication

4.1 Determining Routing Paths

The problem of how to determine correct routing
paths between sub-models in less obvious than those
of the previous sections. Again referring to the model
of �gure 2, consider what the simulator must do when
simulating the arrival of a packet at router R0, with the
ultimate destination of end host H2. In a single sys-
tem simulation the correct route (which link to forward
simulated packets on for each possible destination) can
be computed a priori using global knowledge of the
topology. In our example, router R0 would have pre-
determined that any packet being routed to end host
H2 must be forwarded on the link connected to R2.
With global knowledge of the network topology, this is
a simple and straightforward computation (although it
can be time consuming for large topologies).

Once we decide to decompose the model into sub-
models A and B as in the previous sections, we are
faced with a problem. Without global network topol-
ogy information, simulator A does not have su�cient
information to make a routing decision at routers R0
and R1. Router R0 has two remote links in our ex-
ample, only one of which is the correct link to forward
packets addressed to end host H2, but it has insu�cient
information to determine which one is correct.

We propose three possible solutions for this prob-
lem. The �rst and simplest is to put the burden on the
modeler to de�ne the appropriate routes. The model
topology speci�cation can be enhanced to specify a list
of remote IP Addresses for each remote link. Anytime
a packet is to be forwarded on a simulated node with
multiple remote links, the correct route can be deter-
mined from the list of speci�ed routes. This solution
works as long as the appropriate route will not change
over the course of the simulation. Routing changes
could occur due to the simulation of link failures or
node failures in the model.

A second and more desirable solution is to start with
a single model which speci�es the entire network topol-
ogy. With global network knowledge, the correct routes



between nodes (even routes between simulators), can
be determined automatically by the simulator without
e�ort on the part of the modeler. However, this method
requires the entire topology to be de�ned and processed
on each simulator, which creates a duplication of mem-
ory use. We propose the use of a topology preprocessor,
which will be given a complete picture of the simulated
network and will compute the needed routing informa-
tion. The preprocessor will then create the submodels
(based on either a mapping given by the modeler or by
some other optimization), and pass the submodels to
the simulators (with the routing information included).
This solution still lacks the ability to adapt in simula-
tion time to changing network topologies.

A third solution is the have the simulator run some
existing and well known routing protocols while the
simulation is running. Simulated network nodes will
start with routing tables generated a priori (with one
of the two previous approaches), and will exchange dy-
namic routing information in the simulation (using for
example the Border Gateway Protocol (BGP[15]) to
adapt to any changes in simulated network topology.

4.2 Event Time Management

A single system discrete event simulation typically
consists of the maintenance of a pending event queue,
which is sorted by increasing simulation time. A simu-
lator simply retrieves the next event from the event
queue (which will be the earliest pending event by
virtue of the sorting), and processes that event. The
processing of an event causes zero or more new future
events to be generated, each of which will placed in the
pending event queue in the proper sorted order. When
the simulation is run on a single system this process
is quite straightforward. However, when attempting
to run a parallel simulation, a single simulator cannot
just retrieve the most recent event from it's local event
queue and process it.

To see why this is true, consider a simple distributed
simulation such as shown in �gure 3. This model con-
sists of two sub-models, A and B, each of which has a
single node (N0 and N1 respectively) which are con-
nected by a physical link Link0. Node N0 has a TCP
source which has a logical connection to a TCP sink on
node N1. Suppose initially that simulator A has a sin-
gle event in its local event queue, speci�cally the gen-
eration of a data packet at simulation time 0:1 which
is to be forwarded to node N1. When A processes
this event, a number of new future events are gener-
ated, the only one of importance for this discussion is
a Retransmit Timer Expired (RTE) event, which may
have a simulation time tag of 6:1 for example. If A
just blindly continues to process events from its local
event queue, the RTE event will be processed imme-
diately, and a duplicate packet retransmission will be
generated, and another RTE event will be generated at
time 12.1. This process could repeat inde�nitely, and
of course is not the correct behavior for this model.

The correct sequence of events is for simulator B to

Simulator BSimulator A

N0 N1Link 0

TCPSource 0 TCP Sink 0

Figure 3. Simple Distributed Simulation

process the receipt of the data packet at the TCP sink
on node N1, and generate a reply packet acknowledg-
ing the receipt of the data packet. This Ack packet
would in turn would be received by the TCP source
on node N0 at some time prior to time 6.1 and would
cancel the RTE event before it is processed. To state
the correct sequence of events more generally, no sim-
ulator can process an event until it can be proven that
no earlier event can be received from any other sim-
ulator. In our speci�c case, simulator A should not
process the RTE event at simulation time 6:1 until it
can be assured that simulator B will not send events
with a simulation timestamp less than 6:1.

This is a common and well known problem within
the Parallel and Distributed Simulation (PADS) com-
munity. In order to insure that the above problem
does not occur, all simulators participating in the dis-
tributed simulation must agree on the lower bound
time-stamp (LBTS). Essentially each simulator must
determine that no other simulator can create events
at an earlier time before it can be allowed to pro-
cess its most recent event. A number of protocols ex-
ist which allow a group of simulators to agree on the
LBTS[3, 4, 12]. Using a good time management run-
time library, such as that provided by the Georgia Tech
RTIKIT, the main event processing loop of a network
simulator can easily be modi�ed to handle events in
proper timestamp order.

Using RTIKIT each simulator will call the Next
Event Request (NER) service of the RTIKIT prior to
processing any pending event, specifying the times-
tamp of the pending event. The RTIKIT will deter-
mine whether it is safe to process the pending event at
the speci�ed time, and provide a Time Advance Grant
(TAG) indicating what simulation time can safely be
advanced to. Ideally, the RTIKIT can determine the
TAG value using locally available information, or infor-
mation previously obtained from the other simulators.
In many cases however, all other simulators must be



polled to determine the LBTS value.

4.3 Event Communication

Once a given simulator has determined that it can
safely advance the simulation time to time T , it can
then process any events with timestamp less than or
equal to T , which in turn may generate other events.
In some cases, the new events generated may be events
that a�ect other simulators. Again using our exam-
ple, B might process an event at simulation time 0:20
which may cause an acknowledgment packet to be sent
to A to arrive at simulation time 0.021 (allowing for
the link delay). Clearly, there must be some mecha-
nism for B to inform A of the new event, and all of
the information associated with the event such as the
event time, sequence number being acknowledged, con-
nection identi�er, etc.

As with time management, a runtime library such as
RTIKIT should provide data distribution management
functionality. The RTIKIT provides these services us-
ing a multicast group management strategy known as
MCAST. Essentially the MCAST services allow for the
creation of groups, the sending of data by a simulator to
a particular group, and the delivery of that data to zero
or more simulators who have subscribed to the group.
Each simulator should join groups for any remote link
de�ned (as described in section 3), using the network
address as the group identi�er, and should send event
messages to other simulators by sending the informa-
tion to the same group. Using such a scheme, simula-
tors can generate event messages for other simulators
without necessarily knowing the identity of which other
simulators receive the messages.

5 Performance Related Issues

In this section, we discuss two areas where the per-
formance of a distributed simulation can be seriously
degraded if not done properly. During the course of
our development and testing of the distributed ns code,
we found that signi�cant CPU time, network over-
head, and wall clock time can be wasted performing the
LBTS computations and while polling network sockets
for potential data. Our �ndings and improvements are
discussed in detail in the following subsections.

5.1 Eliminating Excessive LBTS Overhead

As mentioned in the previous section, each of the
simulators working in parallel needs some assurance
that it is safe to advance its local simulation time from
its current value T to some new value T +�T . From
the perspective of simulator A, this time advance is
safe if no other simulator can possibly generate a new
event a�ecting simulator A with a timestamp less than
T +�T . The only way simulator A can get this assur-
ance is to gain knowledge of the the smallest simulation

Table 1. LBTS Message Overhead

FTP Size Original Improved

10000 28,070 10,200
100000 262,000 91,944
1000000 2,597,103 910,560

time of all other simulators, adjusted for the minimum
time delay of events between simulators (known as the
lookahead).

Our original implementation used a one-pass but-
tery barrier as described in [6]. As the barrier is
being processed, each processor exchanges information
regarding the smallest simulation time known, as well
as message transmit and receive counts. This becomes
problematic when there are an excess of transient mes-
sages. Transient messages are messages sent by one
processor but not yet received and processed by the re-
cipient. A processor may be in the situation of having
advertised a given simulation time T , and then discover
that a smaller timestamp message is subsequently re-
ceived. In the original implementation, all processors
would realize at the end of the barrier that there were
unaccounted for transient messages, and thus are not
yet able to decide on a LBTS. When any given proces-
sor receives a transient message, it will propagate an
Update Message through the barrier indicating that the
transient message has been received, and potentially a
new, lower simulation time. This implementation gives
a minimum of one update message for every transient
message, causing substantial network overhead.

We modi�ed the implementation to use a two-pass
buttery barrier with vector message counts and sim-
ulation time values being exchanged between pairs of
simulators, similar to that proposed by Mattern in [8].
This resulted in a substantial decrease in total network
messages exchanged per LBTS computation, a factor
of almost 3 (see table 1). With this implementation,
the message count exchanged per LBTS computation
is bounded by exactly 2n lgn (where n is the number
of processors), regardless of the number of transient
messages.

We then noted that the total number of LBTS com-
putations was larger than we expected. Our imple-
mentation was such that simulator B would respond
to an LBTS request by simulator A at any point in
time, regardless of whether or not B also needed to ob-
tain an LBTS value. In our application, we found that
this technique results in about one LBTS computation
for every 25 events processed within a given simulator.
Since each LBTS computation requires 2n lgn (n is the
number of simulators participating in the distributed
simulation) messages sent on the network, its easy to
see that the number of network messages used calculat-
ing an LBTS can be more than the number of messages
actually communicating events.

We solved this excessive overhead by not allowing



0

1

2

3

4

5

6

7

8

100000 1e+06 1e+07

O
ve

ra
ll 

S
pe

ed
up

 (
M

yr
in

et
)

FTP Size per Connection

5ms Lookahead
10ms Lookahead
20ms Lookahead

Figure 4. Overall Speedup Factors, Myrinet

any simulator to participate in a requested LBTS com-
putation until such time as that simulator itself re-
quires a new LBTS value. With this technique, the
global LBTS value known to all simulators will advance
by approximately the minimum lookahead value. We
were able to increase the events per LBTS to about 60,
thus signi�cantly decreasing the network tra�c over-
head used by the LBTS computations.

5.2 Eliminating Socket Polling

A common design for a distributed simulation in-
frastructure (such as RTIKIT), requires that the ap-
plication frequently call a background function to al-
low the infrastructure to perform periodic tasks, such
as receiving data from other simulations and partic-
ipating in LBTS computations. Our RTIKIT uses
RTIKIT Tick() for this purpose. As originally de-
signed, the RTIKIT could not use blocking system
calls to receive data from other simulators, since there
was no assurance that such calls would not block for-
ever. Thus the Tick calls were polling the sockets,
spinning in a CPU loop waiting for data to arrive if
there was nothing else to do. With this technique,
the CPU scheduling algorithm used in the host oper-
ating system had a large impact on the overall per-
formance. Since no LBTS computation can complete
until all simulators have communicated their local in-
formation, any simulator which had been preempted
by the operating system would delay all other simula-
tors until it got rescheduled. Our timing data showed
that many LBTS computations were completing in 2
to 3 milliseconds, but others were taking 40, 80 , or
120 milliseconds to complete. Further testing showed
that a preempted host process on our operating sys-
tem (Sun Solaris 5.5.1) may not reschedule for about
40 milliseconds, thus explaining the large delay times
for the LBTS computations.

Our solution was to allow the end application (ns in
this case) to use a blocking scheme to receive data from
the network, but only when the application could be
sure that it would not block forever. This puts more of

0

2

4

6

8

10

12

100000 1e+06 1e+07

O
ve

ra
ll 

S
pe

ed
up

FTP Size per Connection

5ms Lookahead
10ms Lookahead
20ms Lookahead

Figure 5. Overall Speedup Factors, TCP

a burden on the application, but results in a factor of 2
speedup on the overall running time of the distributed
simulation. Actual performance results are given in
section 6.

6 Results

In this section, we present some performance results.
Our simulator is the popular and publicly available ns,
which is a full featured and extensible network simula-
tor using TCL and C++ as the implementation plat-
form. We used the techniques previously discussed to
implement a distributed version of ns which we used
for testing the performance.

The network model simulated consists of eight sep-
arate subnetworks, each containing twenty-�ve end
hosts and one border router. Four of the eight subnet-
works are designated TCP Source networks, and the
other four are designated TCP Sink networks. Each
of the four source subnetworks is connected to all of
the four sink networks. The logical connections from
the sources to the sinks are such that each of the four
source subnetworks has some connections to all four of
the sink subnetworks.

The distributed simulation was run on a set of
eight Sun Ultra Sparc 1 Model 170 systems, each with
64Mb of main memory and a 167Mhz Sparc CPU. We
tested the simulation using two di�erent physical con-
�gurations, �rst using an eight-by-eight Myrinet net-
work using the Fast Messages message passing soft-
ware, and secondly using normal TCP protocol stacks
on a 100Mbps Ethernet network. The simulation was
distributed by mapping each of the eight Ultra's to a
single simulated subnetwork, so each system managed
twenty-�ve end host nodes and one border router. Each
system used four rlinks to connect to other simulators.
As a baseline, the simulation was also run on standard
ns on a single processor.

Several di�erent variations of data tra�c were mod-
eled, as follows. First, the amount of data generated



by each TCP source was varied between 100,000 bytes,
1,000,000 bytes, and 10,000,000 bytes. The propaga-
tion delay on the rlinks (links connecting the di�erent
simulators) was varied between 5ms, 10ms and 20ms
(which allows for di�ering lookahead values as previ-
ously mentioned). Each variation was run on both the
Myrinet version of RTIKIT was well as the TCP ver-
sion. The speedup factor, which compares the perfor-
mance of the distributed simulation to a serial simula-
tion, was calculated by dividing the elapsed time taken
by the baseline single system simulation by the time
taken by the distributed simulation. A large speedup
factor indicates good parallelism and a smaller factor
indicates less parallelism. A speedup factor of less than
one indicates that the process ran slower on the parallel
version compared to the serial version.

The speedup results for the Myrinet connected ver-
sion are shown in �gure 4, and for the TCP connected
version in �gure 5. The X axis is the variation of
the amount of data transfered per connection (between
100,000 bytes, 1,000,000 bytes and 10,000,000 bytes)
and the di�erent plot lines show the di�erent lookahead
values. The Y axis is the speedup factor as previously
discussed.

Note that the increased lookahead values do in gen-
eral give better performance. However, one cannot just
arbitrarily make the lookahead larger. The lookahead
represents the smallest amount of simulation time that
it can take for a simulated packet to traverse from one
simulator to another, which is a function of the de�ned
line speed of the connecting link times the packet size
plus the de�ned propagation delay of the link, all of
which are de�ned in the model being simulated. The
current version of the RTIKIT software requires a �xed
constant lookahead value, so the value speci�ed must
be the smallest propagation delay of any of the rlinks
plus the line speed times the smallest packet size. If
the network being modeled has only very high speed,
low propagation delay links, then the lookahead value
will be correspondingly small.

7 Conclusions

It turned out to be extremely straightforward to con-
vert the main simulation engine (the event loop) of ns
to run in a distributed environment. With a good set
of tools, such as RTIKIT, the time management and
event distribution is simple. However, the problems
that face the network modeler are more challenging.
Since ns was designed to run on a single serial simu-
lator, and since we chose to not replicate the entire
network model on each physical process, we needed
some substantive enhancements to the syntax of the
model description to provide for decomposition of a
single model into sub-models to run in a distributed
fashion. In some cases, this requires more e�ort on the
part of the modeler (such as manually computing the
routes between sub-models), and results in the simula-
tor being more di�cult to use. We plan for improve-
ments in our implementation to alleviate some of this

burden.

The performance of a distributed simulation can be
problematic for long running simulations. The perfor-
mance data given here suggests that much of the im-
provement in running the simulation in parallel is in
the initial setup of the simulation, as opposed to the
actual simulation itself. Further research is needed to
achieve better results in this area. The distributed sim-
ulation environment does allow for simulation of larger
models than would be possible in a serial environment,
due to the additional memory on the extra processors.

References

[1] Seam-lss. http://www.seamlss.com, 1999.
[2] R. L. Bagrodia. Iterative design of e�cient simulations

usingmaisie. In Proceedings of the 1991 Winter Simulation

Conference, December 1991.
[3] R. E. Bryant. Simulation of packet communications archi-

tecture computer systems. In MIT-LCS-TR-188, 1977.
[4] K. Chandy and J. Misra. Distributed simulation: A case

study in design and veri�cation of distributed programs. In
IEEE Transactions on Software Engineering, September
1979.

[5] J. Cowie, D. M. Nicol, and A. T. Ogielski. Modeling the
global internet. Computing in Science and Engineering,
January 1999.

[6] R. Fujimoto. Parallel and Distributed Simulation Systems.
Wiley Interscience, 1999.

[7] R. M. Fujimoto. Time management in the high level archi-
tecture. Simulation, December 1998.

[8] F. Mattern. E�cient algorithms for distributed snapshots
and global virtual time approximation. In Journal of Par-

allel and Distributed Computing, 1993.
[9] S. McCanne and S. Floyd. The LBNL network simulator.

Software on-line: http://www-mash.cs.berkeley.edu/ns,
1997. Lawrence Berkeley Laboratory.

[10] D. Nicol and P. Heidelberger. Parallel execution for serial
simulators. ACM Transactions on Modeling and Computer

Simulation, 6(3):210{242, July 1996.
[11] D. Nicol, M. Johnson, A. Yoshimura, andM. Goldsby. Ides:

A java-based distributed simulation engine. In Proceedings

of the MASCOTS, July 1998.
[12] D. M. Nicol and P. F. Reynolds. Problem oriented protocol

design. In Proceedings of the Winter Simulation Confer-

ence, December 1984.
[13] K. Perumalla, R. Fujimoto, and A. Ogielski. Ted - a lan-

guage for modeling telecommunications networks. Perfor-
mance Evaluation Review, 25(4), March 1998.

[14] K. S. Perumalla and R. M. Fujimoto. E�cient large-scale
process-oriented parallel simulations. In Proceedings of the

Winter Simulation Conference, December 1998.
[15] Y. Rekhter and T. Li. Rfc 1771, border gateway protocol

4, March 1995.
[16] B. Unger. The telecom framework: a simulation environ-

ment for telecommunications. In Proceedings of the 1993

Winter Simulation Conference, December 1993.


