
A Performance Study of Dynamic Replication Techniques inContinuous Media Servers�ChengFu ChouDepartment of Computer ScienceUniversity of Maryland at College ParkLeana GolubchikUniversity of Maryland Institute for Advanced Computer Studiesand Department of Computer ScienceUniversity of Maryland at College ParkJohn C.S. LuiDepartment of Computer Science and EngineeringThe Chinese University of Hong KongAbstractMultimedia applications are emerging in education, information dissemination, entertain-ment, as well as many other applications. The stringent requirements of such applications makedesign of cost-e�ective and scalable systems di�cult, and therefore e�cient adaptive and dy-namic resource management techniques can be of great help in improving resource utilizationand consequently improving performance and scalability of such systems. In this paper, wefocus on threshold-based policies, for dynamic resource management, and speci�cally, in thecontext of continuous media (CM) servers. Furthermore, we propose a mathematical model ofuser behavior and show, through a performance study, that not only does the use of this modelin conjunction with dynamic resource management policies improves the system's performancebut that it also facilitates signi�cantly reduced sensitivity to changes in: (a) system architecture,(b) workload characteristics, (c) skewness of data access patterns, (d) frequency of changes indata access patterns, and (e) choice of threshold values. We believe that not only is this adesirable property for a CM server, in general, but that furthermore, it suggests the usefulnessof these techniques across a wide range of continuous media applications.�The work of ChengFu Chou and Leana Golubchik and was supported in part by the NSF CAREER grantCCR-96-25013. The work of John C.S. Lui was supported in part by the UGC Research Grant.1



1 IntroductionMultimedia applications are emerging in education, information dissemination, entertainment, aswell as many other environments. In general, multimedia applications, such as video stream de-livery, place high demands for quality-of-service (QoS), performance, and reliability on storageservers and communication networks. These stringent requirements make design of cost-e�ectiveand scalable systems di�cult, and therefore e�cient adaptive and dynamic resource managementtechniques can be of great help in improving resource utilization and consequently improving per-formance and scalability of such systems. It is worthwhile to point out that work on mechanismsfor adaptive and dynamic resource management is becoming a more active area of research, e.g.,the Harmony project [8] focuses on proper mechanisms for dynamic resource management in large-scale distributed system. In this paper, we focus on policies , rather than mechanisms, for dynamicresource management, and speci�cally, in the context of continuous media (CM) servers.In a CM storage server, the choice of data placement techniques can have a signi�cant e�ecton the ability of the system to utilize resources e�ciently. Existing data placement techniquesin conjunction with scheduling algorithms address two basic ine�ciencies that can arise in suchsystems: (1) various overheads in reading data from storage devices, e.g., due to disk arm movementas in [17] and (2) load imbalance, e.g., due to skews in data access patterns as in [19]. In this work,we focus on the latter issue1.Due to the enormous storage and I/O bandwidth requirements of multimedia data, a continuousmedia server is expected to have a very large disk farm. Thus, in terms of scalability and fault-tolerance, it would be unrealistic to consider a centralized design of a continuous media server (e.g.,using a single disk cluster and/or a single processing node). One approach to a more scalable CMserver design would be to consider a shared-nothing type architecture [16], composed of a collectionof nodes, each with its own processing unit(s), memory sub-system, and I/O sub-system (refer toFigure 1). As already mentioned, an important consideration then is the placement of objects onthe nodes of the CM server. One approach to data placement that addresses the load imbalanceissue is to stripe each object across all the nodes in the system, e.g., as in [1]. However, thisapproach su�ers from the following shortcomings. Firstly, some form of synchronization in deliveryof a single object from multiple nodes must be addressed. In addition, it is not practical to assume1We should point out that, unlike in more \traditional" processor-related load balancing problems, part of thedi�culty here is that each resource can only service a subset of possible requests arriving to the system (based onthe data placed on it). 2



that a system can be constructed from homogeneous disks, i.e., as the system grows or experiencesfaults (and thus disk replacement) we are be forced to use disks with di�erent transfer and storagecapacity characteristics | having to stripe objects across heterogeneous disks would lead to furthercomplications.Instead of striping each object across all the nodes, we can constrain the striping to a singlenode and replicate the popular objects on several nodes in order to provide su�cient bandwidthcapacity to service the demand for these objects, where important questions include: (a) how manycopies of each CM object should the system maintain, (b) on which nodes should these copies beplaced, and (c) (possibly) how to migrate users from one node to another, in mid-stream, in orderto admit more users through adjustments to current load allocations. For instance, an interestingapproach to addressing these questions is given in [19], in the context of workloads with relativelyinfrequent changes in object access patterns (e.g., on a daily basis).More frequent changes data in access patterns lead to the following additional important ques-tions: (1) when should the system alter the number of copies of a CM object and (2) how toaccomplish this change. Thus, in this paper, we address load imbalance problems arising fromrelatively frequent changes in data access patterns | we address (1) through a threshold-basedapproach, and we use dynamic replication policies in conjunction with a mathematical model ofuser behavior to address (2).We begin with a brief survey of several related works on replication of objects in CM serverswhich address skewness in data access patterns. (There is a multitude of papers on design ofCM servers, in general; we refer the interested reader to [7] for a more extensive coverage of thistopic and the corresponding literature.) In [18] the authors consider skews in data access patternsbut in the context of a static environment. As already stated above, in [19], the authors addressvarious questions arising in the context of load imbalance problems due to skews in data accesspatterns, but in a less dynamic environment (than we investigate here). We believe that the policiessuggested in this work can be complementary to the techniques developed in [19]. In [5, 4], theauthors also consider dynamic replication as an approach to load imbalance, and in our previouswork [6], we study a taxonomy of dynamic replication schemes. All of the above works, however,either (a) assume some knowledge of frequencies of data access to various objects in the system,and/or (b) do no provide users with full use of VCR functionality, and/or (c) consider less dynamicenvironments than the one considered here. Our motivation in doing away with such assumptionsin this work is largely due to considerations of applicability of dynamic replication techniques in3



more general settings and to a wider range of applications of continuous media servers.Thus, the main contributions of this work are as follows. We present dynamic object replicationschemes for CM servers which do not rely on knowledge of frequencies of object accesses but rathermake the adjustments, in a threshold-based manner, simply based on the amount of resourcescurrently available for servicing user requests for those objects. We believe that this is an importantconsideration, as determination (and use) of these frequencies in a highly dynamic (and perhapsdistributed) environment may not be a simple matter (see Section 6 for details). The system'sperformance in such an environment depends largely on its ability to make the adjustments innumber of replicas fairly rapidly . To this end we propose a mathematical model of user behavior2which facilitates reduction in (at least the \virtual") replication time (see Section 5 for details),or put another way, allows admission of users to a partially complete replica while still satisfyingquality-of-service requirements of continuous media applications. We show that the model is notvery sensitive to the accuracy of its parameters and thus is of reasonably practical use.Lastly, and perhaps more importantly, we study the a�ects of various architectural and work-load characteristics on dynamic replication policies. We show that not only does the use of themathematical model of user behavior improve the performance of the more \conservative" (in termsof resource usage) dynamic replication policies but it also facilitates signi�cantly reduced sensitivityto changes in: (a) system architecture, (b) workload characteristics, (c) skewness of data accesspatterns, (d) frequency of changes in data access patterns, and (e) choice of threshold values. Webelieve that not only is this a desirable property for a CM server, in general, but that furthermore,it suggests the usefulness of these techniques across a wide range of continuous media applications ,including movies-on-demand as well as more interactive applications, such as educational videoclips, training applications, news-on-demand, and so on.The remainder of this paper is organized as follows. In Section 2, we present the details ofthe system under consideration. In Section 3 we describe the basic approach to dynamic resourcemanagement in a CM server, and in Section 4 we discuss the basic tradeo� involved in dynamicobject replication. In Section 5 we propose a mathematical model of user behavior which aids inimproving system performance, in conjunction with dynamic replication policies. In Sections 6 and7 we describe the dynamic replication policies considered in this paper, and in Section 8 we presenta performance study of these policies. Finally in Section 9 we give our concluding remarks.2Here we refer to modeling the level of interactivity of user behavior.4



2 SystemIn this paper we consider a distributed continuous media (CM) server which has a set S of N nodesconnected through a communication network, in a shared-nothing manner [16], as illustrated inFigure 1. Each node x 2 S has a �nite storage capacity, Cx (in units of CM objects), as well as
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Figure 1: Multimedia System.a �nite service capacity, Bx (in units of CM access streams). For instance, consider a server thatsupports delivery of MPEG-2 video streams where each stream has a bandwidth requirement of 4Mbits/s and each corresponding video �le is 100 mins long. If each node in such a server has 20MBytes/s of bandwidth capacity and 36 GB of storage space, then each such node can supportBx = 40 simultaneous MPEG-2 video streams and store Cx = 12 MPEG-2 videos. In general,di�erent nodes in the system may di�er in their storage and/or service capacities. This shouldresult in a scalable system which can grow on a node by node basis.Each CM object resides on one or more nodes of the system. The objects may be striped onthe intra-node basis but not on the inter-node basis (see Section 1 for motivation for using thistype of data layout). Objects that require more than a single node's service capacity (to supportthe corresponding requests) are replicated on multiple nodes. The number of replicas needed tosupport requests for a continuous object is a function of the demand, and therefore, this numbershould change when the the demand for that object changes. Let Ri(t) � S denote the set of nodescontaining replicas of object i at time t. Thus Ri(t) varies with time as the popularity of object i5



changes.Customers arrive to the CM server with an average arrival rate of �. Upon a customer arrivalat time t, there is a probability pi(t) that the corresponding request is for object i. Let Lx(t)be the load on node x at time t. The system examines the load on each node in Ri(t), and ifthere is su�cient capacity to service the newly arrived request, the system assigns this request tothe least-loaded node in Ri(t). Otherwise, the customer is rejected. Our goal here is mainly toexamine the CM server's responsiveness to changes in data access patterns, when using dynamicdata management schemes. Thus, we do not consider queueing of customers that can not beadmitted immediately as this would also entail consideration of scheduling policies for requests inthe queue and consequently would make it more di�cult to isolate the performance characteristicsdue to dynamic data replication techniques. The appropriateness of various queueing techniquesand the customer's willingness to wait for service are, in general, largely a function of the particularapplication supported by the CM server.Lastly, full VCR functionality (i.e., fast-forward, rewind, and pause/resume) is available to alladmitted customers, with fast-forward and rewind provided at nspeed > 1 times the rate of normalplayback. Let Tnp be the mean amount of time that a customer spends in the normal playbackmode, before entering some VCR function mode. And, let Tff , Trw, and Tpause be the the meanamount of time a customer spends in fast-forward, rewind, and pause modes, respectively, beforereturning to the normal playback mode. We also assume that the use of VCR functionality (suchas fast-forward and rewind) does not require additional service capacity on the part of the CMserver. This can be accomplished, for instance, by using techniques proposed in [2].Table 1 summarizes the main notation used in this paper. We will de�ne this notation through-out the paper, as it is needed. Finally, note that, we focus on the management of the disk storageand bandwidth resources , i.e., we do not consider bu�er space, computational, tertiary storage, etc.resources in our performance study; similarly we do not consider communication network issues.
6



S set of all nodes in the systemN number of nodes in the system; N = jSjK number of distinct objects in the systemBx maximum service capacity of node x (in streams)�B average service capacity of the nodes in the system (in streams)Cx maximum storage capacity of node x (in streams)Lx(t) load on node x at time t (in streams)Ai(t) Available service capacity for object i at time t; Ai(x) =Px2Ri(t)(Bx � Lx(t))ReTh Replication threshold, i.e., the threshold for adding another copy of an objectDeTh Dereplication threshold, i.e., the threshold for removing a copy of an objectD di�erence between the replication and the dereplication thresholds, i.e., D = ReThi �DeThiT ilength length of object i� average arrival rate to the systemRi(t) set of replica nodes for object i at time tpi(t) probability of an arriving request being for object i at time tnspeed ratio between the speed of fast forward (or rewind) and the speed of normal playbackTnp mean amount of time spent in the normal playback mode each timeTff mean amount of time spent in the fast forward mode each timeTrw mean amount of time spent in the rewind mode each timeTpause mean amount of time spent in the pause mode each timeTable 1: Summary of notation.3 General ApproachAs already stated, we consider a dynamic approach to reacting to changes in user data accesspatterns. Since the number of copies of object i partly determines3 the amount of resources availablefor servicing requests for that object, we adjust the number of replicas maintained by the systemdynamically . Of course, the system's performance depends on its ability to make such adjustmentsrapidly and accurately.Given the distributed server described in Section 2, such a dynamic replication approach givesrise to several interesting design issues, including:1. when is the right time for the system to recon�gure the number of replicas, i.e., when tocreate an additional copy of an object and when to remove a copy,2. to which node should a (new) replicas be added or from which node should a no longer(deemed) useful replica be removed, and3. what are proper policies for actually creating a new replica (or removing a no longer useful3Other factors include requests for other objects being made at the same time.7



one).In the remainder of this paper, we discuss techniques that address these issues in an e�cientmanner. In Sections 6 and 7 we present policies for triggering and performing the replication. InSection 8 we present results of a performance study of these policies. To assess the usefulness ofthese techniques we use the system's acceptance rate as our performance metric, which is de�ned asthe percentage of all arriving customer requests that are accepted by the system (with zero waitingtime4).4 Main Tradeo�In general, a replication process of a CM object has a source node (which currently contains acopy of object i) and a target node (on which we are placing a new copy of object i)5. Onesimple approach to performing the replication is to \inject" a single replication stream into eachof the source and target nodes, for reading and writing of the replica, respectively. We refer tothis strategy as sequential replication. The sequential replication policy results in a relatively smallincrease in load on the source and target nodes, i.e., equal to the bandwidth requirements of a singleuser stream. However, such a policy results in a relatively long replication time (i.e., the replicationtime is equal to the playout time, at the normal display rate, of the object being replicated), andconsequently many customers may be rejected during the replication period due to lack of resourcesfor that object, i.e., a lack of other nodes in the system, that can service requests for that object.Clearly, one approach to reducing the replication time would be to increase the rate at whichthe replication is performed, i.e., to read (write) the CM object from (to) the source (target) nodeat M times the rate of a single stream. This, of course, requires M times the bandwidth of asingle user stream on both the source and the target nodes. We refer to this strategy as parallelreplication. Although this approach reduces the replication time, it also creates an additional loadon both, the source and the target nodes, which could result in rejection of customer requests,possibly for CM objects other than the one being replicated, due to lack of resources on the sourceand/or target nodes, which are being used by the replication process.4Refer to Section 2 for discussion on waiting time.5We will discuss source and target node selection in Section 7.8



Thus, we essentially have conicting goals of (a) using as few resources as possible to perform thereplication (in order not to interfere with \normal" system operation) while (b) trying to completethe replication process as soon as possible.5 Early AcceptanceIn an attempt to reach a compromise between the conicting goals stated in the previous section, weconsider \early acceptance" of customers, where admitted customers are allowed to use incompletereplicas (while the replication process continues). That is, once the system completes replication ofthe �rst Tea time units6 of a new replica of a CM object i, it will treat it as a \virtually" completecopy7 and begin using it in servicing customer requests for object i. Note that, for simplicity andclarity of exposition of ideas, in the remainder of this section, much of the discussion is in termsof a speci�c object being replicated, and thus we drop the superscript i from our notation (themeaning should still be clear from the context of the discussion).The issue that we need to consider is that a user might attempt to access a portion of anincomplete copy which has not been replicated yet, e.g., by fast-forwarding past the replicationpoint. To allow customers to have full use of VCR functionality, we need to determine a \safe"value for Tea. Clearly, one safe value is Tea = Tlength (full length of the CM object). However,the intuition is that a smaller value of Tea should result in a higher (at least in the \short term")acceptance rate of customer requests.In order to lower Tea (and improve system performance) we construct a model of user behaviorwhich allows us to compute a \safe" (but lower than Tlength) value of Tea while still providing thedesired quality-of-service (with a high probability). Below, we propose both, a deterministic and astochastic approach to this problem.6For ease of presentation, in the remainder of the paper, we measure the amount of replication completed in timeunits of normal playback time of that object, from the beginning of the object, rather than in, e.g., bytes.7Of course, we are motivated here by the continuous nature of the object, and essentially it is this property thatwe exploit in the remainder of this section. 9



5.1 Deterministic ModelGiven that the replication process constructs a new copy of an object, from the beginning of theobject to the end (i.e., in a \linear" fashion), and using only knowledge of the ratio between normalplayback and fast-forward, i.e., nspeed, we can construct a very simple model which will allow us tocompute Tea, as illustrated in Figure 2. Speci�cally, if a newly arrived customer is allowed to use
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fast-forwardingFigure 2: Deterministic model.an incomplete replica after Tea = Tlength (nspeed�1)nspeed time units of the object have been replicated,then he/she will not access data beyond the replication point with probability 1. Thus, if we usethis deterministic model for admission of customers to the new replica, then (under a sequentialpolicy) the \virtual replication completion time" of an object becomes Tea as compared to Tlength.5.2 Stochastic ModelTo further lower the value of Tea, we employ a stochastic model of user behavior, at the cost oflowering the probability that the user will not access data beyond the replication point (of course,this probability still has to be high, but less than 1). Speci�cally, we model the combination ofthe behavior of a user watching a display of a partially replicated object and the correspondingreplication process using a Discrete Time Markov Chain (DTMC), M, with the following statespace S:S = f(V;R) j (0 � V � Tlength) ^ (Tea � R � Tlength) ^(V � R) ^ ((R� V ) � Tlengthnspeed � 1nspeed )g [ f(Trap State)g10



where V is the current viewing position of the customer and R is the current replication positionof the partial copy being viewed by that customer.An example state space for M with nspeed = 2 is illustrated in Figure 3. There are 4 types
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playback) corresponding to a unit of time8 in the DTMC M. Finally,pff = Tff(Tnp + Trw + Tpause + Tff) and prw = Trw(Tnp + Trw + Tpause + Tff)ppause = Tpause(Tnp + Trw + Tpause + Tff) and pnp = 1� pff � prw � ppausewhere Tff , Tnp, Trw, and Tpause are application-dependent model parameters which were de�nedin Section 2, and the \Trap State" in M is a state corresponding to V > R, which represents auser's attempt to access data which has not been replicated yet.Our goal then is to determine a value of Tea for which the probability of entering the \TrapState" before the time the replication process completes (i.e., before R = Tlength) is su�ciently low.Or, conversely, given a value of Tea, we need to compute the probability of entering the \TrapState" by time tn = Tlength � Tea, which can be accomplished through a transient analysis of M[15], i.e., by solving the following set of equations9:�(tn) = �(0) � P tn and Xj2S �j(tn) = 1 (1)where �(tn) is the vector of transient state probabilities at time tn, �(0) = e(0;Tea) is the initialstate vector which is equal to a row vector of 0's in all components except for a 1 in the componentcorresponding to state (0; Tea). Our interest then is in �(Trap State)(tn), which is the probabilitythat the user will attempt to access data which has not been replicated yet.Clearly, the complexity of the above solution depends on the size of M, which is �nite but canbe quite large. For instance, with Tlength = 90, tu = 1 min, and nspeed = 2, the size of M's statespace is on the order of 3000 states. We can trade o� computational complexity for the system'sperformance by using higher values of tu, e.g., for tu = 2 min, the state space can be reduced toapproximately 750 states. This modi�cation can result in higher values of Tea, due to a \coarsergranularity" of the model, and hence the (potential) loss in the system's performance.In any case, a simple approach to determining the value of Tea would be to solve the model(possibly) multiple times (e.g., using binary search), with di�erent values of Tea, until a desired8For instance, if the object is a video clip, then a \natural" time unit in its display would be the amount of timecorresponding to the normal playback time of a single frame (on the order of ( 130 )th of a sec). However, in order tomaintain a reasonable size of the DTMC state space, we allow tu to take on larger time scales, e.g., on the order ofminutes | essentially, performing (in general, approximate) aggregation of states.9More sophisticated methods for computing transient results exist [15], but are outside the scope of this paper.12



value for �(Trap State)(tn) is obtained, which, corresponds to the desired quality-of-service (QoS)to be provided by the system. We will illustrate in Section 8 that it is not necessary to obtainextremely low values for �(Trap State)(tn) in order to provide a reasonable QoS | this is due to thefact that the model tends to be conservative, especially with higher values of tu.In general, this is an acceptable approach since it only needs to be performed once, on a perapplication basis10. We will show in Section 8 that the model is not very sensitive to the accuracy ofthe input parameters and thus is of reasonably practical use | this is partly due to its conservativenature. Therefore, we expect that the need for \re-solving" of the model with new parameters wouldbe quite rare and only occur after signi�cant changes in the interactive nature of an application.However, if the state space of M is still unacceptable or a more \run-time" approach to com-puting Tea is desirable, instead of increasing the value of tu, we can reduce the size of the statespace by decreasing the amount of information, included in the model, about the user's behavior.Again, this reduction in computational complexity results in more conservative estimates of Tea,and thus we would be trading o� system's performance for complexity of the solution (for reasonssimilar to the ones stated above). We elaborate on this approach next.Before proceeding, we should note briey that simple Markov chain models of user behaviorhave been employed in previous works on video servers, e.g., the two state Markov chain in [10];however, these have been used for a somewhat di�erent purpose and to the best of our knowledge,with interest in steady state characteristics only.5.3 Reduction of the Stochastic ModelWe can reduce the size of the state space and the number of transitions by not including all theinformation about user behavior in the DTMC. For instance, the state space and the numberof transitions can be reduced by not including explicitly pause and rewind functionalities in theDTMC but rather \grouping" rewind and pause with the normal playback mode11. More formally,10That is, a set of statistics or measurements corresponding to an application intended to be run on the CM servercan be used to compute the model parameters (i.e., Tnp, Tff , Trw , and Tpause), needed to solve M.11This is still \safe" since pause and rewind can not cause the viewer to access an unreplicated portion of the data.Similarly, we could have created another DTMC with only one of, pause or rewind, not explicitly included. We omitthese variations since they are very similar in form to the one presented in this section.13



the reduced DTMC,Mr, has the following state space Sr:Sr = f(V;R) j (0 � V � Tlength) ^ (Tea � R � Tlength) ^(V � R) ^ ((R� V ) � Tlengthnspeed � 1nspeed ) ^ ((R� V ) � Tea)g [ f(Trap State)gwhere as before V is the current viewing position of the customer and R is the current replicationposition of the partial copy being viewed by that customer.An example state space for Mr with nspeed = 2 is illustrated in Figure 4. There are 2 types
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and Tff , Tnp, Trw, and Tpause are as de�ned in Section 2, and again the \Trap State" is a statecorresponding to an aggregate of all states where V > R, which represents a user's attempt toaccess data which has not been replicated yet.As in the previous section, we can perform transient analysis onMr to determine a \safe" valuefor Tea with a su�ciently high probability of not entering the \Trap State" before the replicationprocess completes. Clearly, the complexity of the solution will be reduced, as compared toM, giventhe reduction in the state space and the number of transitions. For instance, with Tlength = 90,tu = 1 min, and nspeed = 2, the size of Mr's state space is on the order of 500 states (as comparedto � 3000 states in M). As before, we can trade o� computational speed for system's performance(and obtain a more conservative solution) by using higher values of tu, e.g., for tu = 2 min, thesize of the state state is reduced to approximately 130 states (in this case, a brute force solutionof Equation (1) using MATLAB numerical solutions package requires less than one minute ofcomputation12).6 Threshold-based Resource ActivationWe use a threshold-based approach to triggering continuous media object replication and derepli-cation. Both, replication and de-replication of an object i are only triggered at customer arrivaland/or departure instances. Threshold-based techniques for reacting to changes in workload areemployed often for improving the cost/performance ratio of a system, e.g., in communication proto-cols [11]. Here, as in other systems, the main motivation for using a threshold-based scheme is thatthere is a non-negligible cost for creating or removing a replica. That is, it takes a non-negligibleamount of time to replicate an object or remove13 a copy, and thus it should be done \sparingly".An important question here, of course, is how to choose \good" thresholds. Intuitively, wewould like the amount of service capacity available to each object i to be proportional to itsdemand, which is changing with time. Thus, we could attempt to maintain a number of copies ofeach object proportional to pi(t)'s | the question of when to trigger creation (or deletion) of acopy would still remain, though. In general, although we could try to collect statistics on access12This computation time is based on running MATLAB on a Sun Ultra-1 machine. As we mentioned before, betterthan brute force transient analysis techniques can be used to further improve on this time [15].13Even removal time can be signi�cant, since the copy may be utilizes by users that, e.g., would have to be migratedto other nodes, at the time of removal. 15



demands for the various objects, many questions would remain open: over which period to collectthe statics, when to make the decision that the probabilities have changed su�ciently to reect thischange in the system's con�guration (likely, we do not want to do this \continuously"), how muchcon�dence to have in the collected statistics and thus how aggressively or cautiously to \evolve" thesystem from an old state (i.e., with old access probabilities) to a new state (i.e., with new accessprobabilities).Furthermore, in such an environment, having the amount of service capacity proportional tothe access probabilities (even if we knew them) would not necessarily insure acceptance of newlyarrived customers. An important factor in the performance of the system is the mixture of requeststhat arrives and is ultimately serviced by the nodes of the CM server. That is, we may rejectrequests for object i on node j due to an inux of requests for other objects residing on node j,i.e., other than object i.Thus, in this paper we study dynamic data replication techniques which do not assume knowl-edge of access probabilities. Without such information, one simple approach is to increase (decrease)the amount of service capacity allocated to an object when the amount of available resources leftin the system to service that object falls below (above) some threshold value.More formally, when a customer request for object i arrives to the system at time t, replicationof object i is initiated if and only if all of the following criteria are satis�ed:1. Ai(t) < ReTh, where ReTh is the replication threshold value and Ai(t) is the available servicecapacity for object i at time t, i.e., Ai(x) =Px2Ri(t)(Bx � Lx(t)).2. Object i is not currently under replication.The actual choice of value for ReTh depends on the replication policy used. Intuitively, the more\e�cient" the replication policy, the longer we can delay the decision about replication (i.e., ingeneral, shorter term decisions can be more accurate, but system performance would still dependon being able to act on them quickly). Thus, we set ReTh = C � �B, where 0 < C < 1 and �Bis the average service capacity of the nodes in the system. We explore the a�ects of C on systemperformance in Section 8. The rational for setting ReTh no larger than �B is that it is usuallywasteful to keep more than one copy of a \cold" object.In the case of dereplication, it should be performed before the system runs out of storage space.16



Basically, we do not want to leave this decision until the time the system actually needs the spacefor creating a new replica. This is due to the fact that there might be customers using the copythat we would like to delete, and either we will have to wait for them to complete their display, orwe will have to relocate them. \Planning ahead" for removing copies of \cold" objects before thespace is actually needed should improve the system's performance.De-replication is invoked at both the customer request arrival and departure instances. Moreformally, a replica of object i at node x will be removed at time t if and only if the followingconditions are satis�ed:1. i = maxjfAj(t) > ReThg. The motivation for this condition is that the number of replicasfor object i at time t is more than its current workload demand and at this time it has thegreatest excess of replicas among all relatively \cold" objects.2. i has \crossed" the de-replication threshold, i.e.,Ai(t)� (Bx � Lx(t))� Cix(t) > DeTh (2)where Cix(t) denotes the number of customers viewing object i at node x at time t. With thedeletion of object i at node x, Ai(t) would be decreased by (Bx � Lx(t)). Since a customerviewing object i at node x will have to be migrated to other replica nodes in Ri(t), Ai(t)would be further decreased by Cix(t).3. in the case of the Delayed Migration (DM) de-replication policy only (see Section 7), there isan additional condition, namely that Cix(t) must be equal to 0. (We include this conditionhere, before actually de�ning the DM policy, for completeness sake.)To prevent the system from oscillating between replication and de-replication, a di�erence of D isintroduced between ReTh and DeTh, i.e., DeTh = ReTh + D. That is, we introduce hysteresisinto the system.7 PoliciesIn this section we describe the node selection, replication, and de-replication policies of the CMserver. 17



7.1 Replication PoliciesFirstly, the choice of a source node for replication of object i is simple: we select the least-loadednode in the set Ri(t). For the target node, we choose the node which has the highest estimatedresidual capacity. More formally, we choose the node x from the set St such that:St = (xjx 62 Ri(t) and Lx(t) = miny2St (By � Ly(t)1 + y(t) )) (3)where y(t) corresponds to the number of replication processes already in progress on node y attime t. Intuitively, such a choice should avoid replication of multiple relatively popular objects onthe same target node (which may later compete for that node's capacity). We now describe thereplication policies.Sequential Replication (SR): The replication is performed \sequentially" (as described in Sec-tion 4), i.e., the system replicates at the rate of a normal display of a single stream by injecting asingle read stream at the source node and a single write stream at the target node | each of theserequires the same capacity as a single user stream. Thus replication of object i takes T ilength timeunits, and users are not admitted to the new replica until the entire copy is complete. This policyis considered for comparison purposes only.Sequential Replication + Early Acceptance (SREA): The replication is performed as in theSR policy above. Except, that given the value of Tea, determined through the use of the DTMCmodel described in Section 5, newly arrived users can be admitted to the new (incomplete) replicaas soon as Tea time units of that object have been replicated on the target node. Furthermore, this\virtual" replication completion time (i.e., Tea) is used in checking the satisfaction of condition (2)in the decisions of when to create a new replica (see Section 6).Parallel Replication (PR): The system replicates at M times the rate of a normal display ofa single user stream, where M = min((Bsource � Lsource(t)); (Btarget� Ltarget(t))) at time t, whenreplication begins. Thus the \real" replication time of object i is reduced to T ilengthM , and users arenot admitted to the new replica until the entire copy is complete. This policy is considered in orderto show a contrast in performance between policies that do and do not utilize the early acceptancetechnique.Parallel Replication + Early Acceptance (PREA): The replication is performed in the samemanner as in policy PR above, except that users are admitted to the new (incomplete) replica after18



the �rst Tea time units of the replica are completed. Furthermore, as in the case of the SREApolicy, this \virtual" replication completion time (i.e., Tea) is used in checking the satisfaction ofcondition (2) in the decisions of when to create a new replica.Mixed Parallel, Early Acceptance + Sequential Replication (MPEA): The �rst Tea timeunits of the object are replicated as in policy PREA and the remainder of object is replicated asin policy SREA. Users are admitted to the new (incomplete) replica after the �rst Tea time unitsof the replica are complete. And, as in the other policies using early acceptance, the \virtual"replication completion time (i.e., Tea) is used in checking condition (2) in the decisions of when tocreate a new replica.7.2 De-replication PoliciesThe decision process of which replica to remove, i.e., which object i, was described in Section 6.What remains to determine is the choice of the node from which to remove it. Part of the di�cultyis in considering the customers that would have to be migrated from the node where the removaloccurs. We consider the following de-replication policies.Delayed Migration (DM): This policy removes a replica of object i only after the last customer�nishes viewing the movie. That is, we only remove the replica of object i at node x at time twhen Cix(t) = 0 in Equation (2). This is motivated by the (possible) implementation complexityof migrating customers from one node to another14.Immediately Migration Minimum Overhead (IMMO): This policy chooses the node onwhich fewest customers are currently viewing object i. The motivation here is to reduce the(possible) system overheads associated with user migration. That is, at time t the replica of objecti is removed from node y where y = minxfCix(t)g; the Cix customers are distributed evenly amongthe remaining nodes in Ri(t).Immediately Migration Maximum Capacity (IMMC): This policy selects the node whichcould provide the greatest estimated (residual) service capacity after the replica of object i isremoved. That is, at time t the replica of object i is removed from node y where y = maxxfCix(t)+14Although, migration has been suggested as a reasonable approach, but in the context of adjusting to loadimbalances in [19]. 19



(Bx � Lx(t))g; the Cix customers are distributed evenly among the remaining nodes in Ri(t).8 Discussion of ResultsIn this section we present results of our study of dynamic replication policies in conjunction withearly acceptance of customers, which is accomplished through the use of a Markov chain model ofuser behavior. We �rst summarize the main issues and tradeo�s that e�ect the performance of thesystem and which we illustrate quantitatively in the remainder of this section.1. Use of resources for replication vs. use of resources for servicing customers: recallthat the main tradeo� is between (a) using as few resources as possible to perform thereplication (in order not to interfere with \normal" system operation) and (b) trying tocomplete the replication process as soon as possible (see Section 4). We achieve a compromisebetween these essentially conicting goals through the use of early acceptance.2. Sensitivity to the above tradeo� as a function of the \architecture" used as wellas the skewness in data access patterns: how much a system's performance is a�ectedby the compromise between servicing the normal workload vs. performing replication dependson (a) the system's architectures (e.g., how large the service capacity of each node is | referto the two architectures used in this study, as given in Table 2) and (b) how skewed the dataaccess patterns are. The choice of architecture depends partly on the storage and networktechnologies available, the intended applications, etc. How to choose the \best" architectureis not the focus of this work; rather, we explore the sensitivity of the dynamic replicationpolicies to the choice of the architecture. Similarly, skewness in data access patterns islargely a function of the application(s) using the CM server. Our goal here is to show thatearly acceptance aids in reducing the sensitivity to both, choice of architecture and skewnessin data access patterns.3. Choice of threshold values: in general, the performance of threshold-based policies isoften sensitive to the choice of the actual threshold values and can lead to fairly signi�cantchanges in system behavior. Determining optimal threshold values is, in general, a di�cultproblem and is not the focus of this work; rather, our goal is to show that the sensitivity tothe choice of threshold values can be reduced partly through the use of early acceptance.20



This study is performed via simulation, with the following simulation parameters. The arrivalprocess (of requests for objects) is Poisson15 with a mean arrival rate of � = a �BNT ilength , where 0 � a � 1is the \relative arrival rate". For ease of presentation, in the remainder of this section we discussthe results in terms of the relative arrival rate, a, i.e., relative to the total service capacity of thesystem (e.g., a = 1:0 corresponds to the maximum service capacity of the system).There is a multitude of parameters that can be varied in studying performance of dynamicreplication policies. Table 2 lists the parameters considered in this study along with their defaultvalues and alternatives as used in the remainder of this section16. (Refer to Table 1 for the de�-nition of the notation used in Table 2.) Several of the entries in this table require a few words ofParameter Default AlternativesArrival rate constant, a = 1:0 (1) constant, a = 0:8(2) \time of day" baseda = 0:9 for 7 hrs, a = 0:5 for 17 hrsUser Behavior Model Stochastic with no reduction in state space(used in computing Tea) (DTMC M with �Trap State(tn) = 0:1)ReTh 12 �B ( �B � 1), 34 �B, 14 �BDeTh ( �B + 1)T ilength 90 8i 10 8iPlayback Mode distribution Uniform(NP,FF,RW,PAUSE) [0:95� mean, 1:05� mean]Interactivity NP:FF:RW:PAUSE = 19 : 1 : 1 : 1 (1) NP:FF:RW:PAUSE=19 : 1 : 1 : 1Parameters T ilength = 90, nspeed=4 T ilength = 10, nspeed=4Tnp = 9:5, Tff = 0:5, Trw = 0:5, Tpause = 0:5 Tnp = 1:9, Tff = 0:1, Trw = 0:1, Tpause = 0:1Tea = 12 Tea = 3(2) NP:FF:RW:PAUSE=4 : 1 : 1 : 1T ilength = 90, nspeed=4Tnp = 2, Tff = 0:5, Trw = 0:5, Tpause = 0:5Tea = 18(3) NP:FF:RW:PAUSE=4 : 1 : 1 : 1T ilength = 10, nspeed=4Tnp = 2, Tff = 0:5, Trw = 0:5, Tpause = 0:5Tea = 3De-replication policy IMMO DMAccess Probability change \gradual"Skewness distribution Zipf, � = 0:0 Geometric, � = 0:618Architecture (1) Bx = 20 8x (2) Bx = 80 8xCx = 7 8x Cx = 28 8xN = 80 N = 20K 400Table 2: Parameters.clari�cation, which are as follows.15We believe it is reasonable for us to consider a Poisson arrival process for purposes of this study, since userrequests are essentially considered on a \per session" basis here; refer to [13].16All values are given in units of minutes, unless otherwise speci�ed.21



Since the main motivation for using dynamic replication policies is the need to react to changesin data access patterns, we consider the performance of these policies as a function of such changes.That is, the workload will have the characteristic that every \rotation time period" of X minpi(t)'s change. The change in access probabilities is described by Equation (4), which is intendedto emulate a relatively \gradual" increase/decrease in popularities17 .pi(t0) = = 8>>>>><>>>>>: pi+2(t) if i is odd and 1 � i < K � 1pK(t) if i is odd and i = K � 1pi�2(t) if i is even and 2 < i � Kp1(t) if i is even and i = 2 (4)where t and t0 refer to two consecutive rotation periods and for ease of presentation we assume thatK is even.Furthermore, we consider two distributions for the skewness of the access probabilities. Thedefault one is the Zipf distribution [12], as described in Equation (5) with � = 0:0 which correspondsto the measurements performed in [3] (for a movies-on-demand application).Prob[request for object i] = ci(1��) 8 i = 1; 2; : : : ; K and 0 � � � 1 (5)where c = 1H(1��)K and H(1��)K = KXj=1 1j(1��)In addition, we also consider a more skewed distribution, namely a �nite geometric distribution[14], given in Equation (6), with � = 0:618.Prob[request for object i] = (�)(i�1)(1� �)1� �K 8 i = 1; 2; : : : ; K (6)The motivation for also studying the system performance under geometricly distributed access pat-terns, is that we believe that some applications (other than movies-on-demand) may exhibit higherskewness in data access, e.g., news-on-demand. As we are not aware of measurements available forapplications such as news-on-demand (i.e., ones analogous to measurements performed in [3]), weuse a \generically" highly skewed distribution, i.e., the geometric. Furthermore, applications withrelatively little skew in access patterns should not, in a sense, present a performance problem, andthus we do not consider such access patterns here.Moreover, the interactivity entry in Table 2 refers to how interactive the users are, withNP:FF:RW:PAUSE referring to the ratio between normal playback (NP) and the various VCR17This is to illustrate that even under a relatively gradual change, dynamic policies are still useful. Furthermore,we believe this is a reasonable \emulation" of change in access patterns for many CM applications.22



functions (FF, RW, PAUSE/RESUME) and Tnp, Tff , Trw, Tpause are as de�ned in Table 1. Thesevalues are used as parameters of M in the computation of Tea (refer to Section 5). The defaultvalues are in agreement with the range of values used in [10].Unless otherwise stated, in the �gures below, we use the default values given in Table 2. Recallalso that we are using the acceptance rate as our performance metric.Lastly, in order to also explore the bene�ts of dynamic replication, in general, we consider thefollowing version of a static replication policy, for purposes of comparison only . We assume thatthe system using the static policy has perfect knowledge of the access probabilities, pi(t)'s, andthat it alters the number of copies, based on this knowledge once per day. (This is along the linesof suggestions, for adapting to data access pattern changes on a daily basis, made in [19].) Thatis, every 24 hours, the system alters the number of copies maintained for each object based on thecurrent access probabilities. Speci�cally, for each object i, it attempts to provide dpi(t)�Ne copies18| if this is not possible, due to storage space being the bottleneck, then priority is given to \hotter"objects; if there is excess storage capacity, then the remaining storage space is �lled with randomlychosen objects (of course, no more than one copy of an object per node). The only exceptions tothese rules are that (1) there is always a minimum of one copy per object and (2) copies that arestill being utilized by users at the time this alteration takes place are not removed. Note that, thechange in the number of copies, in this static policy, is assumed to be performed instantaneously andwithout the use of any additional resources. These may not be realistic assumptions (as is maybeknowing the exact access probabilities), but they are made in order to favor the static policy inour comparison. As we are interested in bene�ts of dynamic replication, in general, we would liketo make this comparison a conservative one.Finally, we note that, although the evaluation of the replication policies presented in the re-mainder of this section is quantitative, the main focus of the following discussion is \trends" inthe curves and relative performance of the policies, rather than absolute performance. This is dueto the fact that our main motivation is to explore the above stated issues and tradeo�s, ratherthan to predict the (exact) performance of the system through simulation. To this end, we runthe simulations at a very high load19 in order to illustrate our points (since it almost does notmatter what resource management techniques are used at low loads). This is not to say that we18This is not the best solution to the so called \apportionment problem"; however, it su�ces for our purposes ofcomparison. For better solutions see [9].19There is no stability issue here, since there is no queueing in the system.23



recommend that the system is operated at such high loads; e.g., clearly, under extremely frequentchanges in access patterns20 the acceptance rate will be low under very high loads and thus, undersuch conditions the real system should be operated at lower loads.Static vs. DynamicWe begin with a motivation for using dynamic replication policies, as opposed to static ones. Tothis end we compare the performance of dynamic policies (described in Section 7) to the staticpolicy described above. This comparison is depicted in Figures 5 and 6, where the more importantobservations are as follows. Under fewer resources on a single node (e.g., Architecture (1) inTable 2) and not extremely skewed data access patterns (e.g., Zipf distribution), the static policycan perform better than some dynamic policies, and speci�cally those that require large amountsof resources to perform the replication (such as MPEA, PREA, PR). The dynamic policies thatrequire few resources to perform the replication (such as SPEA) outperform the static policy (e.g.,by � 15% in Figure 5(a)).As the distribution becomes more skewed (e.g., geometric distribution) the static policy can notkeep up with the dynamic ones; this is depicted in Figures 6(a) and 6(b), where the di�erence canbe as high as � 100%. This is due to the fact that under more skewed access, greater alterationsare required to the number of copies mainted for each object, as the access patterns change, andthus the dynamic nature of the replication policies becomes more useful.Furthermore, as nodes are con�gured with higher service capacities (e.g., Architecture (2) inTable 2), the static policy also can not keep up with the dynamic policies; this is depicted in Figures5(b) and 6(b), where the di�erence is anywhere from � 20% to � 100%. This is due to the factthat, as the capacity of a single node grows, using some fraction of this capacity to perform thereplication has a less signi�cant e�ect on the overall system performance. This also accounts forthe fact that the dynamic policies employing some form of parallel replication (i.e., PR, MPEA,PREA) are also doing better under Architecture 2. In fact, for a similar reason, under less frequentchanges in access probabilities there is little di�erence in performance, at least between the policiesusing early acceptance.One advantage of the static policy, of course, is that it is easier to implement. Speci�cally, theneed to migrate users from one node to another, in mid-stream, may result in complications in theimplementation. To this end, we consider the DM de-replication policy (refer to Section 7), which20We include these for the sake of completeness. 24



does not require movement of users between nodes. The results for the default settings are depictedin Figure 5(a), where the performance of the system under the DM policy is only � 1:5% worsethan under the IMMO policy (with all other things being equal).Note that, even some of the better policies perform relatively poorly under certain workloads,and speci�cally under very frequent changes in access patterns (which may not necessarily representrealistic workloads). As already mentioned, our concern here is with exploring the tradeo�s byconsidering the relative performance of the policies, and we include such workloads for completeness.In a real system, to improve the acceptance rate one would, in general: (a) allow queueing21 and/or(b) operate the system at lower loads (which we consider later in this section).
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 PR Figure 6: Default settings, but for geometric distribution and both architectures.customer requests (as stated at the beginning of this section). This point is best illustrated byconsidering the SREA policy, which uses as few resources as possible for replication but still makesthe new copy available to customers fairly quickly | this policy performs well consistently, i.e., iteither results in the best or nearly the best performances in the test cases examined in Figures 5and 6.More speci�cally, we observe that SREA (for the above stated reasons) is less sensitive to (a)choice of architecture (compare Figure 5(a) vs. Figure 5(b) and similarly Figure 6(a) vs. Figure6(b)), (b) skewness in the data access patterns (compare Figure 5(a) vs. Figure 6(a) and similarlyFigure 5(b) vs. Figure 6(b)), as well as (c) choice of thresholds (as illustrated in Figure 7). This lastpoint is worth elaborating on, as the choice of thresholds can have a signi�cant e�ect on a system'sperformance (consider for instance PR's performance in Figure 7) and thus using a policy whichis less sensitive to this choice is a plus. We conjecture that this lack of sensitivity is due to both,the sequential nature of the policy as well as its early acceptance capability. The ability to reactto changes faster through early acceptance (i.e., shorter \virtual" replication time) can allow thesystem to delay making a decision about future demands (and thus perhaps make a better one), i.e.,the system can use lower threshold values (this accounts for a small improvement in performancewith lower threshold values for the early acceptance policies). The sequential nature of the policiesforces the system to be more conservative about resource usage and thus less dependent on thechoice of threshold values. 26
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to be performed \occasionally" (and not necessarily in real-time as explained in Section 5).These results are due to (1) the conservative nature of the analytical model and (2) the factthat the level of interactivity (19:1:1:1) is relatively low (although reasonable for a movies-on-demand application [10]). Thus, in order to further \stress test" the analytical model, we considera workload with a signi�cantly higher level of interactivity (i.e., alternative (2) for interactivitysettings in Table 2) | this may not necessarily correspond to a realistic workload but is useful forpurposes of illustration. Figures 8, 9(a), and 9(b) depict simulation results for the probability of auser entering the \Trap State", the mean amount of time a user spent in the \Trap State", giventhat he/she entered it, and the maximum amount of time a user spent in the \Trap State", giventhat he/she entered, respectively.Even with such high interactivity levels, the probability of entering the \Trap State" is stillreasonable (on the order of 10�5). If however, the time spent in the trap state is not acceptable,then possible solutions include: (1) migration of customers entering the trap state to other nodeswhich contain a copy of the object they are viewing, or (2) increasing Tea | recall, that in thecases presented in Figures 8 and 9, we used �Trap State(tn) = 0:1 to compute Tea.
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Applicability to a variety of applicationsFinally, we would like to show applicability of dynamic replication with early acceptance to a widerange of applications of continuous media servers (as suggested in Section 1), i.e., not just movies-on-demand (e.g., these can be news-on-demand, education-on-demand, etc.). To this end, we ran aset of simulations with (a) smaller objects, i.e., shorter clips with T ilength = 10 min 8i as well as inaddition (to smaller clips) (b) higher levels of interactivity, i.e., NP:FF:RW:PAUSE=4:1:1:1 (i.e.,interactivity alternatives (1) and (3) in Table 2). The performance results for case (a) are illustratedin Figures 11 and 12. The results of sensitivity to the methamatical model of user behavior for case(b) are illustrated in Figures 13 and 14. For case (a), qualitatively, all the conclusions made above,in the context of T ilength = 90, still hold. For case (b), the probability of entering the \Trap State"goes up, but the mean and maximum amount of time spent there goes down; thus a reasonableQoS can still be provided in this case as well.
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