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Abstract 

W e  introduce and discuss a methodology f o r  het- 
erogeneous simulations of computer networks using 
the dynamic simulation backplane. This method- 
ology allows for  exchanging of protocol informa- 
tion between simulators across layers of the pro- 
tocol stack. For example, the simulationist m a y  
wish to construct a simulation using the rich set 
of T C P  models found in the ns network simulator, 
and at the same t ime using the highly detailed wire- 
less MAC models found i n  the GloMoSim simulator. 
The  backplane provides an  interface between hetero- 
geneous simulators which allows these simulators to  
exchange meaningful information across layers of 
the protocol stack, without detailed knowledge of in- 
ternal representation in the foreign simulator. With 
this method of heterogeneous simulation, new and 
experimental protocols can be validated and tested in 
conjunction with existing and accepted simulations 
of lower protocol layers. 

W e  discuss the particular problems presented by 
the split protocol stack model, and present our solu- 
tions. We give results of our implementation of the 
split protocol backplane, using the ns simulator for  
the higher protocol stack layers, and the GloMoSim 
simulator for the lower layers. 

'This work is supported in part by NSF under contract num- 
ber ANI-9977544 and DARPA under contract number N66002- 
00-1-8934. 

1. Introduction 

The use of simulation is becoming increasingly 
prevalent in the computer networking research com- 
munity. The popular ns[7] network simulator has 
a very rich and complete set of T C P  models, and 
is used in many areas of networking research, in- 
cluding transport protocols, queue management, 
scheduling policies, mobility, and multicast[5]. The 
GloMoSim[l5] simulator provides detailed models 
of wireless MAC protocols and is an ideal choice 
for simulation and analysis wireless networks. The 
OPNET simulator has a large library of models rep- 
resenting the configuration and behavior of com- 
mercially available routers and terminal equipment. 
Each of these simulators has strengths and weak- 
nesses which must be evaluated by the protocol de- 
signer before selecting the correct simulation plat- 
form to study the behavior of a new or experimental 
network protocol. 

Thus when choosing the correct simulation en- 
gine for protocol behavior analysis, the researcher 
is faced with difficult tradeoffs. Since no single sim- 
ulator can always provide the necessary framework 
for complete analysis of a particular protocol, the 
researcher must sacrifice some level of fidelity or de- 
tail at one layer in exchange for additional detail at 
another layer. For example, suppose the experimen- 
tal protocol to  be analyzed is some improvement on 
HTTP which is intended to  be effective in a mobile 
wireless environment. Clearly, the extensive library 
of TCP protocol implementations found in the ns 
simulator make this a good choice to  insure the new 
HTTP performs well under a variety of transport 
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protocols. However, the GloMoSim simulator pro- 
vides significantly more detail, fidelity and flexibil- 
ity in the MAC layer and physical layer simulation 
than does ns, and thus would be a good choice for 
analyzing performance of the experimental HTTP 
protocol in a variety of wireless environments. Even 
running the experiments twice, once on each of the 
two simulators environment. 

Simulator I 

I 
To address related issues, we have previously in- 

troduced the Dynamic Simulation Backplane[l2]. 
The backplane provides an interface between het- 
erogeneous simulators, allowing them to exchange 
meaningful information without implicit knowledge 
of the internal event structures of each simulator. In 
this prior work, we focused exclusively on intercon- 
necting simulations across link boundaries. In other 
words, packets were exchanged between simulators 
only at  the lowest protocol stack layer. As packets 
traveled either up or down the stack, the exchange 
of information between layers was exclusively within 
a single simulator. While this method achieves our 
goal for some level of scalability and heterogeneity, 
the flexibility needed in the above example is lack- 
ing. The split protocol stack methodology proposed 
here provides both scalability (allowing distributed 
simulation of a single network on a large number 
of workstations), as well as the flexibility to choose 
partial protocol stack implementations from the var- 
ious simulators. 

A number of researchers are exploring methods 
and techniques for scalable network simulations us- 
ing parallel and distributed Simulation. Riley et 
a1.[14, 131 have designed and implemented the Par- 
allel/Distributed ns (pdns) to provide scaling and 
improved performance for the ns simulator. Pe- 
rumalla et al. [lo, 91 created the Telecommunica- 
tions Description Language ( T E D ) ,  which allows 
multithreaded network simulations on an SMP pro- 
cessor. Nicol et al. [8] propose the Infrastructure 
for Distributed Enterprise Simulations (IDES), a 
Java based siniulation engine designed specifically 
for parallel and distributed simulations (although 
not necessarily network simulations). Cowie et 
a1.[3, 41 describe the Scaleable Simulation Frame- 
work (SSF) as a method for parallel simulation of 
large scale networks. Bagrodia et al. implemented 
the GloMoSim[l5] simulator previously mentioned. 
GloMoSim is built on top of the PARSEq21 par- 
allel siniulation engine, and is designed to  im- 
prove performance and scalability when run on a 
shared-memory symmetric multiprocessor. Addi- 
tionally, Bagrodia[l] has implemented a version of 
GloMoSim that includes portions of the ns TCP 
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Figure 1. Dynamic Simulation Backplane 
architecture 

protocol. This effort uses the glue approach with 
sections of source code copied from ns, resulting in 
some difficult software maintenance issues. 

The remainder of this paper is organized as fol- 
lows. In section 2 we give an overview of the dy- 
namic simulation backplane. In section 3 we dis- 
cuss the split protocol stack method for distributed 
network simulation. In section 4 we discuss our im- 
plementation of the split protocol stack backplane, 
and give some performance results. In section 5 we 
give some conclusions and future directions of our 
research. 

2. The Dynamic Simulation Backplane 

The Dynamic Simulation Backplane is described 
in detail in [12]. An overview of the operation of the 
backplane is given here to assist in understanding of 
the split protocol stack model. Figure 1 shows the 
overall architecture of a distributed simulation us- 
ing the Dynamic Simulation Backplane. The figure 
shows a distributed simulation running on three sys- 
tems. Each simulator sends and receives event mes- 
sages from the backplane in native format, using the 
internal representation for events that are specific 
to that simulator’s implementation. The backplane 
converts the event messages to a common, dynamic 
format and forwards the events to other simulators. 
The format of the dynamic messages is determined 
at runtime, on a message-by-message basis. Details 
of this dynamic conversion process are given later in 
this section. 

The backplane uses the services provided 
by a Runtime-Infrastructure library, known as 
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RTIKIT[6]. The RTIKIT assists the backplane 
by providing the message distribution and simula- 
tion time management services required by all dis- 
tributed simulations. The backplane itself provides 
services specific to the support for heterogeneous 
simulations. These services fall into three basic cat- 
egories: Registration Services, Message Exporting 
Services and Message Importing Services. 

2.1. Registration Services 

To make use of the dynamic simulation backplane 
for messa.ge exchange between simulators, each sim- 
ulator first uses a registration process, where they 
describe the information that is defined by event 
messages within that simulator. Clearly, for hetero- 
geneous simulators to exchange meaningful informa- 
tion, there must be some common baseline describ- 
ing the information to  be exchanged. Fortunately, 
within the networking community, there are well 
known and widely adopted standards for exchanging 
data packets between end systems. The Request For 
Comments (RFC’s) published by the Internet Engi- 
neering Task Force (IETF) define clearly a num- 
ber of protocols and required data items to be ex- 
changed by those protocols. During the registration 
process, each simulator specifies which protocols are 
known, and which data items with the protocols 
have meaning. Experimental protocols or new ex- 
perimental data items within an existing protocol 
can also be specified, thus insuring the backplane is 
not limited to only known protocols. 

After all participating simulators have completed 
the registration process, a global consensus proto- 
col is performed which results in a complete pic- 
ture of all protocols and data items that are reg- 
istered by any simulator. Each protocol and data 
item is assigned a unique i tem identifier, which is 
made known to  all participating simulators. This 
item identifier is later used in the creation of the 
dynamic format messages exchanged between sim- 
ulators. 

2.2. Message Exporting Services 

At some point during the execution of a hetero- 
geneous simulation, a given event message must be 
forwarded from one simulator to another, with no 
guarantee that the two simulators have a common 
representation of the event format. The event mes- 
sage transfer might be from a given protocol stack 

layer on one simulator to the same protocol stack 
layer on the second (for example from the I P  layer 
in ns to the IP  layer in GloMoSim). This method is 
described in [12]. Alternately, the transfer could be 
between different layers of the same protocols stack 
(for example from the T C P  layer in ns to the IP 
layer in GloMoSim). 

To accomplish this heterogeneous message ex- 
change, the backplane uses a message Exporting and 
Importing paradigm. A simulator sending an event 
to a foreign simulator calls the ExportMessage ser- 
vice, which creates a common, dynamic format mes- 
sage. The simulator then forwards the dynamic for- 
mat message to the foreign simulator. The message 
format is dynamic in that only the data items that 
are meaningful for a given event message are in- 
cluded in the dynamic message. By querying the 
simulator with callback functions, the backplane 
can discover which items are meaningful for each 
message to be exported. 

2.3. Message Importing Services 

Once an event message has been exported to the 
dynamic message format as described above, the 
message is transfered to another simulator and is 
ready to be imported by the receiving simulator. 
The importing process is the inverse of the export- 
ing, and causes a message to be converted from the 
common dynamic format to the internal event mes- 
sage format of the receiving simulator. This is again 
accomplished by the backplane using callback func- 
tions to inform the simulator of the value of each 
data item received in the dynamic message. 

3. Splitting the Protocol Stack 

There are two natural places for heterogeneous 
simulators to exchange event messages. First is be- 
tween the bottom layers of the protocol stack. Simu- 
lator 1 would build up an event message going down 
the layers of its internal stack, and would export 
the message after the lowest layer has processed it. 
When receiving a message from simulator 1, simula- 
tor 2 would import it and then process the message 
going up the protocol stack starting at  the lowest 
layer. This method of dynamic message exchanging 
(known as the “across protocol stack” method) is 
the subject of the research described in [12]. 

An alternative method, and one providing poten- 
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Figure 2. Split protocol stack method 

tially more flexibility, is the “split protocol stack” 
method. In this method, heterogeneous simulators 
exchange event messages across layers of a single 
protocol stack. An example of this method is shown 
in figure 2 .  Here, simulator 1 processes event mes- 
sages for the HTTP and TCP layers of the proto- 
col stack, and then passes those partially processed 
messages to simulator 2 for the lower layers of the 
stack. When receiving messages, simulator 2 pro- 
cesses the lower layers (MAC and IP),  and then 
passes the message (using the backplane) to sim- 
ulator 1 for further processing. 

This method provides the flexibility to mix and 
match simulation functionality in a way that more 
closely suits the needs of the simulationist. Of 
course, the two methods described above can be 
combined, using the split protocol stack model in 
two or more simulators; connected using the across 
protocol stack method between other simulatorss. 
However, this method introduces a severe limitation 
on the overall performance of the distributed sim- 
ulation, namely the presence of a zero-lookahead 
message exchange. 

Lookahead. In a conservatively synchronized, 
distributed discrete event simulation, one of the pri- 
mary factors affecting the performance of the sim- 
ulation is the presence (or absence) of lookahead 
between the individual simulators. The lookahead 
between a pair of simulators is defined as a lower 
bound on the amount of simulation time that ad- 
vances as messages are exchanged between the sim- 
ulators. In a typical distributed network simulation 
using the across protocol stack method, there is nat- 
urally some non-zero (and potentially quite large) 
lookahead between any two simulators. Since mes- 
sages are exchanged between simulators as packets 
are transmitted on some communication medium, 
the transmission time and propogation delay cre- 

ate a naturally non-zero lookahead value. Unfortu- 
nately, there is no corresponding natural delay as 
messages are exchanged between layers of a single 
protocol stack. Exchanging messages between sim- 
ulators modelling different layers of the same proto- 
col stack results in a zero-lookahead exchange, with 
resulting poor performance. 

Our solution to the zero-lookahead problem is to 
nominate one of the two simulators as the master, 
which will represent both simulators in the overall 
distributed simulation environment. We chose the 
simulator modelling the lower layers of the protocol 
stack, but this choice is somewhat arbitrary. We 
implemented a simple shared-memory interface be- 
tween the master and slave simulators to allow a 
quick and efficient exchange of information between 
the two. The master will participate in all of the 
time management computations of the distributed 
simulation, and represent both simulators in this 
computation. The remainder of this section dis- 
cusses the shared-memory interface and algorithms 
for time management in this environment. In all 
of this discussion, the master is the simulator mod- 
elling the lower layers of the protocol stack, and the 
slave is the simulator modelling the upper layers. 
The processing model for this split protocol environ- 
ment is that, assuming the zero-lookahead message 
passing between the master and the slave, there can 
be no parallel event processing between the two. Ei- 
ther the master can process an event, or the slave 
can; but neither can process events simulataneously 
with the other (ignoring the issues of simultaneous 
timestamp events). Since we are stuck with serial 
event processing between the master and the slave, 
our approach is to minimize the waiting time be- 
tween the two. Additionally, we propose running 
the two processes on a dual CPU system, such that 
one process can be processing events while the other 
is spin-waiting on permission to process events. 
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The shared-memory interface consists of: 

Two uni-directional circular message pass- 
ing queues, one for passing messages from 
the slave to the master (S2M) ,  and a second 
for passing messages from the master to the 
slave M2S). Uni-directional circular queues 
are ideal for message passing in this envi- 
ronment since they require no interlocking of 
shared variables or critical section processing. 

NERCcount An integer counter specifying the 
number of times the slave has requested per- 
mission to advance simulation time to a new 
value. 

TAGCount An integer counter specifying the 
number of times the master has granted the 
slave permission to advance simulation time 
to a new value. 

NERTime A floating point value specifying 
the simulation time advance requested by the 
slave. 

TAGTime A floating point value specifying 
the simulation time advance granted by the 
master. 

SmallestM2S A floating point value specifying 
the smallest timestamped event sent by the 
master to the slave since the last time advance 
grant to the slave. This is initialized to a value 
larger than any possible event in the system. 

With the above shared variables, our model is 
that the slave has permission to process events if 
NERCount equals TAGCount, and the master has 
permission if it does not. We describe the processing 
of events at the slave first since it is the simpler of 
the two, followed by the processing at the master. 

Slave Processing When the slave has permission 
to process events (NERCount  equals TAGCount),  it 
simply advances it local simulation time to  TAG- 
Time, and processes any event with a timestamp 
less than or equal to the TAGTime value. In actu- 
ality, with this model there in no possibility that an 
event with a timestamp less than TAGTame exists, 
since if there were it would have been processed on a 
previous iteration. All events with timestamp equal 
to TAGTime are processed (which may result in 
new events with timestamp equal to TAGTime be- 
ing exported and passed to the master via the M2S 
queue). When all such events have been processed, 

the slave stores the timestamp of the earliest unpro- 
cessed event in NERTime,  and advances NERCount 
by one. At this point, the slave has asked permis- 
sion to  advance time to NERTime,  and permission 
to process events has been passed to the master. 
The slave will spin, waiting for NERCount to be 
equal to  TAGTime,  indicating permission has been 
given back to the slave to repeat the process. While 
spinning, the slave will monitor the M2S queue, re- 
moving messages (and or course importing to inter- 
nal format using the backplane importing services), 
and placing them in the queue of unprocessed events 
in timestamp order. The processing of the event im- 
porting while spinning gives some amount of paral- 
lelism between the master and slave processes. 

Master Processing The master spins waiting for 
NERCount not equal to TAGCount, indicating the 
slave has finished processing for this cycle. The mas- 
ter must participate in a global time management 
algorithm, such as that discussed in [ll] to deter- 
mine a lower bound on the timestamp of all unpro- 
cessed messages (plus lookahead) in the entire sys- 
tem (not including the slave processes). This value 
is called the lower bound on timestamp ( L B T S ) .  To 
determine an L B T S  value, all simulators report the 
timestamp of their smallest unprocessed event to  
a global consensus protocol, which computes the 
global minimum. The value reported by the master 
to the consensus protocol is determined as follows. 

1. Insure the S2M queue is empty. if it is not, 
remove all pending messages fr6m the slave 
and place them in the queue of unprocessed 
events (in timestamp order). There is no pos- 
sibility of a race condition here since at this 
point the slave is no longer has permission to  
process events, and is simply spinning waiting 
for permission. The S2M queue should nor- 
mally be empty at this point, since the master 
is monitoring the queue while it is waiting for 
permission to process events. 

2. Report the minimum of the master’s own 
smallest unprocessed event, the NERTime re- 
quested by the slave, and SmallestM2S which 
represents the smallest timestamp sent by the 
master to the slave in the master’s most recent 
processing cycle. 

Once the L B T S  value is known, the master can 
process all pending events with timestamp less than 
or equal to  the minimum of the L B T S  value, NER-  
Tame, and SmallestM2S. In other words, the L B T S  
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value sets an upper bound on the simulation time 
advancement of the master/slave pair, but the mas- 
ter/slave pair must process events serially between 
them. Processing of these events by the master may 
cause event messages to be exported and passed to 
the slave using the M2S queue. Each time an event 
is passed to the slave, the SmallestM2S value is set 
to the minimum of the current SmallestM2S value 
and the timestamp of the message being processed. 
When the master has processed all eligible events, 
the TAGTime value is set to the minimum of the 
NERTime, SmallestMeS, and the L B T S  value. The 
TAGCount value is then advanced by one, returning 
permission to  the slave. 

The net effect of this shared memory approach 
and the alternating permission protocol is that the 
local event queues of the master and slave processes 
appear to the federation as a single event queue. 
At any point in time, only the smallest event of 
the two event queues can safely be processed, which 
mimics the behavior that would be obtained if the 
two queues were merged to a single queue. 

4. The ns to GloMoSim Split Protocol 
Stack Simulation 

We experimented with the split protocol stack 
simulation with GloMoSim and ns. The protocol 
stack is split between TCP and IP layers, with 
ns simulating the upper portion of the protocol 
stack and GloMoSim simulating the lower portion. 
Each GloMoSimlns pair simulates a wireless net- 
work that contains a number of wireless nodes. 
These wireless networks are connected to each other 
through a backbone network, which is simulated 
by a number of pdns simulators. Figure 3 shows 
a simulation configuration that consists of four Glo- 
MoSiml ns wireless networks and four pdns back- 
bone networks. Each GloMoSiml ns pair connects 
to exactly one pdns, and the pdns’s are fully con- 
nected to each other. There is FTP traffic between 
wireless nodes in a wireless network, and also FTP 
traffic between wireless networks that goes through 
the pdns backbone. 

We ran the simulation on a multi-processor 
shared-memory system, and each GloMoSim, ns 
and pdns process was running on a separate proces- 
sor. One processor was assigned to each pdns back- 
bone network, and a pair of processors was assigned 
to each GloMoSim/ns pair. The number of proces- 
sors assigned was increased linearly as the number 

of wireless networks being modeled was increased. 

In the experiments we varied two parameters to 
measure the time to complete the simulation. The 
two parameters are, 1) number of wireless networks 
(i.e. number of GloMoSimlns pairs, which equals 
to the number of pdns simulators in between, since 
each GloMoSimlns pair connects to  exactly one 
pdns), and 2) the percentage of local traffic in the to- 
tal FTP workload. Note that the total traffic grows 
linearly with the number of wireless networks mod- 
eled. For example, if the total traffic of 1 wireless 
networks is lMB, then the total traffic of 8 wireless 
networks is 8MB, including both the local traffic in 
the same wireless network and the traffic between 
wireless networks that goes through the backbone. 
By growing the traffic linearly with the number of 
wireless networks being simulated, and by expand- 
ing the number of processors in the federation at 
the same time, a “perfect” speedup ratio would be 
indicated by identical running times for each of the 
simulations. 

For comparison, we also ran the simulations with 
monolithic GloMoSim with the same configurations. 
Figure 4 shows the performance when the number 
of wireless nodes in each wireless network is fixed at 
200. The left chart is the performance of monolithic 
GloMoSim simulation, and the right chart is the 
performance of GloMoSiml ns split protocol stack 
simulation. 

The baseline case is one wireles network where 
100 percent of the traffic is local traffic. In the 
right figure, we can see that as the number of wire- 
less networks increases, the time it takes to com- 
plete the simulation does increase, but the increase 
is reasonably small. Generally speaking, larger lo- 
cal traffic percentages lead to better speedup. This 
is expected, since a large amount of local traffic in- 
creases the number of local events at a given simula- 
tor that can be processed in a single lookahead win- 
dow. At the other extreme, even when only 10 per- 
cent of the traffic is local traffic, running eight wire- 
less networks plus eight pdns backbones still only 
takes about 2 times as the time to run two wireless 
networks plus two pdns backbones. 

This shows that the parallel simulation speeds 
up the simulation significantly: it takes 2-3 times 
more time to simulate 8 times larger network and 
8 times more traffic. Also, splitting the protocol 
stack(the right chart) results in 1-2 times slow-down 
than running monolithic simulator (the left chart), 
which seems reasonable. 
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5. Conclusions and Future Work 

Each different network simulator has different 
strengths and weakness. To combine the strengths 
of different simulators, we previously introduced 
Dynamic Simulation Backplane[l2] to make differ- 
ent simualtors work together. In this paper we dis- 
cussed the split protocol stack methodology for net- 
work simulation that allows networking researchers 
to run different simulators together, and take ad- 
vantage of the strong implementation at different 
protocol layers of different simulators. Using this 
methodology, we are able to construct complex 
parallel heterogeneous network simulation scenar- 
ios where GloMoSim simulates the MAC layer of 
wireless networks, ns simulates the TCP layer of 
the same wireless networks and pdns simulates the 
wired backbone between wireless networks. Our ex- 
periments show that the parallel running of the Glo- 
MoSim and pdns simulators speeds up the simula- 
tion as the simulated network scales up. 

For future work, we believe there is potential 
for more parallelism between the ns and GloMoSim 
pairs. since each ns/ GloMoSim pair typically sim- 
ulates more than one protocol stack. In addition, 
in many network simulation scenarios, a simulator 
knows apriori when packets of a given flow are go- 
ing to another simulator, and we may be able to  
exploit this knowledge to achieve more parallelism 
in the simulation. In our future research we will try 
to exploit these potential methods for more paral- 
lelism, and further improve the performance of com- 
plex parallel network simulation scenarios. 

References 

R. Bagrodia. Private communication, 1999. 

R. Bagrodia, R. Meyer, M. Takai, Y. Chen, 
X. Zeng, J .  Martin, B. Park, and H. Song. Par- 
sec: A parallel simulation environment for com- 
plex systems. IEEE Computer, 31(10):77-85, 
October 1998. 

J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogiel- 
ski. Towards realistic million-node internet 
simulations. In International Conference on 
Parallel and Distributed Processing Techniques 
and Applications, June 1999. 

J. H. Cowie, D. M. Nicol, and A. T .  Ogielski. 
Modeling the global internet. Computing in 
Science and Engineering, January 1999. 

D. Estrin et al. Virtual internetwork testbed: 
Status and research agenda, July 1998. USC 

Computer Science Dept , Technical Report 98- 
678. 

Richard Fujimoto. RTI-KIT v0.2 specification, 
March 1998. 

S. McCanne and S. Floyd. The LBNL network 
simulator. 
Software on-line: http://www.isi.edu/nsnam, 
1997. Lawrence Berkeley Laboratory. 

D. Nicol, M. Johnson, A. Yoshimura, and 
M. Goldsby. Ides: A java-based distributed 
simulation engine. In Proceedings of the In- 
ternational Symposium on Modeling, Analysis 
and Simulation of Computer and Telecommu- 
nication Systems, July 1998. 

K. Perumalla, R. Fujimoto, and A. Ogielski. 
Ted - a language for modeling telecommunica- 
tions networks. Performance Evaluation Re- 
view, 25(4) ,  March 1998. 

K. S. Perumalla and R. M. Fujimoto. Effi- 
cient large-scale process-oriented parallel sim- 
ulations. In Proceedings of the Winter Simula- 
tion Conference, December 1998. 

K. S. Perumalla and R. M. Fujimoto. Virtual 
time synchronization over unreliable network 
transport. In 15th Workshop on Parallel and 
Distributed Simulation, May 2001. 

G. F. Riley, M. H. Ammar, R. M. Fujimoto, 
D. Xu, and K. Perumalla. Distributed net- 
work simulations using the dynamic simulation 
backplane. In Proceedings of the 21st Annual 
Conference on Distributed Computing Systems, 
April 2001. 

G. F. Riley, R. M. Fujimoto, and M. H. Am- 
mar. A generic framework for parallelization 
of network simulations. In Proceedings of Sev- 
enth International Symposium on Modeling, 
Analysis and  Simulation of of Computer and 
Telecommunication Systems, October 1999. 

G. F. Riley, R. M. Fujimoto, and M. H. Am- 
mar. Parallel/Distributed ns. Software on-line: 
www.cc.gatech.edu/computing/compass/pdns/ 
index.htm1, 2000. Georgia Institute of Technol- 
ogy. 
X Zeng, R. Bagrodia, and M. Gerla. Glo- 
MoSim: a library for parallel simulation of 
large-scale wireless networks. In Proceedings of 
the 12th Workshop on Parallel and Distributed 
Simlations, May 1998. 

165 

http://www.isi.edu/nsnam



