
Split Protocol Stack Network Simulations Using the Dynamic Simulation
Backplane *

Donghua Xu
George F. Riley

Mostafa H. Ammar
Richard Fujimoto

College of Comput ing
Georgia Ins t i tu te of Technology

At lanta , G A 30332
{ xu,riley, a m m a r , f u j i m o t o } @cc.gatech. edu

Abstract

W e introduce and discuss a methodology f o r het-
erogeneous simulations of computer networks using
the dynamic simulation backplane. This method-
ology allows for exchanging of protocol informa-
tion between simulators across layers of the pro-
tocol stack. For example, the simulationist m a y
wish to construct a simulation using the rich set
of T C P models found in the ns network simulator,
and at the same t ime using the highly detailed wire-
less MAC models found i n the GloMoSim simulator.
The backplane provides an interface between hetero-
geneous simulators which allows these simulators to
exchange meaningful information across layers of
the protocol stack, without detailed knowledge of in-
ternal representation in the foreign simulator. With
this method of heterogeneous simulation, new and
experimental protocols can be validated and tested in
conjunction with existing and accepted simulations
of lower protocol layers.

W e discuss the particular problems presented by
the split protocol stack model, and present our solu-
tions. We give results of our implementation of the
split protocol backplane, using the ns simulator for
the higher protocol stack layers, and the GloMoSim
simulator for the lower layers.

'This work is supported in part by NSF under contract num-
ber ANI-9977544 and DARPA under contract number N66002-
00-1-8934.

1. Introduction

The use of simulation is becoming increasingly
prevalent in the computer networking research com-
munity. The popular ns[7] network simulator has
a very rich and complete set of T C P models, and
is used in many areas of networking research, in-
cluding transport protocols, queue management,
scheduling policies, mobility, and multicast[5]. The
GloMoSim[l5] simulator provides detailed models
of wireless MAC protocols and is an ideal choice
for simulation and analysis wireless networks. The
OPNET simulator has a large library of models rep-
resenting the configuration and behavior of com-
mercially available routers and terminal equipment.
Each of these simulators has strengths and weak-
nesses which must be evaluated by the protocol de-
signer before selecting the correct simulation plat-
form to study the behavior of a new or experimental
network protocol.

Thus when choosing the correct simulation en-
gine for protocol behavior analysis, the researcher
is faced with difficult tradeoffs. Since no single sim-
ulator can always provide the necessary framework
for complete analysis of a particular protocol, the
researcher must sacrifice some level of fidelity or de-
tail at one layer in exchange for additional detail at
another layer. For example, suppose the experimen-
tal protocol to be analyzed is some improvement on
HTTP which is intended to be effective in a mobile
wireless environment. Clearly, the extensive library
of TCP protocol implementations found in the ns
simulator make this a good choice to insure the new
HTTP performs well under a variety of transport

0-7695-1315-8/01 $10.00 0 2001 IEEE
158 I

!

protocols. However, the GloMoSim simulator pro-
vides significantly more detail, fidelity and flexibil-
ity in the MAC layer and physical layer simulation
than does ns, and thus would be a good choice for
analyzing performance of the experimental HTTP
protocol in a variety of wireless environments. Even
running the experiments twice, once on each of the
two simulators environment.

Simulator I

I
To address related issues, we have previously in-

troduced the Dynamic Simulation Backplane[l2].
The backplane provides an interface between het-
erogeneous simulators, allowing them to exchange
meaningful information without implicit knowledge
of the internal event structures of each simulator. In
this prior work, we focused exclusively on intercon-
necting simulations across link boundaries. In other
words, packets were exchanged between simulators
only at the lowest protocol stack layer. As packets
traveled either up or down the stack, the exchange
of information between layers was exclusively within
a single simulator. While this method achieves our
goal for some level of scalability and heterogeneity,
the flexibility needed in the above example is lack-
ing. The split protocol stack methodology proposed
here provides both scalability (allowing distributed
simulation of a single network on a large number
of workstations), as well as the flexibility to choose
partial protocol stack implementations from the var-
ious simulators.

A number of researchers are exploring methods
and techniques for scalable network simulations us-
ing parallel and distributed Simulation. Riley et
a1.[14, 131 have designed and implemented the Par-
allel/Distributed ns (pdns) to provide scaling and
improved performance for the ns simulator. Pe-
rumalla et al. [lo, 91 created the Telecommunica-
tions Description Language (T E D) , which allows
multithreaded network simulations on an SMP pro-
cessor. Nicol et al. [8] propose the Infrastructure
for Distributed Enterprise Simulations (IDES), a
Java based siniulation engine designed specifically
for parallel and distributed simulations (although
not necessarily network simulations). Cowie et
a1.[3, 41 describe the Scaleable Simulation Frame-
work (SSF) as a method for parallel simulation of
large scale networks. Bagrodia et al. implemented
the GloMoSim[l5] simulator previously mentioned.
GloMoSim is built on top of the PARSEq21 par-
allel siniulation engine, and is designed to im-
prove performance and scalability when run on a
shared-memory symmetric multiprocessor. Addi-
tionally, Bagrodia[l] has implemented a version of
GloMoSim that includes portions of the ns TCP

Simulator 2 Simulator 3

I I

System I I System 2 I System 3

I T h e Dyn m i c S i m u l a t i o n B a c k p l a n e P
I T l e R T I K I T L i b r d r y

Figure 1. Dynamic Simulation Backplane
architecture

protocol. This effort uses the glue approach with
sections of source code copied from ns, resulting in
some difficult software maintenance issues.

The remainder of this paper is organized as fol-
lows. In section 2 we give an overview of the dy-
namic simulation backplane. In section 3 we dis-
cuss the split protocol stack method for distributed
network simulation. In section 4 we discuss our im-
plementation of the split protocol stack backplane,
and give some performance results. In section 5 we
give some conclusions and future directions of our
research.

2. The Dynamic Simulation Backplane

The Dynamic Simulation Backplane is described
in detail in [12]. An overview of the operation of the
backplane is given here to assist in understanding of
the split protocol stack model. Figure 1 shows the
overall architecture of a distributed simulation us-
ing the Dynamic Simulation Backplane. The figure
shows a distributed simulation running on three sys-
tems. Each simulator sends and receives event mes-
sages from the backplane in native format, using the
internal representation for events that are specific
to that simulator’s implementation. The backplane
converts the event messages to a common, dynamic
format and forwards the events to other simulators.
The format of the dynamic messages is determined
at runtime, on a message-by-message basis. Details
of this dynamic conversion process are given later in
this section.

The backplane uses the services provided
by a Runtime-Infrastructure library, known as

159

RTIKIT[6]. The RTIKIT assists the backplane
by providing the message distribution and simula-
tion time management services required by all dis-
tributed simulations. The backplane itself provides
services specific to the support for heterogeneous
simulations. These services fall into three basic cat-
egories: Registration Services, Message Exporting
Services and Message Importing Services.

2.1. Registration Services

To make use of the dynamic simulation backplane
for messa.ge exchange between simulators, each sim-
ulator first uses a registration process, where they
describe the information that is defined by event
messages within that simulator. Clearly, for hetero-
geneous simulators to exchange meaningful informa-
tion, there must be some common baseline describ-
ing the information to be exchanged. Fortunately,
within the networking community, there are well
known and widely adopted standards for exchanging
data packets between end systems. The Request For
Comments (RFC’s) published by the Internet Engi-
neering Task Force (IETF) define clearly a num-
ber of protocols and required data items to be ex-
changed by those protocols. During the registration
process, each simulator specifies which protocols are
known, and which data items with the protocols
have meaning. Experimental protocols or new ex-
perimental data items within an existing protocol
can also be specified, thus insuring the backplane is
not limited to only known protocols.

After all participating simulators have completed
the registration process, a global consensus proto-
col is performed which results in a complete pic-
ture of all protocols and data items that are reg-
istered by any simulator. Each protocol and data
item is assigned a unique i tem identifier, which is
made known to all participating simulators. This
item identifier is later used in the creation of the
dynamic format messages exchanged between sim-
ulators.

2.2. Message Exporting Services

At some point during the execution of a hetero-
geneous simulation, a given event message must be
forwarded from one simulator to another, with no
guarantee that the two simulators have a common
representation of the event format. The event mes-
sage transfer might be from a given protocol stack

layer on one simulator to the same protocol stack
layer on the second (for example from the I P layer
in ns to the IP layer in GloMoSim). This method is
described in [12]. Alternately, the transfer could be
between different layers of the same protocols stack
(for example from the T C P layer in ns to the IP
layer in GloMoSim).

To accomplish this heterogeneous message ex-
change, the backplane uses a message Exporting and
Importing paradigm. A simulator sending an event
to a foreign simulator calls the ExportMessage ser-
vice, which creates a common, dynamic format mes-
sage. The simulator then forwards the dynamic for-
mat message to the foreign simulator. The message
format is dynamic in that only the data items that
are meaningful for a given event message are in-
cluded in the dynamic message. By querying the
simulator with callback functions, the backplane
can discover which items are meaningful for each
message to be exported.

2.3. Message Importing Services

Once an event message has been exported to the
dynamic message format as described above, the
message is transfered to another simulator and is
ready to be imported by the receiving simulator.
The importing process is the inverse of the export-
ing, and causes a message to be converted from the
common dynamic format to the internal event mes-
sage format of the receiving simulator. This is again
accomplished by the backplane using callback func-
tions to inform the simulator of the value of each
data item received in the dynamic message.

3. Splitting the Protocol Stack

There are two natural places for heterogeneous
simulators to exchange event messages. First is be-
tween the bottom layers of the protocol stack. Simu-
lator 1 would build up an event message going down
the layers of its internal stack, and would export
the message after the lowest layer has processed it.
When receiving a message from simulator 1, simula-
tor 2 would import it and then process the message
going up the protocol stack starting at the lowest
layer. This method of dynamic message exchanging
(known as the “across protocol stack” method) is
the subject of the research described in [12].

An alternative method, and one providing poten-

160

r b Simulator I< ri
B A C K P L A N E

. __

.

MAC
Simulator 2

MAC

Figure 2. Split protocol stack method

tially more flexibility, is the “split protocol stack”
method. In this method, heterogeneous simulators
exchange event messages across layers of a single
protocol stack. An example of this method is shown
in figure 2 . Here, simulator 1 processes event mes-
sages for the HTTP and TCP layers of the proto-
col stack, and then passes those partially processed
messages to simulator 2 for the lower layers of the
stack. When receiving messages, simulator 2 pro-
cesses the lower layers (MAC and IP), and then
passes the message (using the backplane) to sim-
ulator 1 for further processing.

This method provides the flexibility to mix and
match simulation functionality in a way that more
closely suits the needs of the simulationist. Of
course, the two methods described above can be
combined, using the split protocol stack model in
two or more simulators; connected using the across
protocol stack method between other simulatorss.
However, this method introduces a severe limitation
on the overall performance of the distributed sim-
ulation, namely the presence of a zero-lookahead
message exchange.

Lookahead. In a conservatively synchronized,
distributed discrete event simulation, one of the pri-
mary factors affecting the performance of the sim-
ulation is the presence (or absence) of lookahead
between the individual simulators. The lookahead
between a pair of simulators is defined as a lower
bound on the amount of simulation time that ad-
vances as messages are exchanged between the sim-
ulators. In a typical distributed network simulation
using the across protocol stack method, there is nat-
urally some non-zero (and potentially quite large)
lookahead between any two simulators. Since mes-
sages are exchanged between simulators as packets
are transmitted on some communication medium,
the transmission time and propogation delay cre-

ate a naturally non-zero lookahead value. Unfortu-
nately, there is no corresponding natural delay as
messages are exchanged between layers of a single
protocol stack. Exchanging messages between sim-
ulators modelling different layers of the same proto-
col stack results in a zero-lookahead exchange, with
resulting poor performance.

Our solution to the zero-lookahead problem is to
nominate one of the two simulators as the master,
which will represent both simulators in the overall
distributed simulation environment. We chose the
simulator modelling the lower layers of the protocol
stack, but this choice is somewhat arbitrary. We
implemented a simple shared-memory interface be-
tween the master and slave simulators to allow a
quick and efficient exchange of information between
the two. The master will participate in all of the
time management computations of the distributed
simulation, and represent both simulators in this
computation. The remainder of this section dis-
cusses the shared-memory interface and algorithms
for time management in this environment. In all
of this discussion, the master is the simulator mod-
elling the lower layers of the protocol stack, and the
slave is the simulator modelling the upper layers.
The processing model for this split protocol environ-
ment is that, assuming the zero-lookahead message
passing between the master and the slave, there can
be no parallel event processing between the two. Ei-
ther the master can process an event, or the slave
can; but neither can process events simulataneously
with the other (ignoring the issues of simultaneous
timestamp events). Since we are stuck with serial
event processing between the master and the slave,
our approach is to minimize the waiting time be-
tween the two. Additionally, we propose running
the two processes on a dual CPU system, such that
one process can be processing events while the other
is spin-waiting on permission to process events.

161

The shared-memory interface consists of:

Two uni-directional circular message pass-
ing queues, one for passing messages from
the slave to the master (S2M) , and a second
for passing messages from the master to the
slave M2S). Uni-directional circular queues
are ideal for message passing in this envi-
ronment since they require no interlocking of
shared variables or critical section processing.

NERCcount An integer counter specifying the
number of times the slave has requested per-
mission to advance simulation time to a new
value.

TAGCount An integer counter specifying the
number of times the master has granted the
slave permission to advance simulation time
to a new value.

NERTime A floating point value specifying
the simulation time advance requested by the
slave.

TAGTime A floating point value specifying
the simulation time advance granted by the
master.

SmallestM2S A floating point value specifying
the smallest timestamped event sent by the
master to the slave since the last time advance
grant to the slave. This is initialized to a value
larger than any possible event in the system.

With the above shared variables, our model is
that the slave has permission to process events if
NERCount equals TAGCount, and the master has
permission if it does not. We describe the processing
of events at the slave first since it is the simpler of
the two, followed by the processing at the master.

Slave Processing When the slave has permission
to process events (NERCount equals TAGCount), it
simply advances it local simulation time to TAG-
Time, and processes any event with a timestamp
less than or equal to the TAGTime value. In actu-
ality, with this model there in no possibility that an
event with a timestamp less than TAGTame exists,
since if there were it would have been processed on a
previous iteration. All events with timestamp equal
to TAGTime are processed (which may result in
new events with timestamp equal to TAGTime be-
ing exported and passed to the master via the M2S
queue). When all such events have been processed,

the slave stores the timestamp of the earliest unpro-
cessed event in NERTime, and advances NERCount
by one. At this point, the slave has asked permis-
sion to advance time to NERTime, and permission
to process events has been passed to the master.
The slave will spin, waiting for NERCount to be
equal to TAGTime, indicating permission has been
given back to the slave to repeat the process. While
spinning, the slave will monitor the M2S queue, re-
moving messages (and or course importing to inter-
nal format using the backplane importing services),
and placing them in the queue of unprocessed events
in timestamp order. The processing of the event im-
porting while spinning gives some amount of paral-
lelism between the master and slave processes.

Master Processing The master spins waiting for
NERCount not equal to TAGCount, indicating the
slave has finished processing for this cycle. The mas-
ter must participate in a global time management
algorithm, such as that discussed in [ll] to deter-
mine a lower bound on the timestamp of all unpro-
cessed messages (plus lookahead) in the entire sys-
tem (not including the slave processes). This value
is called the lower bound on timestamp (L B T S) . To
determine an L B T S value, all simulators report the
timestamp of their smallest unprocessed event to
a global consensus protocol, which computes the
global minimum. The value reported by the master
to the consensus protocol is determined as follows.

1. Insure the S2M queue is empty. if it is not,
remove all pending messages fr6m the slave
and place them in the queue of unprocessed
events (in timestamp order). There is no pos-
sibility of a race condition here since at this
point the slave is no longer has permission to
process events, and is simply spinning waiting
for permission. The S2M queue should nor-
mally be empty at this point, since the master
is monitoring the queue while it is waiting for
permission to process events.

2. Report the minimum of the master’s own
smallest unprocessed event, the NERTime re-
quested by the slave, and SmallestM2S which
represents the smallest timestamp sent by the
master to the slave in the master’s most recent
processing cycle.

Once the L B T S value is known, the master can
process all pending events with timestamp less than
or equal to the minimum of the L B T S value, NER-
Tame, and SmallestM2S. In other words, the L B T S

162 ’

value sets an upper bound on the simulation time
advancement of the master/slave pair, but the mas-
ter/slave pair must process events serially between
them. Processing of these events by the master may
cause event messages to be exported and passed to
the slave using the M2S queue. Each time an event
is passed to the slave, the SmallestM2S value is set
to the minimum of the current SmallestM2S value
and the timestamp of the message being processed.
When the master has processed all eligible events,
the TAGTime value is set to the minimum of the
NERTime, SmallestMeS, and the L B T S value. The
TAGCount value is then advanced by one, returning
permission to the slave.

The net effect of this shared memory approach
and the alternating permission protocol is that the
local event queues of the master and slave processes
appear to the federation as a single event queue.
At any point in time, only the smallest event of
the two event queues can safely be processed, which
mimics the behavior that would be obtained if the
two queues were merged to a single queue.

4. The ns to GloMoSim Split Protocol
Stack Simulation

We experimented with the split protocol stack
simulation with GloMoSim and ns. The protocol
stack is split between TCP and IP layers, with
ns simulating the upper portion of the protocol
stack and GloMoSim simulating the lower portion.
Each GloMoSimlns pair simulates a wireless net-
work that contains a number of wireless nodes.
These wireless networks are connected to each other
through a backbone network, which is simulated
by a number of pdns simulators. Figure 3 shows
a simulation configuration that consists of four Glo-
MoSiml ns wireless networks and four pdns back-
bone networks. Each GloMoSiml ns pair connects
to exactly one pdns, and the pdns’s are fully con-
nected to each other. There is FTP traffic between
wireless nodes in a wireless network, and also FTP
traffic between wireless networks that goes through
the pdns backbone.

We ran the simulation on a multi-processor
shared-memory system, and each GloMoSim, ns
and pdns process was running on a separate proces-
sor. One processor was assigned to each pdns back-
bone network, and a pair of processors was assigned
to each GloMoSim/ns pair. The number of proces-
sors assigned was increased linearly as the number

of wireless networks being modeled was increased.

In the experiments we varied two parameters to
measure the time to complete the simulation. The
two parameters are, 1) number of wireless networks
(i.e. number of GloMoSimlns pairs, which equals
to the number of pdns simulators in between, since
each GloMoSimlns pair connects to exactly one
pdns), and 2) the percentage of local traffic in the to-
tal FTP workload. Note that the total traffic grows
linearly with the number of wireless networks mod-
eled. For example, if the total traffic of 1 wireless
networks is lMB, then the total traffic of 8 wireless
networks is 8MB, including both the local traffic in
the same wireless network and the traffic between
wireless networks that goes through the backbone.
By growing the traffic linearly with the number of
wireless networks being simulated, and by expand-
ing the number of processors in the federation at
the same time, a “perfect” speedup ratio would be
indicated by identical running times for each of the
simulations.

For comparison, we also ran the simulations with
monolithic GloMoSim with the same configurations.
Figure 4 shows the performance when the number
of wireless nodes in each wireless network is fixed at
200. The left chart is the performance of monolithic
GloMoSim simulation, and the right chart is the
performance of GloMoSiml ns split protocol stack
simulation.

The baseline case is one wireles network where
100 percent of the traffic is local traffic. In the
right figure, we can see that as the number of wire-
less networks increases, the time it takes to com-
plete the simulation does increase, but the increase
is reasonably small. Generally speaking, larger lo-
cal traffic percentages lead to better speedup. This
is expected, since a large amount of local traffic in-
creases the number of local events at a given simula-
tor that can be processed in a single lookahead win-
dow. At the other extreme, even when only 10 per-
cent of the traffic is local traffic, running eight wire-
less networks plus eight pdns backbones still only
takes about 2 times as the time to run two wireless
networks plus two pdns backbones.

This shows that the parallel simulation speeds
up the simulation significantly: it takes 2-3 times
more time to simulate 8 times larger network and
8 times more traffic. Also, splitting the protocol
stack(the right chart) results in 1-2 times slow-down
than running monolithic simulator (the left chart),
which seems reasonable.

163

I I I

GloMoSindns Wireless I pdns backbone I pdns backbone I GloMoSidns Wireless
I I I
I

I
-0. -0. I

I

I I

I I I

GloMoSidns Wireless j pdns backbone j pdns backbone i GloMoSim/ns wireless

Figure 3. Simulation configuration with four GloMoSimJns pairs and 4 pdns's

Simulation with Monolithic GloMoSim

Local Traffic 10% +
Local Traffic 30% ---X---

I I I I I I

Local Traffic 50% f
Local Traff ic 70% El
Local Traffic 90% - -B- -

Local Traffic 100%

1 2 3 4 5 6 7 0

Number of Wireless Networks

Simulation with Protocol Stack Split between ns and GloMoSim
2000

1500

In U

s
In -
c 1000
Y .-.
E
F

500

0

I , I I I I
Local Traffic 10% +
Local Traffic 30%
Local Local Traffic Traffic 70% 50% g/
Local Traffic 90% - -D -

Local Traffic 100% - -0 - _/'

x=

1 2 3 4 5 6 7 0

Number of Wireless Networks

Figure 4. Simulation running time with 200 wireless nodes in each wireless network

164

5. Conclusions and Future Work

Each different network simulator has different
strengths and weakness. To combine the strengths
of different simulators, we previously introduced
Dynamic Simulation Backplane[l2] to make differ-
ent simualtors work together. In this paper we dis-
cussed the split protocol stack methodology for net-
work simulation that allows networking researchers
to run different simulators together, and take ad-
vantage of the strong implementation at different
protocol layers of different simulators. Using this
methodology, we are able to construct complex
parallel heterogeneous network simulation scenar-
ios where GloMoSim simulates the MAC layer of
wireless networks, ns simulates the TCP layer of
the same wireless networks and pdns simulates the
wired backbone between wireless networks. Our ex-
periments show that the parallel running of the Glo-
MoSim and pdns simulators speeds up the simula-
tion as the simulated network scales up.

For future work, we believe there is potential
for more parallelism between the ns and GloMoSim
pairs. since each ns/ GloMoSim pair typically sim-
ulates more than one protocol stack. In addition,
in many network simulation scenarios, a simulator
knows apriori when packets of a given flow are go-
ing to another simulator, and we may be able to
exploit this knowledge to achieve more parallelism
in the simulation. In our future research we will try
to exploit these potential methods for more paral-
lelism, and further improve the performance of com-
plex parallel network simulation scenarios.

References

R. Bagrodia. Private communication, 1999.

R. Bagrodia, R. Meyer, M. Takai, Y. Chen,
X. Zeng, J . Martin, B. Park, and H. Song. Par-
sec: A parallel simulation environment for com-
plex systems. IEEE Computer, 31(10):77-85,
October 1998.

J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogiel-
ski. Towards realistic million-node internet
simulations. In International Conference on
Parallel and Distributed Processing Techniques
and Applications, June 1999.

J. H. Cowie, D. M. Nicol, and A. T . Ogielski.
Modeling the global internet. Computing in
Science and Engineering, January 1999.

D. Estrin et al. Virtual internetwork testbed:
Status and research agenda, July 1998. USC

Computer Science Dept , Technical Report 98-
678.

Richard Fujimoto. RTI-KIT v0.2 specification,
March 1998.

S. McCanne and S. Floyd. The LBNL network
simulator.
Software on-line: http://www.isi.edu/nsnam,
1997. Lawrence Berkeley Laboratory.

D. Nicol, M. Johnson, A. Yoshimura, and
M. Goldsby. Ides: A java-based distributed
simulation engine. In Proceedings of the In-
ternational Symposium on Modeling, Analysis
and Simulation of Computer and Telecommu-
nication Systems, July 1998.

K. Perumalla, R. Fujimoto, and A. Ogielski.
Ted - a language for modeling telecommunica-
tions networks. Performance Evaluation Re-
view, 25(4) , March 1998.

K. S. Perumalla and R. M. Fujimoto. Effi-
cient large-scale process-oriented parallel sim-
ulations. In Proceedings of the Winter Simula-
tion Conference, December 1998.

K. S. Perumalla and R. M. Fujimoto. Virtual
time synchronization over unreliable network
transport. In 15th Workshop on Parallel and
Distributed Simulation, May 2001.

G. F. Riley, M. H. Ammar, R. M. Fujimoto,
D. Xu, and K. Perumalla. Distributed net-
work simulations using the dynamic simulation
backplane. In Proceedings of the 21st Annual
Conference on Distributed Computing Systems,
April 2001.

G. F. Riley, R. M. Fujimoto, and M. H. Am-
mar. A generic framework for parallelization
of network simulations. In Proceedings of Sev-
enth International Symposium on Modeling,
Analysis and Simulation of of Computer and
Telecommunication Systems, October 1999.

G. F. Riley, R. M. Fujimoto, and M. H. Am-
mar. Parallel/Distributed ns. Software on-line:
www.cc.gatech.edu/computing/compass/pdns/
index.htm1, 2000. Georgia Institute of Technol-
ogy.
X Zeng, R. Bagrodia, and M. Gerla. Glo-
MoSim: a library for parallel simulation of
large-scale wireless networks. In Proceedings of
the 12th Workshop on Parallel and Distributed
Simlations, May 1998.

165

http://www.isi.edu/nsnam

