
HTTP Simulator Validation Using Real Measurements: A Case Study

Brian D. Davison∗

Department of Computer Science
Rutgers, The State University of New Jersey

davison@cs.rutgers.edu

Abstract

Simulation is a common technique used by Web re-
searchers and provides many benefits. Verification and vali-
dation of a simulator are essential if the results of those sim-
ulations are to be believed. Unfortunately, even limited vali-
dation of simulators has been uncommon in the Web caching
community. In contrast, this paper argues for the validity of
a new network and caching simulator by extensively com-
paring simulated results to both small– and large-scale real-
world HTTP traffic. In addition, we describe some of the
preparation needed to use a large, well-known trace of Web
usage.

1 Introduction

Simulation is a common approach for algorithmic re-
search, and is widespread in Web caching research (e.g. see
[4]). In general, simulation provides many benefits, includ-
ing the ability to:

• test scenarios that are dangerous or have not yet oc-
curred in the real world.

• predict performance to aid technology design.

• predict expected behavior of new protocols and designs
without implementation costs or disruption of existing
systems.

• slow or speed time for effective analysis.

• quickly survey a range of potential variations.

∗New address: Department of Computer Science and Engineering,
Packard Lab, Lehigh University, 19 Memorial Drive West, Bethlehem, PA
18015.

c©2001 IEEE. Published in Proceedings of Ninth International Symposium
on Modeling, Analysis and Simulation on Computer and Telecommunica-
tion Systems (MASCOTS’01), Cincinatti OH, August 15-18, 2001. This
material is posted here with permission of the IEEE. Internal or personal
use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the IEEE
by sending an email message to pubs-permissions@ieee.org.

A simulator is only useful when it produces believable
results. Believability, however, is a subjective quality, and
typically only comes after the simulator has been validated
by exhaustive testing and widespread use. Heidemann et al
[14] provide one definition of validation as the “process to
evaluate how accurately a model reflects the real-world phe-
nomenon that it purports to represent.” In this paper we aim
to validate portions of network models embodied in a new
simulator called NCS (Network and Cache Simulator) [6].

Verification and validation [23] are essential if the re-
sults of those simulations are to be believed. This is particu-
larly important when the simulated experiments are not eas-
ily replicated for confirmation of simulated results (perhaps
because of extensive development effort required or propri-
etary log data). Lamentably, even limited validation of sim-
ulators has been uncommon in the Web caching community.

In this paper we will simulate HTTP network perfor-
mance at both a small scale (individual transactions, care-
fully measured) and at a large scale (tens of thousands of
clients and servers from a log real-world usage). While NCS
supports caching, in this work we focus strictly on the net-
working aspects which can be validated by usage logs that
do not include caching effects that need to be modeled. It is
our intent to demonstrate the validity of the HTTP retrieval
latencies as estimated for the client in our HTTP simulator
by comparison to real-world data. However, within this ef-
fort, we effectively provide a case-study of two processes
with pedagogical merit independent of the simulator used.
One is the preparation and analysis of a large, well-known
HTTP usage trace. The other is the process of simulator val-
idation by comparison to real-world data.

The rest of the paper is organized as follows: Section
2 provides relevant background such as the simulator be-
ing used and the process by which we will test the sim-
ulator for validity. The strongest validation we can pro-
vide is to be able to replicate real-world results. Thus, in
section 3 we replicate under simulation the network effects
of some small-scale real-world experiments. Such a small
scale comparison is useful and necessary for verification,
but the overall goal is to be able to generate results on rela-
tively large experiments. Therefore, in section 4 we describe
a large dataset of real-world traffic, and use it in section 5 for
comparisons with simulated results. We wrap up with future
validation work and a summary.



Clients Servers

Optional
Proxy

Figure 1. NCS topology.

2 Background

2.1 NCS: Network and Cache Simulator

NCS is an HTTP trace-driven discrete event simulator
of network and caching activity. It is highly parameter-
ized for maximal compatibility with previous caching and
network simulations. In granularity, it resides between the
high-level caching-only simulators typical of much of Web
caching research, and the detailed simulators of network-
ing protocols and traffic. In an effort to capture estimates
of user-perceived latency, it simulates simplistic caching
and prefetching functionality at various locations in a net-
work comprising of client browsers, an optional intermedi-
ate proxy, and Web servers (shown in Figure 1). NCS dy-
namically creates clients and servers from templates as they
are found in the trace. Caching at the proxy and clients is op-
tional. Additionally, it simulates many aspects of TCP traf-
fic among these entities on a somewhat idealized network.

The development goals for NCS included:

• Estimate client-side latencies and bandwidth usages by
1) capturing intrinsic network effects (e.g. new con-
nection costs, TCP slow start); 2) modeling real topolo-
gies (including browsers, proxies, and servers, with
potentially multiple connections and/or persistent con-
nections); and 3) capturing some real-world network
effects (including distributions of latencies and band-
widths).

• Provide credibility – be able to compare simulation re-
sults to real-world numbers.

• Incorporate optional prefetching techniques for testing
and evaluation.

While most Web caching simulators measure hit rates
and bandwidth used, few consider the detail needed to be-
lievably estimate retrieval latency. In contrast, NCS is
specifically designed to estimate the latency experienced by

the user, and so includes network simulation in addition to a
caching implementation.

Although inspired by the caching simulators described
and used in [10, 9, 7], the development of NCS has pro-
ceeded independently. While this has necessitated signifi-
cant redevelopment, it has had the side-benefit of being an
educational process for the author. An alternative might
have been to use the network simulator ns [25] and extend
it appropriately for prefetching. However, ns is also known
to have a steep learning curve [3], and would likely require
significantly more computational resources because of the
more detailed modeling it performs. By using a less-detailed
network model, NCS is able to estimate performance for
traces using tens of thousands of hosts in much faster than
real-time. Additionally, NCS uses trace-based workloads
with the associated characteristics of actual data, instead of
artificially generated data. In summary, we wanted more de-
tail (and response-time accuracy) than typical caching-only
simulators, but faster simulation times for large experiments
than the fine-grained network-oriented simulator ns, and to
be able to incorporate code to optionally estimate the effects
of prefetching (which we do not explore here).

A more comprehensive description of NCS along with
sample results is available elsewhere [6].

2.2 Related Work

Many researchers use simulation to estimate Web
caching performance. Often they measure object and byte
hit rates and ignore response time latencies. Response
time improvement, however, is a common justification for
the use of Web caching, and is arguably the initial raison
d’être for content delivery networks. As mentioned above,
however, there are other simulators that estimate response
times. We describe three of the most prominent ones here.

PROXIM [10] is a caching and network effects simula-
tor developed by researchers at AT&T Labs. Like NCS,
PROXIM accounts for TCP slow start and does not con-
sider packet losses and their resulting effects. However,
PROXIM does not including prefetching, and their paper
only provides for a simple level of validation — showing
similar curves for the simulated latency distribution as the
original latency distribution, and comparing median total
latencies. The traces used by Feldmann et al were cap-
tured by a snooping proxy, much like those the trace we will
describe below in section 4, and have likely been cleaned
and adjusted similarly (although this isn’t described explic-
itly). One unusual aspect of these experiments is that the
traces provide extraordinary timing details (including times-
tamps of TCP as well as HTTP events), allowing PROXIM
to use RTT estimates from measurements of SYN to SYN-
ACK and HTTP request and response timestamps on a per-
connection basis.

2



Like NCS, the simulator described in Fan et al [9] uses
the timing information in a portion (12 days) of the UCB
trace (which we describe in section 4) to estimate latency
seen by each modem client. However, it also uses a much
simpler model of latency that

• estimates client-seen latency to be the sum of 1) time
between seeing the request and the first byte of the re-
sponse, and 2) the time to transfer the response over the
modem link.

• apparently ignores connection setup costs.

• apparently ignores TCP slow start effects.

• groups overlapping responses together.

However, Fan et al claim that by grouping overlapping re-
sponses together they are able to measure the time spent by
the user waiting for the whole document. No description of
verification or validation of the simulator is provided.

The ns simulator [25] is likely the best-known network-
ing simulator, but is not typically used for caching perfor-
mance measurements, possibly because of slow simulation
speeds. It uses detailed models of networking protocols
to calculate performance metrics (see Breslau et al [3] for
an overview). This simulator has been validated by wide-
spread user acceptance and extensive verification tests [11].

2.3 The Validation Process

Typically it is impossible for a simulator to exactly mir-
ror real-world experience. NCS is no exception. NCS ordi-
narily uses fixed parameters for many aspects of client, net-
work, and server performance. In the real world, these val-
ues would be a function of changing world conditions. Dif-
ferent servers would have different connectivity character-
istics (including network latency and bandwidth) and ser-
vice loads at different times. Dial-up clients will likewise
differ in bandwidths and latencies depending on the hard-
ware, software, and phone lines used. NCS only models the
traffic captured in the input trace, ignoring unlogged traffic
(e.g. non-HTTP traffic like HTTPS, streaming media, FTP,
or traffic destined for non-logged clients or servers).

Given that the simulation will not generally replicate
real-world experiences, what can be done? Instead, we can
use the simulator to repeat simple real-world experiments,
and thus validate the simulator by comparing it to both real-
world results and the calculated results of others (which we
do in section 3). In particular, we can ask whether the same
effects are visible, and most importantly, verify that the sim-
ulator works as expected (in general, similarly to other re-
sults with some deviation as a result of the simplifications
made).

3 Small-Scale Real-World Networking Tests

Fortunately, some networking researchers have taken the
time to validate their networking models by comparing them
to real-world results (e.g. [15]). By publishing such work in
detail, others are not only able to validate new simulators,
but also to compare fidelity of various theoretical models to
those results.

In this section we do exactly this. We use the real-world
measurements reported in published papers [15, 20] and at-
tempt to reproduce the real-world experiments under sim-
ulation. Heidemann et al [15] use two sets of experiments
for validation of their model of various implementations of
HTTP over TCP. The first measures the overall retrieval time
of a small cluster of resources.1 This workload is tested in
two environments (Ethernet and a high-speed Internet con-
nection) using two forms of the HTTP protocol (HTTP/1.0
and HTTP/1.0 with persistent connections). The actual mea-
surements were gathered and used by Heidemann et al.

The second set of experiments measures the overall re-
trieval time of a 42KB Web page with 42 embedded images
totaling 125KB. This workload is tested in multiple envi-
ronments (including Ethernet, high-speed Internet, and mo-
dem), but Heidemann et al only considered validating one
protocol (HTTP/1.1-style with pipelining). The measure-
ments (along with others) were collected and published by a
different group [20].

We attempted to configure our simulator to be as realis-
tic as possible. Beyond the basic modeling of HTTP over
TCP/IP that Heidemann et al describe [15], we incorporated
additional costs. We estimated the cost of a establishing
a new connection based on transmission of a 40B packet
(i.e. just TCP/IP headers) round-trip and a CPU time cost
of .1ms. We model the appropriate number of parallel con-
nections. We also modeled a fixed reply header with an es-
timated size of 200B. Finally, we reduced bandwidth esti-
mates in the modem cases to account for TCP/IP and PPP
error correction framing bytes.

In Table 1 we show the results of our simulator and com-
pare it to the measurements made by Heidemann et al. As
can be seen from the ratio column, the simulated results are
quite close to the real measurements. They also improve
upon the adjusted modeled values predicted in Table 7 of
[15] in three cases, and equal the fourth (reducing the aver-
age error from 11.5% to 8.2%). From these results it appears
that we may have underestimated the cost of establishing a
new connection.2

1These resources were a single 6651B page with embedded 3883B and
1866B images, corresponding to the Yahoo home page on May 1, 1996

2A more appropriate estimate of the cost of a new connection may be on
the order of multiple ms to account for slower machines and relatively un-
optimized code back in 1996. [10] reports the mean total connection setup
time in their modem data as 1.3s, which suggests the presence of significant
server delays.

3



Environment NCS [15] ratio
protocol network simulated measured m:s

HTTP/1.0 Ethernet 29.3ms 36.8ms (10ms +/12.0ms) 1.26
HTTP/1.0+KeepAlive Ethernet 26.8ms 26.6 (8.8ms +/-1.7) 0.99

HTTP/1.0 Fast-Internet 1726ms 1716 (101ms +/-20.1) 0.99
HTTP/1.0+KeepAlive Fast-Internet 1166ms 1103 (48ms +/-9.5) 0.95

Table 1. Validation of NCS on small cluster workload. Examines HTTP/1.0 (serial retrievals on separate
connections) and HTTP/1.0+KeepAlive (serial retrievals on a single connection). Measured shows
the mean of 100 trials with standard deviation and 95% confidence intervals in parentheses from [15].
m:s ratio is the ratio of measured time vs. simulated time.

Environment NCS [20] ratio ratio
protocol network client/server simulated measured m:s m:a

HTTP/1.1+Pipelining Ethernet libwww/Apache 163.4ms 490ms 3.00 1.47
HTTP/1.1+Pipelining Fast-Internet libwww/Apache 1622ms 2230ms 1.37 1.25
HTTP/1.1+Pipelining Modem libwww/Apache 53073ms 53400ms 1.01 1.00

Table 2. Validation of NCS on large cluster workload. Examines performance for HTTP/1.1+Pipelining
on a single connection. Measured shows the mean of 5 trials from [20]. m:a ratio is the ratio of
measured time to adjusted simulated time.

Table 2 compares the results of NCS to the measurements
from [20]. In this test of pipelining, the simulator performs
poorly for Ethernet, but respectably on the Fast-Internet and
Modem cases. We suspect this is the result of a number of
factors: 1) we model CPU time costs as a delay (which may
occur in parallel with transmission of other data) rather than
a use of resources (on the server side) during which no trans-
mission likely takes place; 2) we do not know precisely the
sizes nor ordering of the images, and instead use equal-sized
values; 3) we do not know where within the first HTML re-
trieval that the embedded image references are placed, and
so assume that the client can attempt to retrieve all objects at
start; and 4) we do not model the HTTP pipeline buffering
effects described in [20]. These effects are more pronounced
for the Ethernet case because the scale of measurements is
much smaller. The column marked ratio m:a shows what the
ratio would be if we were to account for factors 1, 3 (assum-
ing a delay of two packets), and 4 (adding a single 50ms de-
lay as described by Nielsen et al). The adjusted values show
improvement compared to the adjusted modeled values pre-
dicted in Table 8 of [15] in all cases (reducing the average
error from 39.3% to 24.3%, although [15] was validating a
slightly different dataset from an earlier version of the paper
by Nielsen et al).

Since [20] include many more measurements than those
used by Heidemann et al, we provide additional compar-
isons in Table 3. Again, the simulated values are not far from
the measured values, except for the case of Ethernet (with
likely similar reasons as those described earlier).

Over these datasets, NCS performs similarly to the model

used by Heidemann et al and on average is slightly closer
to the actual measurements reported. Thus we can conclude
that at least in the small, NCS is likely to provide a reason-
able estimate of real-world delays attributable to TCP.

4 The UCB Home-IP Usage Trace

In this section we describe the UC Berkeley Home IP
HTTP Traces [12] and some of the effort needed to pre-
pare the logs for our use. This dataset was not selected
arbitrarily, but was chosen specifically because of its non-
trivial length, recorded timing characteristics, and because it
is well-known by researchers. A longer version of this trace
has been analyzed in depth by Gribble and Brewer [13], but
the version described here has also been used in numerous
published papers (e.g. [8, 16, 9, 2, 24, 1, 18, 19, 21, 22]).

4.1 Background

The UC Berkeley Home IP HTTP Traces [12] are a
record of Web traffic collected by Steve Gribble as a grad-
uate student in November 1996. Gribble used a snoop-
ing proxy to record traffic generated by the UC Berkeley
Home IP dialup and wireless users (2.4Kbps, 14.4Kbps, and
28.8Kbps land-line modems, and 20-30Kbps bandwidth for
the wireless modems). This is a large trace, covering 8,377
unique clients over 18 days with over nine million requests.
His system captured all HTTP packets and recorded, among
other items, the time for each request, the first byte of re-

4



Environment NCS [20] ratio
protocol network client/server simulated measured m:s

HTTP/1.0 Ethernet libwww/Apache 193ms 720ms 3.73
HTTP/1.1 Ethernet libwww/Apache 358ms 810ms 2.27
HTTP/1.0 Fast-Internet libwww/Apache 5402ms 4090ms 0.76
HTTP/1.1 Fast-Internet libwww/Apache 5628ms 6140ms 1.09
HTTP/1.1 Modem libwww/Apache 62672ms 65600ms 1.05

HTTP/1.0+KeepAlive Modem Netscape 4/Apache 53523ms 58700ms 1.10
HTTP/1.0+KeepAlive Modem Internet Explorer 4/Apache 53823ms 60600ms 1.13

Table 3. Validation of NCS on large cluster workload. Examines performance for HTTP/1.0 (with up
to 4 parallel connections), HTTP/1.1 (with a single persistent connection), and HTTP/1.0+KeepAlive
(with up to either 4 or 6 parallel connections for Netscape or MSIE respectively). Measured shows
the mean of 5 trials, except for the last two rows where it is the mean of 3 trials, from [20].

sponse, and the last byte of response. These timestamps pro-
vide a sample of real-world response times that can be used
to validate our simulator.

4.2 Trace Preparation

Most researchers have found that web traces need to be
checked and often cleaned before using them in a simulator
or for evaluation [17, 5]. The UCB Home-IP Trace is no ex-
ception.

This trace does not record the HTTP response code asso-
ciated with each object. Thus, we are unable to distinguish
between valid responses (e.g. code 200), error responses
(e.g. 404), and file not modified responses (304). For the
purpose of simulation, we will assume all responses contain
a 200 response code.

While attractive for timing simulations, this trace also in-
cludes some anomalies. On example of this is impossibly
high client bandwidths: for certain responses, the combina-
tion of size of reply and timings of request and end of re-
sponse suggest bandwidths that meet or exceed LAN capa-
bilities, and which certainly do not reflect dialup or wire-
less clients of 1996.3 More importantly, the trace does not
directly reflect client-perceived response times which is the
timing estimate provided by NCS. Since the trace is captured
by a snooping proxy on an Ethernet on the way to the univer-
sity’s Internet connection, two modem (dialup or wireless)
round trips are not captured (first round trip initiates the con-
nection, second corresponds to the time to make a request
and receive the last response), nor is the modem transmis-
sion time of the initial packets to open a connection. There
is also the transmission cost of the request packet and final
data packet (or more, as will be discussed in the next sec-

3Therefore, we drop more than half a million anomalous entries from
the trace (primarily those with missing timestamp fields, corresponding to
missed packets or cancelled requests, but also 13 entries with server-to-
proxy bandwidth over 80Mbps, and 7237 entries with size > 100MB).

tion). Therefore, in order to compare the original trace tim-
ings to our simulated client response times, we will add a
factor of up to 667ms, reflecting typical timings for a 28.8
modem (which underestimates the higher latencies of wire-
less modems as well as slower dialup modems).4 Prior to
the adjustment, the trace had a mean response time of 17.4s
and a median of 2.9s; afterwards it had a mean and median
of 18.0s and 3.6s, respectively.

4.3 Analysis

We analyzed statistics and distributions of the UCB
Hope-IP Trace to better understand the activity represented,
and to look for anomalies. First we consider the response
size distribution. We found that 25% of all responses were
430 bytes or smaller, and that the median response size was
approximately 2310 bytes. This compares to a mean re-
sponse size of 6.7KB.

An obvious measure of user-oriented performance for a
Web system is the response time. In examining this trace, we
found that the first quartile of the response time distribution
is at 1.0s, and the median is at 3.6s. The mean response time
is much higher at 18.0s.

In order to better understand the distributions involved,
we also examined the relationship between the size of a file
transfered, and the response time for that file. In Figure 2,
the actual response time vs. size of file is plotted for the first
100,000 requests in the UCB trace. We also plot the ideal-
ized performance of a 28.8 modem. Note the large number

4The value 667ms can be calculated as follows. We assume a modem
round-trip time of 200ms, and effective bandwidth of 3420 bytes/sec (to
account, in part, for the overhead of TCP/IP header bytes and PPP framing
bytes). The transmission time to send and receive the initial packet to set up
a new connection is 22.2ms (40 bytes sent and received at 3600 bytes/sec),
the time to transmit the request is 95ms (325 bytes at 3420 bytes/sec), and
the time to receive the last packet is estimated to be 149.7ms (512 bytes at
3420 bytes/sec). The total delay is then the sum of two round-trip times, the
transmit time to send and receive initial packet to set up a new connection,
the time to transmit a request, and the time to send a final response packet.

5



0.1

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06

R
es

po
ns

e 
tim

e 
(s

ec
on

ds
)

Size of file (bytes)

idealized 28.8 modem

Figure 2. Scatter plot of file size vs. adjusted
response time of actual responses from the
UCB trace.

of points along the lower-right edge that correspond to trans-
mission bandwidths that are higher than expected (below the
28.8 modem line). For example, there are many points at
8000 bytes with a response time of less than 1s. Assum-
ing 1s, this corresponds to 64000 bits per second, which is
clearly above the bandwidth limits for dialup and wireless
technologies of 1996. We have two conjectures that provide
plausible explanations. One is that these points (contribut-
ing to the fuzziness along the lower right edge) is an arti-
fact of packet buffering at the terminal server interface (to
which the modems were attached). The second possibility is
that we are seeing the effect of data compression performed
by the modems. Note that if we were to plot the original
dataset (without filtering obvious anomalies), we would see
even more extremal points to the lower right.

5 Large-Scale Real-World Networking Tests

By making reasonable estimates of network and host pa-
rameters (shown in Table 4), we can replay this trace within
the simulator, and compare the resulting response times.

Parameter Value

packet size 512 bytes
request size 325 bytes

client network latency (one-way) 100 ms
client bandwidth 3420 Bps

server network latency (one-way) 5 ms
server bandwidth 16384 Bps

server per request overhead 30 ms
cost of new connection 22 ms

max. conns. from client to host 4
latency distribution for hosts Pareto

latency distribution for connections Pareto

Table 4. Some of the simulation parameters
used for replication of UCB workload.

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

of
 r

eq
ue

st
s

Response time (seconds)

Deterministic Simulation
Stochastic Simulation

Actual (Adjusted)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

of
 r

eq
ue

st
s

Response time (seconds)

Deterministic Simulation
Stochastic Simulation

Actual (Adjusted)

Figure 3. Comparison of the CDF of response
times from the UCB Home-IP request trace (a,
above) along with a magnification of first 20s
(b, below).

Figures 3(a) and (b) show the cumulative distribution of re-
sponse times for the actual trace and the results of two simu-
lations (a deterministic trace and a stochastic trace that used
heavy-tailed distributions of latencies on a per-host and per-
connection basis). Likewise, we show results from the same
experiments in Figure 4 which compare the distributions of
effective throughput. The closeness of all of these graphs
helps to validate the simulator. Unfortunately, the results
will not be identical for a number of reasons:

• The simulator does not estimate the same thing that
the snooping proxy measured. The 667ms adjustment
mentioned above in section 4.2 is only a gross modifi-
cation, and is not likely to adequately address the tim-
ings missing from the variety of client access devices,
nor account for the differences in timings that result
from significant buffering performed by the terminal
servers nor modem compression.

• NCS does not model all aspects of the Internet nor does
it model all traffic on relevant network links.

• The simulator does not match the actual host and net-
work characteristics. Under the deterministic version
of the simulator, each node is given the same network
and host characteristics, which does not model the vari-
ations in connectivity (or responsivity of Web hosts).

6



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.002 0.004 0.006 0.008 0.01 0.012

F
ra

ct
io

n 
of

 r
eq

ue
st

s

Seconds per byte

Deterministic Simulation
Stochastic Simulation

Actual (Adjusted)

Figure 4. Distribution of simulated and actual
effective throughput from the UCB trace.

Under the stochastic version, while these characteris-
tics are determined in part by sampling from particular
distributions, the activity of a client may actually de-
pend on the connectivity which is being set indepen-
dently.

• The parameters for the simulations have not been ex-
haustively explored, suggesting that there may be pa-
rameter values that would produce results even closer
to the trace results.

As in Figure 2, we have also displayed file size vs. re-
sponse time from a simulated run, using static values for
bandwidths and latencies, shown in Figure 5(a). In this
scatter-plot, a well-defined lower right edge is visible, corre-
sponding to the best response-times possible with the given
bandwidths and latencies. The notch visible at approxi-
mately 1024 bytes corresponds to the point at which three
packets are needed rather than two to transmit the file.

The obvious differences between Figures 2 and 5(a) sug-
gest that a single static specification of bandwidths and la-
tencies for clients and servers is insufficient to generate a
sufficiently wide distribution of response times. Figure 5(b),
on the other hand, does show more variance in the distri-
bution of response times, qualitatively closer to the actual
distributions shown in Figure 2, albeit with a defined lower
right edge.

Thus Figure 5(b) may be considered “closer” to real-
world performance than Figure 5(a), and as a result, demon-
strate the trade-off of fidelity vs. complexity. While us-

Trace Median Mean

Adjusted actual 3.6s 18.0s
Deterministic sim. 1.9s 5.0s

Stochastic simul. 4.0s 25.7s

Table 5. Basic summary statistics of the re-
sponse times provided by the actual and sim-
ulated trace results.

0.1

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06

R
es

po
ns

e 
tim

e 
(s

ec
on

ds
)

Size of file (bytes)

idealized 28.8 modem

0.1

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06

R
es

po
ns

e 
tim

e 
(s

ec
on

ds
)

Size of file (bytes)

idealized 28.8 modem

Figure 5. Scatter plot of file size vs. simu-
lated response time for UCB trace. Above (a)
shows deterministic configuration. Below (b)
incorporates stochasticity.

ing heavy-tailed stochastic models may provide increased
fidelity (in some sense), it increases the complexity of ex-
periments that use the simulator (because of the need to per-
form repeated experiments to eliminate the stochasticity as
the cause of the effect under consideration). The summary
statistics are also closer, as shown in Table 5. In any case,
we maintain that NCS is capable of generating aggregate re-
sponse time results that are comparable to real-world results,
even in large-scale experiments.

6 Conclusion

While we expect that true believability will come with
hands-on experience, we have used this paper to argue for
the validity and believability of NCS for simulating retrieval
latencies. In the process, we have provided a case study for
network simulator validation by comparison to real-world
data and discussed some of the preparation required for us-
ing the UCB Home-IP HTTP Trace.

Additional testing is always possible, but at some point
becomes infeasible or unnecessary [14]. Given sufficient
time and effort, there are two directions to which we see
value. One is the generation of a simplified theoretical
model with an analytical solution that can be compared to
the simulation results. The second is the explicit compari-

7



son to existing simulations using identical data sets and as-
sistance from the authors of validated simulators. These are
desirable validations that we hope to explore in the future.

Acknowledgments

Thanks are due to Chandrasekar Krishnan, Chris Mester-
harm and Ricardo Bianchini for valuable suggestions. This
work was supported in part by the National Science Foun-
dation under grant NSF ANI 9903052.

References

[1] B. R. Badrinath and P. Sudame. Gathercast: The design and
implementation of a programmable aggregation mechanism
for the Internet. In Proceedings of IEEE International Con-
ference on Computer Communications and Networks (IC-
CCN), Oct. 2000.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implica-
tions. In Proceedings of IEEE INFOCOM, New York, Mar.
1999.

[3] L. Breslau, D. Estron, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and
H. Yu. Advances in network simulation. IEEE Computer,
33(5):59–67, May 2000.

[4] B. D. Davison. A Survey of Proxy Cache Evaluation Tech-
niques. In Proceedings of the Fourth International Web
Caching Workshop (WCW99), pages 67–77, San Diego, CA,
Mar. 1999.

[5] B. D. Davison. Web traffic logs: An imperfect resource for
evaluation. In Proceedings of the Ninth Annual Conference
of the Internet Society (INET’99), June 1999.

[6] B. D. Davison. NCS: Network and Cache Simulator – An
Introduction. Technical Report DCS-TR-444, Department of
Computer Science, Rutgers University, 2001. In preparation.

[7] B. D. Davison and V. Liberatore. Pushing Politely: Improv-
ing Web Responsiveness One Packet at a Time (Extended
Abstract). Performance Evaluation Review, 28(2):43–49,
Sept. 2000. Presented at the Performance and Architecture
of Web Servers (PAWS) Workshop, June 2000.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol.
Computer Communication Review, 28(4), Oct. 1998. Pro-
ceedings of ACM SIGCOMM.

[9] L. Fan, Q. Jacobson, P. Cao, and W. Lin. Web Prefetching
Between Low-Bandwidth Clients and Proxies: Potential and
Performance. In Proceedings of the Joint International Con-
ference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’99), Atlanta, GA, May 1999.

[10] A. Feldmann, R. Cáceres, F. Douglis, G. Glass, and M. Ra-
binovich. Performance of Web Proxy Caching in Heteroge-
neous Bandwidth Environments. In Proceedings of IEEE IN-
FOCOM, pages 106–116, New York, Mar. 1999.

[11] S. Floyd. Validation Experiences with the NS Simulator. In
Proceedings of the DARPA/NIST Network Simulation Valida-
tion Workshop, Fairfax, VA, May 1999.

[12] S. D. Gribble. UC Berkely home IP HTTP traces. Online:
http://www.acm.org/sigcomm/ITA/, July 1997.

[13] S. D. Gribble and E. A. Brewer. System Design Issues for In-
ternet Middleware Services: Deductions from a Large Client
Trace. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems (USITS ’97), Dec. 1997.

[14] J. Heidemann, K. Mills, and S. Kumar. Expanding con-
fidence in network simulation. Research Report 00-522,
USC/Information Sciences Institute, April 2000.

[15] J. Heidemann, K. Obraczka, and J. Touch. Modeling
the performance of HTTP over several transport protocols.
IEEE/ACM Transactions on Networking, 5(5):616–630, Oct.
1997.

[16] J. Judge, H. Beadle, and J. Chicharo. Sampling HTTP Re-
sponse Packets for Prediction of Web Traffic Volume Statis-
tics. In Proceedings of IEEE Globecom, Nov. 1998.

[17] B. Krishnamurthy and J. Rexford. Software Issues in Char-
acterizing Web Server Logs. In World Wide Web Consortium
Workshop on Web Characterization, Cambridge, MA, Nov.
1998. Position paper.

[18] J. Lilley, J. Yang, H. Balakrishnan, and S. Seshan. A unified
header compression framework for low-bandwidth links. In
Proceedings of MobiCom: Sixth Annual International Con-
ference on Mobile Computing and Networking, Boston, Aug.
2000.

[19] J.-M. Menaud, V. Issarny, and M. Banâtre. Improving Effec-
tiveness of Web Caching. In Recent Advances in Distributed
Systems, volume 1752 of LNCS. Springer Verlag, 2000.

[20] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux,
H. W. Lie, and C. Lilley. Network performance effects of
HTTP/1.1, CSS1, and PNG. Computer Communications Re-
view, 27(4), Oct. 1997. Proceedings of SIGCOMM ’97. Also
available as W3C NOTE-pipelining-970624.

[21] S. Paul and Z. Fei. Distributed caching with centralized con-
trol. In Proceedings of the Fifth International Web Caching
and Content Delivery Workshop (WCW’00), Lisbon, Portu-
gal, May 2000.

[22] D. Rosu, A. Iyengar, and D. Dias. Hint-based Acceleration
of Web Proxy Caches. In Proceedings of the 19th IEEE In-
ternational Performance, Computing, and Communications
Conference (IPCCC 2000), Phoenix, AZ, Feb. 2000.

[23] R. G. Sargent. Verification and validation of simulation mod-
els. In D. J. Medeiros, E. F. Watson, J. S. Carson, and M. S.
Manivannan, editors, Proceedings of the Winter Simulation
Conference, 1998.

[24] R. Tewari, M. Hahlin, H. M. Vin, and J. S. Kay. Design Con-
siderations for Distributed Caching on the Internet. In Pro-
ceedings of the 19th International Conference on Distributed
Computing Systems (ICDCS), Austin, May 1999.

[25] UCB/LBNL/VINT. Network simulator ns.
http://www.isi.edu/nsnam/ns/, 2001.

8


