
Exploiting the Predictability of TCP’s Steady-state Behavior to Speed Up
Network Simulation

Qi He, Mostafa Ammar, George Riley, Richard Fujimoto
College of Computing, Georgia Institute of Technology

Atlanta, GA 30332
qhe, ammar@cc.gatech.edu, riley@ece.gatech.edu, fujimoto@cc.gatech.edu

Abstract

In discrete-event network simulation, a significant por-
tion of resources and computation are dedicated to the cre-
ation and processing of packet transmission events. For
large-scale network simulations with a large number of
high-speed data flows, the processing of packet events is
the most time consuming aspect of the simulation. In this
work we develop a technique that saves on the processing
of packet events for TCP flows using the well established
results showing that the average behavior of a TCP flow is
predictable given a steady-state path condition. We exploit
this to predict the average behavior of a TCP flow over a fu-
ture period of time where steady-state conditions hold, thus
allowing for a reduction (or elimination) of the processing
required for packet events during this period. We consid-
er two approaches to predicting TCP’s steady-state behav-
ior: using throughput formulas or by direct monitoring of
a flow’s throughput in a simulation. We design a simula-
tion framework that provides the flexibility to incorporate
this method of simulating TCP packet flows. Our goal is
1) to accommodate different network configurations, on/off
flow behaviors and interaction between predicted flows and
packet-based flows; and 2) to preserve the statistical be-
havior of every entity in the system, from hosts to routers to
links, so as to maintain the accuracy of the network simula-
tion as a whole. In order to illustrate the promise of this idea
we implement it in the context of the ns2 simulation system.
A set of experiments illustrate the speedup and approxima-
tion of the simulation framework under different scenarios
and for different network performance metrics.

1. Introduction

In discrete-event network simulation, a significant por-
tion of resources and computation are dedicated to the cre-
ation and processing of packet transmission events. For

large-scale network simulations with a large number of
high-speed data flows, the processing of packet events is
the most time consuming aspect of the simulation. As a
result any technique that would save on the processing of
packet events can result in significant speedup of the sim-
ulation. In this work we develop a technique that saves on
the processing of packet events for TCP flows. Needless
to say, TCP traffic represents a large portion of the Internet
traffic today and, therefore, large-scale network simulations
typically involve the simulation of a large number of TCP
packet flows.

It is well established[4, 5] that the average behavior of
a TCP flow is predictable given a steady-state path condi-
tion. It is our goal in this paper to exploit this fact to predict
the average behavior of a TCP flow over a future period
of time where steady-state conditions hold, thus allowing
for a reduction (or elimination) of the processing required
for packet events during this period. In particular, given
the current progress of a TCP data transfer (i.e., the highest
sequence number sent or ACKed) and a predicted average
throughput over a future steady-state period, we can predict
the progress at a future time instance (e.g., we can predict
the time a packet with a given sequence number will have
been successfully delivered on average).

The TCP steady-state throughput formula[5] which esti-
mates the average throughput based on round-trip time (RT-
T) and packet loss ratio has been shown to approximate the
real TCP flow throughput closely. We observe that accurate
measurement of RTT and loss ratio is quite manageable in
a simulation system and the cost saving through throughput
prediction could be significant as long as a flow is in steady-
state for a long-enough time relative to the time needed to
accurately measure loss ratio and RTT. Another way to pre-
dict TCP progress is simply to measure the average through-
put in the steady-state for a while.

In this paper we design a simulation framework that pro-
vides the flexibility to incorporate this method of simulating
TCP packet flows. The complexities of such a framework
result from the requirements that: 1) it has to accommodate

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

different network configurations, on/off flow behaviors and
interaction between predicted flows and packet-based flows;
2) it has to preserve the statistical behavior of every entity in
the system, from hosts to routers to links, so as to maintain
the accuracy of the network simulation as a whole.

Our work is related to two other simulation techniques:
1) use of fluid flow models and 2) use of dead reckoning. A
number of researchers have reported good results by using
the fluid flow models for network simulation [7, 8]These
techniques tend to approximatenetwork flows as fluids and
describe the flows and their interaction using flow equation-
s. They are typically not derived from event-based simula-
tion models (as our technique is) and as such become hard to
integrate with existing event-based simulation approaches.
Dead reckoning is another related technique by which the
state of a simulated entity is estimated at some future time
based on past history and some knowledge of the current s-
tate. This has been mostly used in the context of Distributed
Interactive Simulation (DIS) (See for example [2, 3]). Our
ideas explore related ideas in the specific context of network
simulation and the simulation of TCP flows.

Our work has the following contributions:

• We designed a simulation framework that can uti-
lize prediction to speed up simulations involving TCP
flows, while maintaining the ability to simulate some
flows with detailed packet events.

• We evaluate the speedup and approximation of the
simulation framework. The two prediction techniques
are compared for their approximation to packet-based
simulation in different simulation configurations.

The rest of the paper is organized as follows. Sec-
tion 2 details the design of the prediction-based simula-
tion framework with predicted flows only. Section 3 de-
scribes two prediction techniques: formula-based predic-
tion and direct measurement prediction. Section 4 ex-
tends the framework to accommodate the coexistence of
packet-based and predicted flows. Section 5 evaluates
the performance (speedup and approximation) with an
ns2[1]implementation and compares the approximation of
formula-based and direct measurement based predictions
for different scenarios. This paper is concluded in Section
6.

2. Prediction-based Simulation Design

2.1. Simulation Context

To illustrate our simulation scheme, we use the following
model to describe our simulation context. In this model,
there are n TCP flows and m non-TCP flows. Each flow i
(1 ≤ i ≤ n) is an on-off flow which can be characterized

E1 E2 E3 E4
T1

S1

start of simulation end of simulation

Figure 1. Simulation epochs

by a series of (tij , Bij), 1 <= j < ki, where tij is the
start of the jth on-period of that flow and Bij is the number
of bytes sent in that period. We call a TCP flow that is
simulated with our proposed scheme a predicted flow, as
compared to a normal flow which we call a packet-based
flow. In this section, we will concentrate on predicted flows
only, i.e., there is no non-TCP flow and all the TCP flows
are predicted flows. In section 4, we will investigate cases
where predicted flows interact with packet-based flows.

2.2. Simulation Framework Details

During a simulation, the system undergoes a series of
epochs Ei as illustrated by Figure 1, where each epoch con-
sists of a transient period (T, bold dashed segments) and
a steady-state period (S, regular dotted segments). In this
subsection, we describe the simulation system details of an
epoch, including the switch from transient period to steady-
state period, and the transition between successive epochs.

Epochs An epoch represents a certain snapshot configu-
ration of active flows in the system. Transition from one
epoch to another is triggered by changes of active flows,
which we will detail shortly.

During the initial period of an epoch, TCP flows expe-
rience changes in average RTT and loss ratio due to the
changes of competing flows, thus we call this a transient
period. It is during this period that each TCP flow learns
its average throughput. Hence all flows in our simulation
system send packets during the period. After the transient
period, the system switches to the steady-state period, dur-
ing which each flow is assumed stable and saves processing
by not scheduling any packet events. The length of the tran-
sient period should be chosen such that the average through-
put seen by each flow has become relatively stable by the
end of the transient period. It should be at least longer than
Tss, which is defined in [6] as the length of the initial slow
start period of a new flow, as we will explain in section 3.

Intra-epoch Transition Intra-epoch transition is the tran-
sition from transient period to steady-state period within an
epoch and involves two major actions.

One action is for the active TCP flows and the network to
checkpoint their current states so that the next time the sys-
tem switches to transient period, each of them has a starting
state that statistically approximates the steady-state of this

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

epoch. TCP flow states include congestion window, RTT,
retransmission timeout, and data transfer progress. The net-
work state we checkpoint is the queue occupancy on each
router. The checkpointing involves freezing the queue by
not allowing any enqueue or dequeue operation, so that the
same buffer occupancy can be restored at the next transition.

The other action is for active flows to predict the end of
their current on-period. An active flow has a predicted aver-
age throughput rp (bytes/sec) by the end of a transient peri-
od. Given that an active flow has Br bytes of data remain-
ing to be sent during its current on-period, we can schedule
a steady-state period event for the flow at Br/rp, when the
on-period is predicted to end. Since a TCP application can
pass down additional data during an on-period, the amount
of data to be sent within a flow’s on-period is not fixed at the
time of transition and we need to reschedule the steady-state
period event whenever more data is buffered by TCP.

Inter-epoch Transition Transitions between epochs are
triggered by changes of active flows. There are two kinds
of event that result in such changes.

• end of an on-period. The end of a flow’s on-period is
usually indicated by the execution of its steady-state
period event1. End of a flow is a special case of this.

• start of an on-period. The start of a flow’s on-period is
detected when new application data arrives during its
off-period. Start of a new flow is a special case of this.

Assume that there are p active flows and the steady-state
period event of the ith active flow is scheduled at bi. Fur-
ther assume that there are q inactive flows and the jth in-
active flow will become active at sj . The next inter-epoch
transition will then take place at:

min(b1, b2, b3,, bp, s1, s2, s3,, sq) (1)

However, neither bi (1 <= i <= p) nor sj (1 <= j <=
q) can be predicted, so that the next epoch transition can
only be triggered dynamically as bi’s expire or as sj’s take
place, rather than scheduled. For inter-epoch transitions,
transitions from steady state to transient state, we need to
cancel all the scheduled steady-state period events. Also,
the active flows and the network need to recover/update s-
tates and resume sending/forwarding packets.

When a flow switches from steady state to transient s-
tate, it restores all the previously stored TCP states except
those related to the progress of data transfer, which need ad-
ditional attention. In particular, assume that at the time of
the last intra-epoch transition, the highest sequence number
reliably received by the other end (highest ack) is hao, the
current highest ack is updated as follows: highest ack =

1There are cases where an on-period ends during the transient period.

hao + rp ∗ durp, where rp and durp are the predicted
throughput and the duration of the steady state in the last
epoch. It is also important to restore the steady-state ACK
locking behavior of the TCP flow, which we achieve by set-
ting some state variables of the other end of the TCP con-
nection. To restore the state of the path, we simply unfreeze
each queue. When the queues resume operations, residu-
al packets frozen in the queues during the last transition are
delivered although will be discarded as obsolete because the
receiving TCPs’ states have been updated.

3. Predicting Steady-state Throughput

We have described the framework to speed up TCP flow
simulation with TCP throughput prediction. This section is
dedicated to describing two techniques to predict the aver-
age throughput of a steady-state TCP flow.

3.1. Summary of TCP Behavior

A TCP flow can be characterized as an initial slow start
phase followed by a steady-state phase [5, 6]. TCP tries to
capture the maximum available bandwidth during the ini-
tial slow start phase with exponential increase of congestion
window on each ACK. After the end of slow start, which is
detected by the first packet loss, and the following time-
out period, TCP goes into the steady-state. Steady-state of
a TCP flow comprises of a series of timeout periods (TO),
each of which is, in turn, composed of a slow start phase
and multiple triple duplicate periods (TDP). The end of a
TDP is marked by triple duplicate ACKs and the end of a
TO is marked by a retransmission timeout event. Both the
slow start phase and the TDP periods strictly follow certain
algorithms to adapt the congestion window. Given the de-
terministic algorithm used by TCP in its steady-state, TCP
behavior is very predictable. In particular, the length of the
slow start phase and the length/number of TDPs within a
TO, as well as the amount of data transfered during a TO
can all be statistically determined.

3.2. Measurement Period

Larger speedup can be obtained by using shorter tran-
sient periods. However, a transient period should be long
enough to capture the steady-state behavior of each flow.

Prediction should also be based on a period when no
flow is still in its initial slow-start stage. We call a period
during which the system is actually measuring (predicting)
each flow’s throughput a measurement period. It should be-
gin after the initial slow-start phase of a newly (re)started
flow in a transient period. The average length of an initial
slow-start can be readily evaluated using recent results (see
the expression for Tss in [6]). Our experiments show that

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

a measurement period on the order of tens of TDPs gives
close estimates of RTT and loss ratio.

3.3. Direct Throughput Measurement

One approach to predict is to directly measure the aver-
age throughput of each flow. To do that, we simply check
the amount of data reliably delivered during the measure-
ment period. We then derive the average throughput by di-
viding the amount of data by the length of the measurement
period. The accuracy of this prediction depends on whether
the measurement period is long enough for the predicted
flow to get close to the limiting behavior of its steady-state.

3.4. Formula Based Prediction

Our proposed formula-based prediction is based on the
model established in [5], where the authors characterize the
steady state throughput of a TCP flow as a function of loss
ratio, round trip time, b (number of segments ACKed by
one ACK) and the maximum window size advertised by
the receiver. The B(loss, RTT, b, Wmax) formula applies
to a bulk transfer TCP flow, i.e., a flow with an unlimited
amount of data to send. Compared to previous work in [4],
this model captures the timeout events in the steady state
and hence the applicability of this equation is not limited to
small packet loss ratio.

With formula-based prediction, we measure for each
flow its average RTT and the packet loss probability on it-
s path. We then estimate the average throughput with the
throughput formula. The accuracy of the prediction depend-
s both on the accuracy of the measured RTT and loss proba-
bility, and on the formula’s approximation to real measure-
ment. To obtain average RTT, we average all the RTT sam-
ples during a measurement period. Our experiments suggest
that RTT measurement converges to the average RTT as the
measurement period increases and a period of 10 TDPs is
usually enough to ensure reasonable accuracy. During a
measurement period, the simulation counts the number of
packets received and dropped at every router a particular
flow passes. The loss ratio of the flow is derived by adding
these drop ratios2. Our experiments suggest that loss ratio
converges at approximately the same rate as RTT.

4. Mixing Packet-based and Predicted Flows

Section 2.2 describes the simulation framework with all
the flows being predicted TCP flows. The framework speed-
s up simulation through prediction and aggregation of pack-
et events, i.e., the speedup comes at the cost of losing pack-
et events. This is not desirable for simulations where every

2Assume that the loss ratio of the on-path routers are p1, p2,, pk ,

the loss ratio of the flow is
∑k

i=1
pi ∗ (1 −

∑i−1

j=1
pj).

packet event is of interest to some flows. It is also possible
that TCP flows are competing for bandwidth with non-TCP
flows, for which the TCP steady-state prediction does not
work. Both cases suggest the need to accommodate packet-
based flows in the framework, which is the general case de-
scribed in 2.1. To that end, we need only to make a few
minor changes to the framework, as described below.

Changes to the Framework Within the new framework,
the transition between epochs is triggered by the start/end
of an on-period of any flow, including non-predicted packet-
based flows. As of a predicted flow, the start of an on-period
of a packet-based flow is also detected by observing the ar-
rival of application data during an off-period. The end of an
on-period in a packet-based flow, though, is always detected
by the emptying of a sender buffer.

Accounting for Network Resource Usage The average
RTT and loss ratio a flow experiences are affected by the
queue limit and link bandwidth of on-path routers, as well
as the additional queuing delay and losses due to competing
flows. For each predicted flow, we can account for both the
link bandwidth it uses and the queuing delay it causes by
adjusting the bandwidth of each link on its path according
to its share of the link’s throughput. In particular, during
a measurement period, we measure the throughput of each
link on the flow’s path in addition to predicting the flow’s
average throughput. Suppose that the estimate of the flow’s
throughput is rf , the bandwidth and the measured through-
put of a link are bw and rl, respectively. When the flow
switches to steady-state, we adjust the link bandwidth to
bw ∗ (1 − rf/rl). The proportionally reduced throughput
accounts for the queuing delay (seen by competing flows)
due to that flow, which in turn, accounts for the addition-
al losses other flows will experience, given the same queue
size. When a predicted flow switches back to transient s-
tate, the link bandwidth is increased according to the flow’s
share of throughput in the previous epoch.

5. Experimental Results

We implement the proposed framework and prediction
schemes in ns2[1]. The predicted flow class inherits the
TCP/FullTcp class and has the additional functionalities to
switch, measure, predict and identify the changes between
on and off periods. We also derive a new class of scheduler
that handles all network changes.We conduct experiments
to primarily answer two categories of question:

1. how much the predicted flow speeds up the simulation;

2. how closely the predicted flow approximates the
packet-based flow, in terms of:

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

S1

S2

S3

Sn

K1R1

5ms, 800Kbps

10ms, 900Kbps

Figure 2. Topology I

R1

S3

S1

S2

S4

R2 R3

K1,3

K2,4

5ms, 800Kbps

5ms, 800Kbps

10ms, 500Kbps

5ms, 400Kbps

5ms, 500Kbps

10ms, 400Kbps

5ms, 300Kbps

5ms, 700Kbps

Figure 3. Topology II

(a) average flow throughput (inversely proportional
to completion time)

(b) average network buffer occupancy;

(c) packet sequence traces of packet-based flows.

Throughout the experiments, flows perform bulk trans-
fers that are never application-limited, but the system’s be-
havior with on-off flows is easily derived from our experi-
ments with multiple flows that start/finish at different times.
Both prediction techniques are tested and compared when-
ever they might potentially make differences.

Most experiments use the network shown in Figure 2.
The <propagation delay, bandwidth> on each link Si–R1

is <5ms, 800Kbps> and the queue size on R1 is 50, unless
otherwise noted. There is a TCP connection and an FTP
application between each Si and K1. The network in Fig-
ure 3 is used in some experiments. The link parameters are
shown in the figure.

Note that our simulation experiments use relatively low
bit-rates but we use standard packet sizes of 536 bytes. We
will report our results in the rest of this section using “sec-
onds” as our time units. Ultimately what is most important
is the relative packet transmission time and not the absolute
value of time. While using seconds simplifies the discus-
sion, it should be noted that more realistic bit rates (in the
10’s of Mbps) would make our conclusions apply to much
smaller time units in the 10’s or 100’s of milliseconds.

5.1. Speedup

From the description of the two predictions, we know
that the prediction overhead is the same for both and they

0

10

20

30

40

50

60

70

80

9 90 180 270 360 450 900

R
un

tim
e(

%
 o

f P
ac

ke
t-

ba
se

d)

Transfer Size (Mb)

Runtime Saving

Runtime Saving

Figure 4. Speedup vs. transfer size

should achieve the same speedup. So we present only the
results from the simulation of the formula-based prediction.

For the results in Figure 4, we use a FTP connection
from S1 to K1 that transfers a file of different size in each
test, and a 180-second measurement period. The average
throughput is within a 3% difference from a packet-based
simulation for each test result presented. Figure 4 plot-
s the relative runtime of a prediction-based simulation to
a packet-based simulation, against the transfer size of the
TCP flow. The speedup with prediction based simulation
increases dramatically with the transfer size, because the
same cost of initial measurement is amortized over a longer
steady-state period in a large transfer. Although this expla-
nation assumes no additional network changes in a longer
transfer, it is conceivable that a larger transfer benefits more
as long as the number of network changes does not grow
proportionally to the transfer size.

We also find that the relative runtime of the prediction-
based simulation corresponds well to the proportion of time
it spends measuring, suggesting that the cost of transitions
and running in steady-state is negligible.

5.2. Approximation

In this subsection, we evaluate how the prediction-based
simulation approximates the packet-based simulation, in
terms of average flow throughput, network buffer occupan-
cy and packet sequence traces. The choice of prediction
scheme only affects the average throughput measurement,
so comparison between the two predictions is only made in
the evaluation of average throughput approximation.

5.2.1 Average Throughput

For a predicted TCP flow, we are primarily interested in
evaluating its average throughput behavior (or completion
time given a transfer size). We want to examine approxi-

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

1

10

100

1000

10000

100000

1e+06

0.0001 0.001 0.01 0.1 1

F
in

is
h

T
im

e(
se

c)

Loss Ratio

Approximation(completion time)

Formula prediction
Packet-based

Figure 5. Approx vs. loss(formula)

mations for: 1) a range of RTT and loss ratio values; 2) sit-
uations where flows exhibit path heterogeneity in RTT and
bottleneck bandwidth; 3) different number of flows.

Impact of Loss Ratio and RTT In this experiment, we
use an FTP connection from S1 to K1 in Figure 2 and make
the R1-K1 link a bottleneck. We choose different combina-
tions of the queue limit on R1 and the bottleneck bandwidth
such that we have a wide range of loss ratios and RTTs.

Figure 5 plots the approximation (difference from
packet-based simulation) of completion time against loss
ratio, of the formula-based prediction. It is seen that the
approximation remains close for the range of loss ratios (up
to 13%) we tested. Similar results (not shown here) is ob-
tained for direct measurement prediction. However, there
is a trend of increasing error with the formula-based pre-
diction. By applying to the throughput formula the average
loss ratio and RTT measured in the corresponding packet-
based simulation, we are convinced that those larger errors
in the formula-based simulation is caused by the error of the
formula in those scenarios, which echoes the results in [5].

A similar set of experiments exploring the possible rela-
tion between RTT and approximation show that for differ-
ent RTTs but with the same range of loss ratio, the approxi-
mation does not change significantly for either predictions.

Impact of Number of Interacting Flows When there are
multiple connections sharing a path, the increased interac-
tion between connections and the less predictable nature
of loss ratio and RTT can stress the accuracy requirement
of the simulation framework and the prediction techniques.
For the results in Figure 6, we use the setting in Figure 2,
where the FTP application on Si starts sending in increasing
order of i and the interval between two starts is 250 seconds.
We take the approximation for each flow and use the aver-
age as the index of approximation of each test. Initially, we
set the queue limit on R1 to 30. With the formula-based

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

D
iff

 fr
om

 P
ac

ke
t-

ba
se

d
S

im
ul

at
io

n(
%

)

Number of Interacting Connections

Approximation

Formula qlim 30
Formula qlim 100

Direct Measurement qlim 30
Direct Measurement qlim 100

Figure 6. Approx vs. number of conns

scheme, the approximation remains consistently good (be-
low 4%) until there are 6 connections, and a better approx-
imation is achieved after we change the queue limit to 100,
which suggests that the increased error might be caused by
increased loss ratio. Direct measurement does not show in-
creasing error with more connections, nor is the approxi-
mation improved with increased queue size. These suggest
again that there is no observable relationship between the
loss ratio and the approximation of the direct measurement
based prediction.

Bandwidth and Delay Heterogeneity The last two ex-
periments in this category are designed to verify that the
prediction scheme measures correctly for competing TCP
flows that have different path characteristics, and that the
simulation framework does not disturb the normal band-
width sharing among them. We use differing bandwidths
(delays) on links S1–R1 and S2–R1 and evaluate the ap-
proximation with varying differences.

The first set of experiments show that there is no global
trend in the change of error as the upstream bandwidth dif-
ference between competing flows changes. However, as we
experiment with competing flows with different RTTs, we
find noticeable discrepancies for some situations, while still
obtain a reasonable approximation in some other situations.
These situations differ in their transfer size. We will explain
these phenomena in this subsection.

We use the network shown in Figure 3 with two FTP
connections, from S1 and S2, respectively. In the first con-
figuration, S1 sends to K1 and S2 sends to K2; in the second
configuration, both S1 and S2 send to K1. The two FTPs
have different RTTs in the first case and same RTTs in the
second. We first run packet-based simulation and measure
the average throughput for each flow periodically. We find
that it takes significantly longer for the average throughput
to converge in the first configuration than in the second con-
figuration, suggesting that for configurations where compet-

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250 300 350 400 450 500

E
st

im
at

ed
/M

ea
su

re
d

T
hr

ou
gh

pu
t

Time(sec)

Estimation Evolution

Formula/FTP1
Formula/FTP2

Local Measurement/FTP1
Local Measurement/FTP2

Converged/FTP1
Converged/FTP2

Figure 7. Throughput approximation(1)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250 300 350 400 450 500

E
st

im
at

ed
/M

ea
su

re
d

T
hr

ou
gh

pu
t

Time(sec)

Estimation Evolution

Formula/FTP1
Formula/FTP2

Local Measurement/FTP1
Local Measurement/FTP2

Converged/FTP1
Converged/FTP2

Figure 8. Throughput approximation(2)

ing flows display significant heterogeneity in RTTs, direct
measurement based prediction will only work for sessions
that last a relatively short period.

Comparing the approximations by the two predictions
for the two settings, in Figures 7 and 8 respectively, we ob-
serve that: 1) For slowly converging configurations like Fig-
ure 7, direct measurement prediction works only for very
short flows; formula-based prediction works for longer-
lived flows, but might not work well for short flows. There
are chances that neither of them works well. 2) For fast
converging settings like Figure 8, both predictions approxi-
mate well with a short measurement period. However, giv-
en such a measurement period,direct measurement renders
a smoother and more accurate approximation curve.

5.2.2 Buffer Occupancy

From the network point of view, buffer occupancy is an in-
teresting performance metric. We want to examine whether
and how we can obtain a good approximation of this met-
ric. One straightforward way is to measure the average oc-
cupancy of a queue when the path it belongs to is in a mea-
surement period and take the measured average as the aver-

0

20

40

60

80

100

0 500 1000 1500 2000 2500

Q
ue

ue
 S

iz
e

Time(sec)

Queue Size Evolution

Packet Based(interval 25)

Figure 9. Queue occupancy–Packet-based

0

20

40

60

80

100

0 500 1000 1500 2000 2500

Q
ue

ue
 S

iz
e

Time(sec)

Queue Size Evolution

Formula Based(interval 25)

Figure 10. Queue occupancy–Formula-based

age buffer occupancy during the steady-state until the nex-
t transient period. The following experiment tests whether
the period-wise averages match the measured average buffer
occupancy: we use 3 FTP flows in Figure 2 and start each
at intervals of 250 seconds. We set the measurement period
to 180 seconds and monitor the buffer on R1.

Figures 9 and 10 show the instantaneous queue length
sampled at an interval of every 25 changes. In the packet-
based simulation, we can see several distinct periods where
the buffer occupancy range is stable and those are the e-
pochs in our simulation context. Transitions between t-
wo consecutive epochs correspond to changes of compet-
ing flows. In the prediction-based simulation, a period with
constant queue length and a period with fluctuating queue
length corresponds to the steady-state period and the tran-
sient period of an epoch, respectively. It can be seen that
each epoch in Figure 9 matches a transient period followed
by a steady-state period in Figure 10. The average buffer
occupancy over the whole simulation are 30.88 and 29.49,
respectively, leading to a difference of 4.5%.

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

0

2e+07

4e+07

6e+07

8e+07

1e+08

0 500 1000 1500 2000

S
eq

ue
nc

e
S

en
t

Time(sec)

Packet Sequence(whole)

FTP2 in formula-based simulation
FTP2 in pkt-based simulation

Figure 11. Packet sequence(whole trace)

6.5e+06

7e+06

7.5e+06

8e+06

8.5e+06

9e+06

180 185 190 195 200 205 210

S
eq

ue
nc

e
S

en
t

Time(sec)

Packet Sequence(part)

FTP2 in formula-based simulation
FTP2 in pkt-based simulation

Figure 12. Packet sequence(after a transition)

5.2.3 Packet Sequence Traces

Packet sequence may be interesting to a packet-based flow.
Due to the statistical nature of our approach in determining
the instantaneous states during the inter-epoch transition,we
cannot preserve the exact packet sequence. Our experiment
is to validate that the average throughput of a packet-based
flow which shares path with a predicted flow is close to
what it experiences when the other flow is simulated with
packet-based technique. We use two connections in Figure
2 but set link S2-K1 to 600Kbps. In the prediction based
experiment, FTP2 uses a packet-based TCP connection and
FTP1 uses a predicted TCP connection. Both flows start at
time t=0. Figure 11 shows that the sequence number traces
of FTP2 in a prediction based simulation and in a packet-
based simulation match closely. Figure 12 is part of the
FTP2 trace right after FTP1 switches to steady-state. We
find that FTP2 initially gets to send faster, since the packets
in the first congestion window (after FTP1’s switch) experi-
ence lower delay and loss ratio than before, which increases
the sender’s congestion window faster. However, due to the

reduced bandwidth after we account for FTP1’s resource
usage, RTT and loss ratio, hence throughput, soon return to
the state before FTP1’s switch.

6. Concluding Remarks

This paper proposes to speed up the simulation of TCP
flows by predicting and aggregating packet events based
on the predictability of steady-state TCP behavior. We de-
sign a prediction based simulation framework to use pre-
dicted flows and describe two techniques to predict the av-
erage throughput of a steady-state TCP flow, the direct mea-
surement based prediction and the TCP throughput formula
based prediction. Our results show that the prediction based
simulation achieves significant speedup over packet-based
simulation and the speedup increases dramatically with the
transfer size. Both prediction techniques approximate the
packet-based simulation reasonably well under all simula-
tion setups except when competing flows display significant
difference in RTT. Our analysis shows that the discrepan-
cy results from the much slower convergence of average
throughput in this case. Our future work will explore some
estimation techniques (e.g., bandwidth estimate smoothing
with faster convergence) that will be able to compensate
for this effect. Our evaluations also demonstrate that in the
prediction based simulation, the network and packet-based
flows all experience behaviors that are close to what they
will experience in packet-based simulations.

References

[1] Network Simulator http://www.isi.edu/nsnam/ns.
[2] M. A. Bassiouni, M. Chiu, M. Loper, M. Garnsey, and

J. Williams. Performance and reliability analysis of rele-
vance filtering for scalable distributed interactive simulation.
TOMACS, 7, 1997.

[3] W. Cai, F. B. S. Lee, and L. Chen. An auto-adaptive dead
reckoning algorithm for distributed interactive simulation. In
13th Workshop on Parallel and Distributed Simulation, 1999.

[4] J.Mahdavi and S. Floyd. TCP-Friendly Unicast Rate-Based
Flow Control. Sent to end2end-interest mailing list, Jan 1997.

[5] J.Padhye, V.Firoiu, D.Towsley, and J.Kurose. Modeling TCP
Throughput: A Simple Model and its Empirical Validation.
In SIGCOMM, 1998.

[6] N.Cardwell, S.Savage, and T.Anderson. Modeling TCP La-
tency. In INFOCOMM, 2000.

[7] D. Ros and R. Marie. Estimation of end-to-end delay in high-
speed networks by means of fluid model simulations. In 13th
European Simulation Multiconference, 1999.

[8] A. Yan and W. Gong. Time–driven fluid simulation for high-
speed networks. IEEE Transactions on Information Theory,
45(5):1588–1599, July 1999.

Proceedings of the 10th IEEE Int�l Symp. on Modeling, Analysis, & Simulation of Computer & Telecommunications Systems (MASCOTS�02)
1526-7539/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

