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Abstract

Modeling the Internet infrastructure is a challenging en-
deavor. Complex interactions between protocols, increas-
ing traffic volumes and the irregular structure of the Inter-
net lead to demanding requirements for the simulation de-
veloper. These requirements include implementation detail,
memory efficiency and scalability, among others. We intro-
duce a simulation model of the Border Gateway Protocol
that we call BGP++, which is built on the popular ns-2 sim-
ulation environment. A novel development approach is pre-
sented that incorporates the public domain routing software
GNU Zebra in the simulator. Most of the original software
functionality is retained, while the transition to the simula-
tion environment required a manageable amount of effort.
Moreover, the discussed design inherits much of the matu-
rity of the original software, since the later is only mini-
mally modified. We analyze BGP++ features and highlight
its potential to provide significant aid in BGP research and
modeling.

1. Introduction

BGP [15] is the only inter-domain routing protocol of
the Internet, deployed for more than a decade. BGP’s role
is to maintain reachability among the autonomous systems
(ASs) that comprise the Internet. Reachability is maintained
under a set of restrictions imposed by applied policies. BGP
policies are determined by commercial agreements between
ASs and are applied mainly in the form of filters in the in-
coming and outgoing interfaces of the routers. The proto-
col conveys information for networks spread in adverse ge-
ographical locations bringing them together in the Internet.

� This work is supported in part by NSF under contract numbers ANI-
9977544 and ANI-0136969, and in part by DARPA under contract
number N66002-00-1-8934.

In the recent years, BGP has received a signifi-
cant amount of research interest. Attributes studied are its
stability [7, 19], convergence time [11, 12], path infla-
tion [6, 18], policy atoms [1, 2] and path richness [17].
Works of researchers reveal several problems, the major-
ity of which are related to BGP dynamics and rise from
BGP’s complexity. The distributed nature of the algo-
rithm, the flexibility left to the operator in the form of
policies, and the scale of the Internet exacerbate BGP ab-
normalities and make the study of its behavior very diffi-
cult. The methods of choice in recent studies are passive
measurements, active measurements, analytical model-
ing and simulations. Our focus is on the development
of BGP simulation models. Accurate simulation mod-
els are essential to understanding the inter-domain routing
infrastructure, to recreate observed patterns, to predict fu-
ture behavior and to examine the applicability of proposed
modifications. The only other detailed BGP simula-
tion model to our knowledge is built on SSFnet simulator
[3, 4] and is used in [8] to examine interdomain rout-
ing convergence time.

Our work introduces an implementation of BGP proto-
col for the ns-2 [13] simulator that we call BGP++. In con-
trast to conventional simulation software development tech-
niques, BGP++ is built from existing software. In partic-
ular, GNU Zebra BGP daemon (bgpd) [10] is modified to
work in a simulation environment. The advantage of this ap-
proach is that the simulator inherits much of the detail and
the functionality of the original software, while moderate
development effort is required.

Zebra is an open source implementation of BGP as well
as other routing protocols. It has been used by network oper-
ators as part of the Internet infrastructure. Furthermore, ns-2
is a widely used discrete event simulator that provides im-
plementations of many networking protocols. The combi-
nation of the two software packages leads to detailed mod-
els of BGP.

The remainder of this paper is organized as follows: Sec-
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tion 2 describes in detail our method in incorporating Ze-
bra in ns-2. Section 3 describes BGP++ features, validation
tests and performance measurements. Section 4 introduces
the parallel and distributed version of the simulator. Finally,
section 5 gives some conclusions and future directions in
our research.

2. Integration Methodology

Throughout the research community simulations are
used extensively to examine the behavior of various net-
work protocols and architectures. Because of their impor-
tance, their development has become part of the research.
Common characteristics sought are implementation accu-
racy, memory efficiency, and scalability. Public domain
software often provides accurate and efficient implementa-
tions of protocols. In this section we analyze how the pub-
lic domain Zebra software was modified to work with ns-2
simulator.

bgpd ripd ospfd zebra
daemon

UNIX kernel routing table

Figure 1. Zebra software modular architec-
ture

Initially, Zebra routing software is examined to deter-
mine whether its software architecture is suited to the de-
sired goal. Zebra is written in C and implements other rout-
ing protocols as well as BGP. It has a separate daemon
for each routing protocol implemented that can be run as
a stand-alone process. Another daemon, as shown in Fig-
ure 1, takes care of communications between routing dae-
mons and the kernel routing table or other routing daemons.
This scheme provides a modular architecture with indepen-
dent, well-separated implementations for each daemon. As
a result, the BGP implementation is easily identified and ex-
tracted from the software. Zebra’s bgpd implementation and
library methods form the basis on which the BGP++ simu-
lator is built. The logic of the code that implements BGP al-
gorithms is not changed. However, features intrinsic to op-
erating systems are removed or modified to meet the char-
acteristics of the simulator. The typical public-domain soft-
ware that implements networking protocols for open source

operating systems is written in C, uses the BSD socket API,
makes use of system calls, and has at least one blocking
routine. On the other hand, ns-2 is written in C++ and fol-
lows the discrete-event simulation paradigm. The following
list identifies differences between discrete-event simulation
software and corresponding open-source platform software
that are explored during the development of BGP++:

� Use of C++ compared to C

� Use of discrete event scheduling compared to process-
based scheduling algorithms

� Use of simulator TCP implementation compared to
BSD sockets

� Use of nonblocking routines compared to blocking
routines

The rest of this section elaborates on the implementa-
tion of BGP++. A fundamental requirement for the simula-
tor is to initiate multiple BGP daemons. In contrast, Zebra
software is design to run one bgpd per process. To accom-
modate this requirement we convert Zebra’s C code to C++.
This is done by creating a class named BGP that contains
most of the C code. All the C functions are turned into C++
member functions and all global variables are turned into
member variables. More sophisticated schemes for convert-
ing C code into C++ can be developed that take into ac-
count the semantics of the C code.Our approach considers
that the different parts of the Zebra’s C code are correlated
in that they constitute a bgpd. Thus, they can be incorpo-
rated into a single BGP class.

Interleaving Zebra bgpd scheduler with ns-2 sched-
uler is the second requirement. Discrete event simula-
tors use queue based schedulers. The entries of the queue
are events that are sorted in a time-stamp order. On the
other hand, system software has no typical schedul-
ing mechanism. Scheduling varies with developer’s design
from simple to arbitrarily complex. The typical network-
ing application executes code until a blocking routine
is reached, at which point the application blocks. To in-
corporate the application software in the simulator, the
application scheduler has to be modified to communi-
cate with the queue scheduler. A high-level model of the
way the interleaved scheduling works is as follows: when-
ever there is an event for the application, e.g., a start
event, the simulator gives control to the application to ex-
ecute the associated code. The application continues un-
til the first blocking routine is fetched; then, instead of
blocking, it returns control to the scheduler. The appli-
cation is given control again when the blocking routine
would unblock. Events that could unblock the applica-
tion are read events, e.g. a packet arrival; write events, e.g.
a buffer becomes writable; timer expirations and user trig-
gered events.
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Zebra scheduling is based on the select() system call. se-
lect() takes as arguments a list of file descriptors and a time-
out value. It blocks until a file descriptor changes status or
until the timeout expires. The file descriptors indicate I/O
streams, while the timeout value is set to the next timer ex-
piration time. If select() unblocks, the appropriate code is
called. Execution continues until select() is reached again
through an infinite loop.

The interleaved scheduling works as follows: at the start
event ns-2 calls the simulated BGP daemon to make re-
quired initializations. Those are a subset of the initializa-
tion in the main() function of Zebra’s bgpd. The BGP fi-
nite state machine is entered, and execution proceeds until
the blocking routine select() is reached. When this happens,
select() is not executed, instead an event for the calculated
timeout value is entered in the ns-2 scheduler before control
is returned to the simulator. If we disregard events that un-
block the simulated BGP daemon, the later will take control
as soon as the timeout expires. However, select() could un-
block before the timeout expires. For instance, Zebra bgpd
select() unblocks when there is a read or write event 1.
For this reason, the simulator has to invoke the simulated
BGP daemon upon a read or write event. In operating sys-
tems, read events occur when the TCP stream has new bytes
available. In the simulated BGP daemon, upon a packet ar-
rival, ns-2 cancels the future timeout event for this daemon
and gives control to daemon. Packet SDUs are handed to
the BGP daemon by the simulator’s underlying TCP imple-
mentation. In Zebra software, write events result from the
fact that non-blocking output routines, namely write() and
writev(), do not copy the application buffer to the kernel
output buffer immediately. Instead of this, if the kernel out-
put buffer is full, the copy operation is postponed until the
buffer becomes writable, i.e. write event. This time inter-
val is usually very small and is ignored in our BGP mod-
els.

A common simplification in network protocols modeling
is the omission of the CPU processing time. This is a valid
assumption as long as the processing time is very small.
BGP routers can exhibit long processing times especially
when their routing tables are big. Typical routing tables of
core Internet BGP routers have more than 100,000 entries.
For this reason, we implement a workload model that adds
delay representing the finite execution time. The way the
workload is modeled is that when a simulated BGP dae-
mon completes an operation, like parsing a packet that just
arrived, it picks a busy-period time value. This time value
represents the finite execution time of the operation that just
completed. The BGP daemon waits for busy-period time be-
fore executing any following operation. Also, during this

1 User interrupts are treated as read events, since user communication is
done through a telnet interface

period it does not respond to any invocations, e.g. packet
arrivals. Instead of this, all invocations are buffered and ex-
ecuted in a FIFO basis as soon as all pending operations are
completed. Each of the buffered invocations results in new
operations and busy-period values. BGP++ has two work-
load models that differ in the way they choose the busy-
period value. In the uniform workload model, the busy-
period is a uniform random variable within a user specified
range. In the time-sample model, the busy-period is calcu-
lated as the product of the CPU clock frequency and the exe-
cution cycles count. The execution cycles count is the num-
ber of CPU cycles a operation consumed. The kernel patch
described in [14] provides the required utilities to monitor
the execution cycles count.

The third step is to substitute the BSD socket API with
the corresponding TCP implementation that is provided by
the simulator. For BGP++, it is chosen to use the ns-2
FullTcp implementation. However, FullTcp does not sup-
port all features of BSD sockets. Thus, ns-2 FullTcp im-
plementation is extended to notify the application as soon
as the connection moves from SYN RCVD or SYN SENT to
ESTABLISHED and from ESTABLISHED to CLOSE WAIT.
The first two transitions are used in modeling of BSD sock-
ets non-blocking connect() and accept(), respectively. In
both cases they notify the application that the three way
hand-shake was successful. The third transition notifies the
application upon passive connection termination.

An important difference between system software and
simulation software is that the later may have multiple in-
stances of the implemented protocol running in the same
process, while the former facilitates only one instance per
process. C++ gives the programmer the capability to instan-
tiate multiple BGP daemons. However, since the original
software is not developed in C++, some of the provided util-
ities are modified to accommodate the multiple-instance re-
quirements. In particular, Zebra configuration and logging
utilities are modified to support more than one configura-
tion and logging files, respectively, per process.

The last step to introduce Zebra routing software in ns-2
simulation environment is to replace system calls with cor-
responding simulator functions and remove code associated
with unnecessary functions. For instance, bgpd supports a
telnet interface that is used to configure or query the rout-
ing daemon at run-time. This facility is removed; it is re-
placed by a similar facility that provides the simulator user
the capability to query or reconfigure the simulated rout-
ing daemons at run-time.

Implementations of simulation software are often pre-
dated by corresponding system implementations. In this
cases the utilization of the later in the development of the
former should be considered. Despite the fact that much of
the aforementioned implementation details are specific to
ns-2 and Zebra software, our experiences can provide use-
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set n1 [$ns node]
set n2 [$ns node]

$ns duplex−link $n1 $n2 1.5Mb 1ms DropTail

set r [new BgpRegistry]
set fin 400

set BGP1 [new Application/Route/Bgp]
$BGP1 register  $r
$BGP1 finish−time  $fin
$BGP1 config−file /sth/bgpd1.conf
$BGP1 attach−node $n1

set BGP2 [new Application/Route/Bgp]
$BGP2 register  $r
$BGP2 finish−time  $fin
$BGP2 config−file /sth/bgpd2.conf
$BGP2 attach−node $n2

$ns at $fin  halt

$ns run

set ns [new Simulator]

Figure 2. Sample tcl script that creates
two BGP daemons

ful guidelines in similar projects, since the high-level prob-
lems encountered remain the same.

3. The Simulator

3.1. BGP++ configuration

This section gives a high level overview of BGP++ con-
figuration and introduces some of its utilities.

The configuration of BGP++ is a two step process. First,
the simulated topology has to be configured with a ns-2 tcl
script. Then, each simulated router is configured using a
distinct configuration file. The tcl script specifies a topol-
ogy and associates BGP daemons with nodes. A sample tcl
configuration script is shown in Figure 2. To create a BGP
router it is necessary to instantiate a BGP daemon, attach it
to a node, assign a configuration file, register the daemon
and set the finish time of the simulation. The registration is
the process of inserting an entry in a global table that maps
BGP instances to IP addresses. This table is called BGP reg-
istry and is required because BGP++ uses a dual addressing
scheme, i.e. BGP routers are identified by both actual IP
addresses and ns-2 addresses. Nevertheless, ns-2 address-
ing is invisible to the user. The second step of the configu-
ration is to setup the simulated routers. Each router setup is
done in a separate file using the same syntax used to config-
ure Zebra bgpd. The configuration commands, such as those
in the sample configuration in Figure 3, or slight variations
thereof are also used by many commercial BGP implemen-
tations. The following list identifies supported RFCs.

!Local AS and local IP address
router bgp 1
bgp router−id 192.38.14.1

!Neighbors
neighbor 192.38.14.2    remote−as 2

!Local networks
network  190.0.0.0   mask 255.0.0.0
network  189.0.0.0   mask 255.0.0.0

!Enable debugging
debug bgp 
debug bgp fsm
debug bgp keepalives
debug bgp filters
debug bgp events
debug bgp updates

dump bgp all dump1.log
log file bgpd1.log

Figure 3. Sample BGP++ router configu-
ration file

� RFC 1771 A Border Gateway Protocol 4

� RFC 1965 Autonomous System Confederations for
BGP

� RFC 1997 BGP Communities Attribute

� RFC 2796 BGP Route Reflection

� RFC 2918 Route Refresh Capability for BGP-4

Finally, BGP++ provides support for run time commands.
The user can query the simulated routers using the show
command variants or can change the configuration at run
time. A tcl command provides this functionality. The tcl
command takes as arguments the BGP configuration com-
mand to be called, the calling time and the bgpd by which
the command should be executed. This utility replaces the
functionality available through Zebra telenet’s interface.

3.2. BGP++ validation and verification

In this section we discuss BGP++ validation and verifi-
cation. According to [9], validation is the process to evalu-
ate how accurate a model reflects a real-world phenomenon.
In our case, instead of a real-world phenomenon we model
BGP protocol. However, BGP models are not developed
from scratch, rather Zebra BGP implementation is used.
Thus, the validity of BGP++ is determined by the validity of
Zebra BGP implementation and the validity of our integra-
tion methodology. Zebra is a routing software that has been
used for some time by a sizable community. Also, our in-
tegration methodology replaces Zebra OS-related features
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Figure 4. Testbed topologies.

with corresponding ns-2 features. Since both ns-2 and Ze-
bra software have been widely used, we argue that BGP++
provides an accurate implementation of BGP protocol. Fur-
thermore, verification of BGP++ is required. Verification is
the process of evaluating how faithfully the implementation
of a model matches the developer’s intent [9]. For BGP++,
this definition translates to how accurately our integration
methodology was implemented. To verify BGP++ several
scenarios, ranging from simple to more complicated, are
conceived. The results are examined to determine if the pro-
tocols’ expected behavior is observed. The tests are classi-
fied in four categories: basic behavior tests, policies related
tests, logging facilities tests and advanced features tests.
The following list enumerates the successfully tested fea-
tures:

� Basic behavior tests: connection establishment, ses-
sion termination, connection reset, route distribution,
route selection algorithm.

� Policy related tests: route-maps, match set commands,
ip access-lists, ip community-lists, ip as-path access-
lists, ip prefix lists.

� Logging facilities tests: show command variants, bi-
nary dumps, debugging facilities.

� Advanced features tests: confederations, route-
reflection, capability negotiation, soft reconfiguration,
refresh capability.

Additional tests examine the behavior of BGP++ with
reference to Zebra software. For this purpose, small testbeds
of Zebra routers are set up. For each testbed a correspond-
ing simulation of the same topology, and configuration is
run. We demonstrate two experiments; the first consists of

two routers
BGP++ testbed

KEEPALIVES Sent 1008 1006
KEEPALIVES Rcvd 1008 1006
UPDATES Sent 30 30
UPDATES Rcvd 30 30

Table 1. Numbers of exchanged messages in
2-router experiment

four routers
BGP++ testbed

KEEPALIVES Sent 306 306
KEEPALIVES Rcvd 306 306
UPDATES Sent 180 180
UPDATES Rcvd 90 90

Table 2. Numbers of exchanged messages in
4-router expriment

two peering routers, Figure, while the second consists of
four peering routers connected in a star topology, Figure 4.
For each experiment we take measurements in both real and
simulation environment, over the same period, of the num-
ber of exchanged messages at router 1. The results on Ta-
bles 1 and 2 show that there is almost a perfect match be-
tween BGP++ behavior and Zebra behavior. The small dif-
ference in the keepalives count of the first experiment is due
to BGP jittered timers and coarse-grained timing granular-
ity of testbed experiments. The results illustrate that BGP++
effectively regenerates the behavior observed in the testbed
environment.

3.3. Performance measurements

This subsection discusses BGP++ performance in terms
of memory utilization. Extensive memory requirements is
the primary limiting factor in large scale simulations. To
measure BGP++ memory utilization a parametrized simula-
tion scenario is created. The scenario is as follows: n routers
are interconnected in a full mesh topology; each router is a
separate AS that originates p prefixes. The routers establish
sessions and exchange their configured prefixes. Thus, after
steady-state is reached each router should have p � n pre-
fixes in its routing table. Figure 5 illustrates how memory
utilization increases with the size of the mesh and the num-
ber of configured prefixes. It should be noted that the main
memory consumption comes from the represntation of the
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routing tables. Increasing the number of perfixes, i.e. the
size of the routing tables, limits the total size of the topol-
ogy to few tenths of routers. In contrast, in the absence of
large routing tables, simulations of few thousands of routers
could be effectively performed.
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Figure 5. BGP++ memory utilization, when
simulating a full mesh topology, versus mesh
size and number of originated prefixes.

4. Parallel and Distributed BGP++

A major problem of simulation research is that conven-
tional simulators exhaust the resources available in typical
workstations resulting in simulations of average sized net-
works that lack the complexity of the simulated system. Re-
sults based on this type of simulations are usually not in-
dicative of Internet wide trends. For this reason, there is
a strong need for accurate large-scale simulations. Parallel
and distributed simulation techniques have been exploited,
namely PDNS [16] and SSFNet [3, 4] , to yield network
simulators that achieve simulations of substantial size.

BGP++ provides support for parallel and distributed sim-
ulations through the functionality provided by the PDNS
and the RTIKIT [5] toolkit. PDNS is an extension of ns-2
simulator that allows a distributed simulation on a loosely
coupled network of workstations. It makes minimal mod-
ifications in ns-2 software. The RTIKIT provides support
for global virtual time management, group data commu-
nications, and message buffer management. BGP++ uses
PDNS and RTIKIT to distribute simulations on multiple
machines. This feature allows to scale the size of the sim-
ulations, overwhelming the restrictions imposed by limited
physical memory.

5. Conclusions

This work introduces a new simulation implementation
of BGP for ns-2. BGP++ is a detailed implementation of the
protocol that provides the user the capability to configure
the simulated routers using the router configuration syntax
used by Zebra bgpd. BGP++ design inherits credibility and
reliability from the original software while requiring mod-
erate development effort. The same approach can be used in
similar projects to turn public domain software into simula-
tion software.

In the future we consider extending the capabilities of
BGP++ by supporting the latest version of Zebra software.
Also, several memory reduction techniques will be con-
sidered to improve the scalability of the software. Seeing
that the main memory consumption results from the sim-
ulation of routing tables, we intend to emphasize on tech-
niques that reduce the size of the simulated routing tables.
Finally, we intend to investigate BGP stability and scalabil-
ity using BGP++, and examine how proposed BGP modifi-
cations affect interdomain routing.
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