

Edinburgh Research Explorer

Derivation of passage-time densities in PEPA models using ipc:
the imperial PEPA compiler
Citation for published version:
Bradley, JT, Dingle, NJ, Gilmore, ST & Knottenbelt, WJ 2003, Derivation of passage-time densities in PEPA
models using ipc: the imperial PEPA compiler. in Modeling, Analysis and Simulation of Computer
Telecommunications Systems, 2003. MASCOTS 2003. 11th IEEE/ACM International Symposium on.
Institute of Electrical and Electronics Engineers (IEEE), pp. 344-351.
https://doi.org/10.1109/MASCOT.2003.1240679

Digital Object Identifier (DOI):
10.1109/MASCOT.2003.1240679

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003. 11th
IEEE/ACM International Symposium on

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1109/MASCOT.2003.1240679
https://doi.org/10.1109/MASCOT.2003.1240679
https://www.research.ed.ac.uk/en/publications/1c2c8d31-48eb-47fa-a240-384ca66ae54d

Derivation of Passage-time Densities in PEPA Models using ipc:
the Imperial PEPA Compiler

Jeremy T. Bradley� Nicholas J. Dingle� Stephen T. Gilmore� William J. Knottenbelt�

� Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, United Kingdom.

�jb,njd200,wjk�@doc.ic.ac.uk
� Laboratory for the Foundations of Computer Science,

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
stg@dcs.ed.ac.uk

Abstract

We present a technique for defining and extract-
ing passage-time densities from high-level stochastic pro-
cess algebra models. Our high-level formalism is PEPA, a
popular Markovian process algebra for expressing com-
positional performance models. We introduce ipc, a tool
which can process PEPA-specified passage-time densi-
ties and models, by compiling the PEPA model and pas-
sage specification into the DNAmaca formalism. DNAmaca
is an established modelling language for the low level spec-
ification of Markov and semi-Markov chains, which can
analyse models with up to ��� million states. We pro-
vide performance results for ipc/DNAmaca and compar-
isons with another PEPA tool, PRISM. Finally, we gener-
ate passage-time densities and quantiles for a case study of
a high-availability web cluster.

1. Introduction

Passage-time densities are key metrics for performance
modellers of distributed computer and communication sys-
tems. Indeed, Service Level Agreements (SLAs) often use
passage-time quantiles as contractual obligations, e.g. 98%
of text messages must be delivered within 2.5 seconds.
However, the ability to derive these passage-times formally
and from a high-level model is only now becoming practi-
cal, due to the fact that passage-time calculations in large
systems require correspondingly large amounts of compu-
tational effort. In this paper, we present ipc, a tool which
can generate passage-times over one such high-level mod-
elling paradigm, PEPA.

PEPA [16, 17] is a popular Markovian process alge-
bra for specifying compositional performance models.
To provide a sufficiently powerful analysis capabil-
ity for our PEPA models, we will make use of DNA-

maca [19], a tool for the numerical analysis of low-level
Markov and, more recently, semi-Markov [3] specifi-
cations. DNAmaca originally specialised in perform-
ing large-system steady-state analysis [20, 21]. Subse-
quently, the capacity to perform transient and passage-time
analysis on systems with large state-spaces has been incor-
porated into DNAmaca as well [2, 9, 15].

In this paper, we present ipc, the Imperial PEPA com-
piler, which compiles system-level passage-time require-
ments, along with the associated PEPA model, to a DNA-
maca specification. ipc automatically derives and compiles
in stochastic probes, which are small fragments of process
algebra that specify the start and end points of passage times
in PEPA models. ipc does not unfold the global state space,
instead using the compositional nature of the PEPA model
to construct an equivalent DNAmaca model. In this way, ipc
performs the compilation in linear time, with respect to the
size of the original PEPA description.

ipc is meant to complement current PEPA tools [7, 8, 12,
22], which already support steady-state and transient mea-
sures and rewards. As such, we will specifically focus on
the passage-time aspect of PEPA model analysis. The rest
of this paper is organised as follows: we introduce PEPA in
Section 2, the current PEPA tool-base in Section 3 and the
DNAmaca modelling language in Section 4. The ipc tool ar-
chitecture is described in Section 5. In Section 6, we present
a PEPA case study of a high-availability web server. Sec-
tion 7 compares the performance of ipc/DNAmaca with the
PRISM tool. Finally, in Section 8, we describe the deriva-
tion of passage-time densities and quantiles from our PEPA
case study using stochastic probes.

2. PEPA

PEPA is a parsimonious stochastic process algebra that can
describe compositional stochastic models. These models
consist of components whose actions incorporate random

ttotterd
Typewritten Text

ttotterd
Typewritten Text
Bradley, J. T., Dingle, N. J., Gilmore, S. T., & Knottenbelt, W. J. (2003). Derivation of passage-time densities in PEPA models using ipc: the imperial PEPA compiler. In Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003. 11th IEEE/ACM International Symposium on. (pp. 344-351). IEEE. 10.1109/MASCOT.2003.1240679

exponential delays. The syntax of a PEPA component, � , is
represented by:

� ��� ��� ���� � � � � ��
�
� ��� � (1)

��� ���� is a prefix operation. It represents a process which
does an action, �, and then becomes a new process, � .
The time taken to perform � is described by an expo-
nentially distributed random variable with parameter
�. The rate parameter may also take a �-value, which
makes the action passive in a cooperation (see below).

�� � �� is a choice operation. A race is entered into be-
tween components �� and ��. If �� evolves first then
any behaviour of �� is discarded and vice-versa.

�� ��
�
�� is the cooperation operator.�� and �� run in par-

allel and synchronise over the set of actions in the set
	. If �� is to evolve with an action � � 	, then it
must first wait for �� to reach a point where it is also
capable of producing an �-action. In an active coop-
eration, the two components then jointly produce an
�-action with a rate that reflects the slower of the two
components (usually the minimum of the two individ-
ual �-rates). In a passive cooperation, where ��, say,
can evolve with an �����-transition, the joint �-action
inherits its rate from the �� component alone.

��� is a hiding operator where actions in the set � that
emanate from the component � are rewritten as silent

 actions (with the same appropriate delays). The ac-
tions in � can no longer be used in cooperation with
other components.

� is a constant label and allows, amongst other things, re-
cursive definitions to be constructed.

3. Survey of PEPA Tools

There are a number of methods and tools available for solv-
ing PEPA models. One way in which a PEPA model can
be solved is to use the PEPA Workbench [12] to generate
the state space of the model and the infinitesimal generator
matrix of the underlying Markov chain. The PEPA Work-
bench writes this matrix in the concrete syntax of the Maple
computer algebra system [23] so this can be solved con-
veniently in the high-level mathematical computing envi-
ronment which Maple offers. This method gives us an op-
tion which is not supported by any of the other PEPA tools,
which is to solve the model symbolically in terms of the
symbolic rates used in the model, instead of solving it only
for a particular set of concrete values of these rates. Unfor-
tunately this facility is practical only for very small models.
For models of even moderate size it is necessary to use con-
crete values for the rates.

Other PEPA tools now encompass a number of well-
engineered direct solution methods. The Möbius multi-
formalism modelling framework supports PEPA as one of
its input languages [8]. Möbius provides efficient sparse
matrix-based implementations of steady-state and tran-
sient solvers as well as a simulator.

A different approach to the representation of the infinitesi-
mal generator matrix of the CTMC is taken by the PRISM
probabilistic symbolic model checker [22]. PRISM stores
the matrix as a multi-terminal binary decision diagram
(MTBDD) which offers compact storage for state spaces
of significant size. PRISM supports PEPA as one of its
input languages and offers a range of numerical solution
procedures: Power, Jacobi, forwards and backwards Gauss-
Seidel, JOR and forwards and backwards SOR.

Our contribution here is to allow additional solution pro-
cedures and passage-time analysis capabilities to be ac-
cessed via ipc, a tool written in the Haskell lazy func-
tional programming language [18]. Its purpose is to com-
pile a PEPA model into the input language of Knotten-
belt’s DNAmaca analyser [19]. The possible steady-state
solution methods offered by DNAmaca include direct meth-
ods (Gaussian Elimination, Grassmann), classical iterative
methods (Gauss-Seidel, fixed SOR, dynamic SOR), Krylov
subspace techniques (BiCG, CGNR, CGS, BiCGSTAB,
BiCGSTAB2, TFQMR) and decomposition-based methods
(AI (Aggregation-Isolation), AIR).

4. The DNAmaca Modelling Formalism

DNAmaca is a modelling language for Markov and semi-
Markov chains. As many previous publications already ex-
ist [2, 3, 9, 15, 19, 20, 21] describing the mathematical
foundation for the calculation of steady-state, transient and
passage-time distributions in such models, we will not dwell
on the complete details here; rather in Section 4.1, we will
briefly describe the theory behind the uniformization tech-
nique [14, 26], used by the HYDRA release [10, 11] of
DNAmaca to calculate passage-time quantities in Markov
models.

The DNAmaca interface language, to which ipc compiles, is
described in [19]. Section 8 will use this to describe the con-
struction of the stochastic probe, used to measure passage-
time quantities in a PEPA model.

4.1. Passage-time Calculation

PEPA models reduce to an underlying continuous-time
Markov chain (CTMC), so we consider an � state CTMC

with � � � generator matrix � �
�� . Solving the lin-
ear system �� � � subject to

�
�� � � gives us the

steady state vector, �. We calculate passage-time den-
sities from many source states �� to many target states
�� by means of an efficient uniformization-based analy-
sis.

Uniformization [14, 26] transforms a CTMC into one in
which all states have the same mean holding time ��
, by al-
lowing invisible transitions from a state to itself. After nor-
malisation of the generator matrix rows with an associated
Poisson process of rate
, we obtain a one-step DTMC tran-
sition matrix � , given by:

� � ��
 � � (2)

where
 � �	
� �
��� (to ensure that the DTMC is aperi-
odic).

While uniformization is normally used for transient analy-
sis, it can also be employed for the calculation of response-
time densities and quantiles [24, 25]. We add an extra, ab-
sorbing state to our uniformized chain, which is the sole
successor state for all target states (thus ensuring we cal-
culate the first passage-time density). We denote by � �

the one-step transition matrix of the modified, uniformized
chain. Remembering that the time taken to traverse a path
with � hops in this chain will have an Erlang distribution
with parameters � and
, the density of the time taken to
pass from a set of source states�� into a set of target states ��
is given by:

�������� �
��
���

���������

��� ���

�
����

�
���
� (3)

where
������ � ����� � for � � �

with

�
���
� �

�
� for � ����

���
�

���� �� for � ���
(4)

and in which � is any non-zero solution to � � �� . The
corresponding passage-time cumulative distribution func-
tion is given by:

�������� �

��
���

��
�
�
�� ����

����
���

�
���

��

��
����

�
���
�

	

� � (5)

Truncation is employed to approximate the infinite sum in
Eq. (3) (and Eq. (5)), terminating the calculation when the
Erlang term drops below a specified threshold value. Con-
currently, when the convergence criterion

�������� � �������
���������

� � (6)

is met, for given tolerance �, the steady state probabilities
of � � are considered to have been obtained with sufficient
accuracy and no further multiplications with � � are per-
formed.

5. ipc Tool Architecture

ipc performs the translation from PEPA to a stochastic Petri
net formalism [27], and also incorporates any extra logic
necessary for expressing the passage-time or steady-state
query (see Section 8).

The ipc compiler consists of:

1. .pepa file parser

2. PEPA normal form translator

3. component state space explorer

4. DNAmaca component linker and .mod file generator

5. PEPA-passage specifier

6. command line parser for passage-time and steady-state
queries

The .pepa file format allows, for instance, arbitrary num-
bers of sequential prefixes and also arbitrary numbers of
summation and cooperation operations attributed to a sin-
gle constant label. The normal form in question strictly en-
forces the binary summation and cooperation, insisting on
constant labels after each operation; it therefore also has to
take care of the unique labelling of all components states.

The component linker takes the DNAmaca description of
the individual PEPA components and creates shared transi-
tions with appropriate preconditions and actions to repre-
sent the cooperation over shared actions.

The PEPA-passage specifier augments the input PEPA
model with process algebra probes and adds the requi-
site passage specification command to the DNAmaca file;
this is explained in more detail in Section 8.

6. Case study: High-availability Web Server

In this section, we present the description and analysis of a
PEPA model which we will use:

� to compare PEPA tool chains ipc/DNAmaca and
PRISM in generating steady state solutions

� to demonstrate ipc/DNAmaca’s capability to automate
the generation of passage-time densities

Our model is of a high-availability web server. A typical
application scenario for such a system is a web-based cur-
rent events news feed which must meet strict quality-of-
service requirements on availability and response-time. Re-
gardless of whether the underlying technology is web-based
or not, such systems require careful performance engineer-
ing to achieve peak efficiency [4]. In part, the strict QoS
requirements are met by skewing the prioritisation for fast
reads over writes so that writes are buffered and only pro-
cessed at times of low read load. The consequence of this is
that there is no guarantee that a reader will see the latest ver-
sion of the site although high availability is maintained.

The system is built of a cluster of servers, each of which
can fail independently and be repaired independently. If all
of the servers fail then a special recovery mechanism can
restart them all. We now proceed to describe the compo-
nents of the system.

6.1. The server model

The server receives read requests each of which incurs a
read lookup before the server is available to serve the next
request (states ������ and ������ ���� below). A success-
ful write request requires that none of the servers are in
the process of performing a read access, so that all servers
can be simultaneously updated (therefore no � ��	
� ac-
tion is allowed in the ������ ���� state). The server may
fail and while failed (the ������ ��	� state) read requests
are not intercepted (no � ���� ��
���
 activities) whereas
write requests (� ��	
�) are absorbed without action. It is
assumed that server resynchronisation occurs during recov-
ery. The write costs are different in the functioning and fail-
ure states (the costs are quantified by variables ��� and �����
respectively). Failed servers may be repaired individually
(� ��	� �������) or collectively (� ��	� ������� ���).

������
def
� �� ���� ��
���
 ���������� ����

� �� ��	� � ��� �������� ��	�

� �� ��	
�� ��� ��������

������ ����
def
� �� ���� ������� ���� ��������

������ ��	�
def
� �� ��	� ������� � ���� ��������

� �� ��	� ������� ��� ����������
� �� ��	
�� ����� �������� ��	�

6.2. Server groups

The recovery of the servers is co-ordinated by a server
group manager. The responsibility of this component is to
witness server failures and recoveries from failures. When
the server number, 	, is reached and all servers have failed,

the server group is restarted with all failures recovered si-
multaneously (as a result of a high-priority repair).

������ ������
def
� �� ��	� ���������� ������

������ ������
def
� �� ��	� ���������� ��������
� �� ��	� ������� ���

������� �������� � � � � � 	

������ ������
def
� �� ��	� ������� ��� � ������� �

������� ������

Taking, for example, 	 � �, the process instantiation ex-
pression for the server cluster is as shown below:

�������
def
� ������� ��

�
������ ��

�
������ ��

�
�������

��
��

������ ������

where 	 �
� ��	
� � � ��	� ������� ���� and 	� � 	 �

� ��	� ��������.

6.3. Buffered writes

The write buffer manages the promotion of buffered writes
to server write actions. To ameliorate the relative infre-
quency of all the servers being available simultaneously to
perform an � ��	
� , write requests are necessarily buffered
until the buffer capacity,�, is reached. To take advantage of
a � ��	
� action when it occurs, the entire write buffer is ex-
ecuted and emptied.

��	
� ������
def
� �� ��	
�������	
� ������

��	
� ����� �
def
� �� ��	
�������	
� ����� ���
� �� ��	
� ������	
� ������

� � � � � �

��	
� �����	
def
� �� ��	
� ������	
� ������

6.4. Web authors and browsers

Web authors (writers) issue web content to the system. Web
browsers are the readers in our system. It is assumed that
there are multiple writers and, comparatively, a much larger
number of web browsers (readers). This accounts for the
prioritisation of read access over writes.

We have a population of � writes and � reads in a given
time period. After these have all been processed, all the
writers and readers are simultaneously reset for the next
time period. In this way, we maintain an irreducible sys-
tem and we can easily measure when a fixed number of
reads and writes have occurred (by passively observing
�� ����
 ��� actions), without having to set up further ac-
tion counting-process components (e.g. ������ �����).

Writers may perform only buffered writes. They have no ca-
pacity to perform a server write directly.

��	
��
def
� �� ��	
� � ����

����	
�� ��	

��	
�� ��	

def
� ��� ����
 ��� ������	
��

With three writers (� �
) the process instantiation ex-
pression for the writers is as shown below:

��	
���
def
� ��	
�� ��

�
��	
�� ��

�
��	
��

where
 �
�� ����
 ����.

Readers send read requests and then await the response
from the server.

������
def
� �� ���� ��
���
 � ����� �

��� ���� ���������������� ����

������ ����
def
� ��� ����
 ��� ����������

If we model three readers (� �
), for instance, we get:

�������
def
� ������ ��

�
������ ��

�
������

where � �
�� ����
 ����. Readers and writers are reset
by the dedicated component:

�� ����

def
� ��� ����
 ��� � ����

���� ����

6.5. The system equation

The system is built compositionally by composing the be-
haviours of the simpler component to form the behaviour of
the model as a whole:

���	������

def
� ��	
��� ��

��� �	�	
 ����
�������

��
��� �	�	
 ����

�� ����

��� ����
��
def
� ������� ��

�� ���
	�
��	
� ������

���
��
def
� ���	������
 ��

�
��� ����
��

where� �
� ��	
� � � ���� ��
���
 � � ���� �������.

7. Tool Comparisons

In this section, we present a comparison of the use of the
ipc/DNAmaca tool with the use of the PRISM solver. Our
running example is the high-availability web server model
presented in the previous section. This model is config-
urable by varying the numbers of servers, 	, buffer capac-
ity, �, number of readers, �, and writers, � .

Tab. 1 presents the results of our model-building and so-
lution. We varied the parameters 	���� and � as indi-
cated in column 1 in the table. The state space of the model
is given in column 2. Timings are given in column 3 and
column 4. All measurements were made on a 2.0GHz Pen-
tium IV processor machine with 1Gb of memory, running
Red Hat Linux 7.2. The GNU time command version 1.7
was used to obtain the measurement data. The time reported
is elapsed real (wall clock) time used by the process, mea-
sured in seconds.

We used PRISM Version 1.3.1 and DNAmaca version 0.95.
For both tools the problem is to solve the model for its equi-
librium probability distribution. We used the same accuracy
for the numerical precision of the results and used a range
of solution options for both tools. The PRISM tool has three
solution engines (MTBDD, Sparse and Hybrid) and seven
numerical procedures so there are twenty-one possible com-
binations of these3. In the table below, we report the best
time recorded for all combinations of solver and engine.
The times taken by ipc and the equivalent PEPA compiler
of the PRISM tool are not included in the run-times pre-
sented. The run-times reported reflect the processing time
for the native formats of the tools only. These results show

Parameters States PRISM DNAmaca
	,�,�,� run-time run-time
3, 3, 2, 2 1,376 2.02 3.12
4, 3, 3, 3 21,248 7.55 6.70
5, 4, 3, 3 69,440 21.12 17.73
6, 5, 3, 3 211,968 70.62 58.14
6, 5, 4, 4 1,369,728 303.03 381.94

Tab. 1. Run-time measurements for the web
server model

that DNAmaca is competitive with PRISM on solving PEPA
models of small to moderate size. Models with larger state
spaces can be solved faster with parallel and distributed ver-
sions of DNAmaca, which are also available [11, 15, 21].

8. Extracting Passage-time Densities with ipc

In this section, we make use of the \passage pragma in
DNAmaca to extract passage-time quantities from our web-
server case study. The version of DNAmaca which extracts

3 In PRISM version 1.3.1 not all of the solution procedures are imple-
mented for the MTBDD engine so the number of possibilities is less
than 21.

passage-times from purely Markov systems (release version
HYDRA) uses uniformization to calculate both densities
and cumulative distributions (as described in Section 4).

8.1. Automated PEPA Passage-time Specification

To ease the description of passage-times in DNAmaca, ipc
provides us with a method to specify passages which re-
lates directly to the high-level PEPA model. Given start ac-
tions and stop actions for the passage, ipc first adds a sim-
ple PEPA fragment to the model, which synchronises with
the system and passively observes the occurrence of these
key actions. We call these fragments stochastic probes [1],
as they effectively measure the system for the required pas-
sage. Probes are similar in nature to the testing component
concept used in [13], which were used to aid transient anal-
ysis of PEPA models. In our context, stochastic probes are
specified with the set of starting actions, �
, and the set of
terminating actions, �� , and take the general form:

������
def
�

�
����

�� ���������� ���

�
�

�������

�� ����������

������ ���
def
�

�
�������

�� ���������� ���

�
�
����

�� ����������

The probe, initially in state������ , waits for any one of the
start actions � � �
 before moving to state ������ ���. In
waiting for a start action, it must absorb any stop actions it
comes across without changing state. If any of the start ac-
tions also appears in the stop action set, �� , they are treated
as start actions first before being treated as stop actions in
the state ������ ���. A corresponding strategy is used for
stop and start actions in the ������ ��� state. The new
system is created from the synchronisation of the old sys-
tem with the probe as follows:

���
�� � def
� ���
�� ��

�����
������

Now, on seeing the probe first enter state ������ ���, the
passage-time measure is started and on the next occurrence
of state, ������ , the measure is stopped. To encode this,
ipc automatically adds the following passage measurement
to the DNAmaca .mod file:

\passage {
\sourcecondition{ (ProbeX_run > 0) }
\targetcondition{ (ProbeX > 0) }

}

Here ProbeX_run and ProbeX are variables which en-
code the relevant state in the underlying DNAmaca Petri net
model. If there are many underlying source states to a pas-
sage, as there often will be, then the steady-state distribution
is used to weight the different possible passages, to give an
overall passage distribution at equilibrium [15].

8.2. Examples

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4
P

ro
ba

bi
lit

y
de

ns
ity

, p
Time, t

Passage 1: average passage-time density for ProbeA measure

Fig. 1. Average passage-time density for the
time taken to commit a write to the servers
from the moment that it is buffered. (= 5, �
= 4, � = 3, � = 3: 69,440 states)

Fig. 1 shows the passage-time density representing the time
taken for a write action to actually take place in the web
server after it is first added to the write buffer. To achieve
this ipc uses the PEPA fragment, ������, which looks for
a � ��	
� action to signify a write update being placed into
the write buffer. The fragment then stops measuring, on see-
ing the next � ��	
� action which will represent the write
buffer being flushed and the initial buffer write being com-
mitted.

������
def
� �� ��	
� ���������� ���

������ ���
def
� �� ��	
� ���������� ���

� �� ��	
�����������

���
���
def
� ���
�� ��

�� ���
	�� ���
	�
������

Fig. 2 represents the passage-time density between succes-
sive �� ����
 ��� actions; this is the time taken to complete
an entire cycle of � reads and � writes. It is measured us-

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

de
ns

ity
, p

Time, t

Passage 2: passage-time density for ProbeB measure

Fig. 2. Average passage-time density for �
reads and � writes. (= 5, � = 4, � = 3, �
= 3: 69,440 states)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y,

 p

Time, t

Passage 2: cumulative passage-time for ProbeB measure
96.9% quantile

Fig. 3. Average cumulative passage-time dis-
tribution for � reads and � writes and quan-
tile measure. (= 5, � = 4, � = 3, � = 3: 69,440
states)

ing the PEPA fragment:

������
def
� ��� ����
 ��� ���������� ���

������ ���
def
� ��� ����
 ��� ����������

���
���
def
� ���
�� ��

��� �	�	
 ����
������

Fig. 3 displays the equivalent measure in cumulative dis-
tribution form (an option in the DNAmaca passage syn-
tax). From the cumulative distribution, we can derive useful

quality-of-service or quantile information, such as, the sys-
tem will complete � reads and � writes in 21 time units,
96.9% of the time (also shown in Fig. 3).

9. Conclusion

In this paper, we have introduced the ipc tool as a means
of compiling PEPA models into DNAmaca specifications
and thereby access the rich passage-time analysis and large
state-space capability that DNAmaca has to offer.

The main thrust of the paper has been to show how ipc
automatically constructs PEPA probes to specify passages
across process algebra models. These can then be passed to
DNAmaca to provide the modeller with passage-time den-
sities, cumulative distributions and passage-time quantiles.

We have also demonstrated that the ipc/DNAmaca tool
chain compares favourably to current tool technologies, as
used by PRISM, for the steady-state analysis of large PEPA
models.

As future developments and to provide further analysis pos-
sibilities, we are looking to using ipc to compile full PML

(Probabilistic Modal Logic for PEPA models [5, 6]) specifi-
cations into DNAmaca, as an alternative way of expressing
passage start and termination points.

Acknowledgements

Stephen Gilmore is supported by the DEGAS (Design Envi-
ronments for Global ApplicationS) project IST-2001-32072
funded by the FET Proactive Initiative on Global Comput-
ing.

References

[1] J. T. Bradley. Towards Reliable Modelling with Stochastic
Process Algebras. PhD thesis, Department of Computer Sci-
ence, University of Bristol, Bristol BS8 1UB, UK, October
1999.

[2] J. T. Bradley, N. J. Dingle, P. G. Harrison, and W. J. Knot-
tenbelt. Distributed computation of passage time quantiles
and transient state distributions in large semi-Markov mod-
els. In Performance Modelling, Evaluation and Optimiza-
tion of Parallel and Distributed Systems, Nice, April 2003.
IEEE Computer Society Press.

[3] J. T. Bradley, N. J. Dingle, W. J. Knottenbelt, and P. G.
Harrison. Performance queries on semi-Markov stochastic
Petri nets with an extended Continuous Stochastic Logic. In
PNPM’03, Proceedings of Petri Nets and Performance Mod-
els, 2003. (To appear).

[4] A. Carmona, L. Domingo, R. Macau, R. Puigjaner, and
F. Rojo. Performance experiences of the Barcelona Olympic
games computer system. In G. Haring and G. Kotsis, ed-
itors, Computer Performance Evaluation, Modeling Tech-
niques and Tools, volume 794 of Lecture Notes in Computer
Science, pages 52–75. Springer, 1994.

[5] G. Clark. Formalising the specification of rewards with
PEPA. In M. Ribaudo, editor, Process Algebra and Perfor-
mance Modelling Workshop, pages 139–160. CLUT, Torino,
July 1996.

[6] G. Clark, S. Gilmore, J. Hillston, and M. Ribaudo. Exploit-
ing modal logic to express performance measures. In B. R.
Haverkort, H. C. Bohnenkamp, and C. U. Smith, editors,
TOOLS 2000, Proceedings of 11th Int. Conference on Com-
puter Performance Evaluation: Modelling Techniques and
Tools, volume 1601 of Lecture Notes in Computer Science,
pages 247–261, Schaumburg, IL, March 2000. Springer-
Verlag.

[7] G. Clark, S. Gilmore, J. Hillston, and N. Thomas. Expe-
riences with the PEPA performance modelling tools. In
UKPEW’98, Proceedings of the 14th UK Performance En-
gineering Workshop, Edinburgh, July 1998.

[8] G. Clark and W. Sanders. Implementing a stochastic pro-
cess algebra within the Möbius modeling framework. In
L. de Alfaro and S. Gilmore, editors, Proceedings of the first
joint PAPM-PROBMIV Workshop, volume 2165 of Lecture
Notes in Computer Science, pages 200–215, Aachen, Ger-
many, Sept. 2001. Springer-Verlag.

[9] N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt. Response
time densities in Generalised Stochastic Petri Net models. In
Proceedings of the 3rd International Workshop on Software
and Performance (WOSP’2002), pages 46–54, Rome, July
2002.

[10] N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt. Uni-
formization and hypergraph partitioning for the distributed
computation of response time densities in very large Markov
models. Submitted to the Journal of Parallel and Distributed
Computing, 2002.

[11] N. J. Dingle, W. J. Knottenbelt, and P. G. Harrison. HY-
DRA: HYpergraph-based Distributed Response-time Anal-
yser. In Proceedings of the 2003 International Conference
on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA’03), Las Vegas, NV, June 2003.

[12] S. Gilmore and J. Hillston. The PEPA workbench: A tool
to support a process algebra-based approach to performance
modelling. In G. Haring and G. Kotsis, editors, Proceed-
ings of the 7th International Conference on Modelling Tech-
niques and Tools for Computer Performance Evaluation, vol-
ume 794 of Lecture Notes in Computer Science, pages 353–
368. Springer-Verlag, Vienna, May 1994.

[13] S. Gilmore and J. Hillston. Feature interaction in PEPA. In
C. Priami, editor, Process Algebra and Performance Mod-
elling Workshop, pages 17–26. Università Degli Studi di
Verona, Nice, September 1998.

[14] W. Grassman. Means and variances of time averages in
Markovian environments. European Journal of Operational
Research, 31(1):132–139, 1987.

[15] P. G. Harrison and W. J. Knottenbelt. Passage-time distribu-
tions in large Markov chains. In M. Martonosi and E. d. S.
e Silva, editors, Proceedings of ACM SIGMETRICS 2002,
pages 77–85, Marina Del Rey, USA, June 2002.

[16] J. Hillston. Compositional Markovian modelling using a pro-
cess algebra. In Proceedings of the 2nd International Work-
shop on Numerical Solution of Markov Chains. Kluwer Aca-
demic Press, Raleigh, January 1995.

[17] J. Hillston. A Compositional Approach to Performance Mod-
elling, volume 12 of Distinguished Dissertations in Com-
puter Science. Cambridge University Press, 1996. ISBN
0 521 57189 8.

[18] S. P. Jones, editor. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

[19] W. J. Knottenbelt. Generalised Markovian analysis of timed
transitions systems. MSc thesis, University of Cape Town,
South Africa, July 1996.

[20] W. J. Knottenbelt. Parallel Performance Analysis of Large
Markov Models. PhD thesis, Imperial College, London,
United Kingdom, February 2000.

[21] W. J. Knottenbelt and P. G. Harrison. Distributed disk-based
solution techniques for large Markov models. In NSMC’99,
Proceedings of the 3rd Intl. Conference on the Numerical So-
lution of Markov Chains, pages 58–75, Zaragoza, September
1999.

[22] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic
symbolic model checking with PRISM: A hybrid approach.
In J.-P. Katoen and P. Stevens, editors, Proc. 8th Interna-
tional Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’02), volume 2280 of
LNCS, pages 52–66. Springer, 2002.

[23] MapleSoft Corporation. Maple computer algebra system.
Web site, Apr. 2003. http://www.maplesoft.com/.

[24] B. Melamed and M. Yadin. Randomization procedures in the
computation of cumulative-time distributions over discrete
state Markov processes. Operations Research, 32(4):926–
944, July–August 1984.

[25] J. K. Muppala and K. S. Trivedi. Numerical transient analy-
sis of finite Markovian queueing systems. In U. N. Bhat and
I. V. Basawa, editors, Queueing and Related Models, pages
262–284. Oxford University Press, 1992.

[26] A. Reibman and K. Trivedi. Numerical transient analysis
of Markov models. Computers and Operations Research,
15(1):19–36, 1988.

[27] M. Ribaudo. Stochastic Petri net semantics for stochastic
process algebras. In PNPM’95, Proceedings of 6th Int. Work-
shop on Petri Nets and Performance Models, pages 148–157,
Durham, North Carolina, October 1995.

