
A Computational Complexity-Aware Model for Performance Analysis of
Software Servers

Vipul Mathur Varsha Apte
Department of Computer Science and Engineering

Indian Institute of Technology - Bombay
Powai, Mumbai, Maharashtra 400 076, India

{vipul,varsha}@cse.iitb.ac.in

Abstract

Queueing models are routinely used to analyze the per-
formance of software systems. However, contrary to com-
mon assumptions, the time that a software server takes to
complete jobs may depend on the total number of active
sessions in the server. In this paper, we present a queueing
model that explicitly takes into account the time, taken by al-
gorithms in the server, that varies with the user population.
The model analytically predicts response time and “satura-
tion number” of such systems. We validate our model with
simulation and further demonstrate its usefulness by sug-
gesting a heuristic technique to “discover” the complexity
of algorithms in server software, solely from response time
measurement. We applied the discovery technique to a Web-
server test-bed, and found that we can identify the asymp-
totic behavior of processing time as a function of the user
population with a fair amount of accuracy. The results show
that this promises to be one of the many “black-box analy-
sis” techniques, often found necessary in the real world.

1. Introduction

The phenomenal growth of the Internet and the ubiqui-
tous availability of the Web-browser on users’ workstations
has made Web-servers the overwhelming choice for the
front-end “presentation server” for on-line services. Over
the last decade not only were innovative services offered
through the Web, but many already existing services be-
came “Web-enabled”. Thus a Web-server became their ser-
vice access point, and a Web-browser, the client at the user
end. Everything from telephone directories, e-mail, to air-
line reservations, shopping, and financial transactions are
now done “on the Web”.

Since software servers (with Web-servers as a front-end)
are now accessed directly by an end-customer, the perfor-
mance of such servers has assumed increased importance.

User-perceived measures such as response time must meet
customer expectation. Performance analysis techniques of
measurement and/or modeling therefore need to be applied
to the software systems [1]. Hence queueing models are of-
ten used to model software performance [8].

Queueing theory, was however, developed in the context
of telecommunications and was later widely employed for
modeling data networks. For it to be used in the context of
software, however, several challenges had to be addressed.
E.g., a major challenge of modeling the interdependencies
between software as well as hardware resources has been
addressed thoroughly using layered approaches [5, 9].

In this paper, we address a specific behavior of software
servers that is different from telecommunication links: the
fact that service time (i.e. request processing time) depends
on the algorithms that are used in the software. Software
servers often build data structures, whose size changes with
the number of active sessions. As the size of the data struc-
ture increases, so does the request processing time. We il-
lustrate this with an example below.

1.1. Session-oriented Web-services

In a typical Web-based transaction system, customers
visit a website and establish their identity with the system
by “logging in” (authentication). After authentication, the
customer is able to do transactions in the current session
without explicitly authenticating every time. Since HTTP
(Hyper Text Transfer Protocol) is inherently a stateless pro-
tocol, to enable this, state information is explicitly main-
tained by the server. Thus a client, after being authenti-
cated, gets a “session identifier” and then passes it to the
server with each subsequent request.This enables the server
to identify the customer who is making the request and pro-
vide results accordingly.

After a client has received a reply to its request, the
client processes the reply at its own end; i.e. “thinks”. The
server maintains the session identifiers and associated data

for the clients even during the thinking phase.This session-
information is removed only when a client is logged out ex-
plicitly or the session expires. Each time that the server re-
ceives a request, the application has to search for the session
identifier in the list of users logged into the system. This
search may involve a linear (O(N), where N is the num-
ber of users logged in) or logarithmic (O(log N)) search
through the data structure used to hold session information.

Apart from this search for authentication, a server may
have an even larger representation of a “state” for each cus-
tomer. E.g., there could be a large number of session-related
objects that are instantiated on a “login” and are therefore
proportional to the number of users who are logged in. Pro-
cessing a query would then surely involve some computa-
tion that grows as the size of such data structures grows.

In short, some part of the computation done in the server
is a function of the number of users with active sessions
(which is not the same as the number of requests queued at
the server). Thus the service time is a function of the popu-
lation of customers in this closed system.

Such a behavior can also be found in Java-based systems
where the size of the heap [12] can grow with the number
of users, and processing of each request would require ac-
cessing the heap several times.

We believe that this form of “load-dependent behavior”
of a queue has not been studied in existing literature. Most
existing work on load-dependent servers looks at the num-
ber of requests at the server and queue, and not the en-
tire population [4, 7, 10]. In this paper, we extend the ba-
sic client-server closed queueing network model [6, 11] to
one that takes into account the complexity of algorithms (in
terms of the population N) that constitute the processing of
a request. This “population dependent” model leads to bet-
ter prediction of response times.

This exercise also brings forth an interesting application
of such models–that of “discovering” the complexity of al-
gorithms in a software server. We suggest a heuristic tech-
nique to discover the complexity of algorithms in software,
whose internals are not known, solely from user-perceived
measures such as response time and throughput.

It can be argued that the population-dependent compo-
nent of request processing time may be insignificant com-
pared to the total processing time. Although this may be true
in most cases, the existence of this model and of the discov-
ery technique does help in providing a sanity check for the
performance of software servers. Such “black-box” analysis
techniques have been proposed and used in the real world
before [2]. We envisage the discovery technique to be used
in situations where server software is being built for a cus-
tomer organization, by an outsourced vendor. The discov-
ery technique could then be used in the phase of “accep-
tance testing” of the software by the customer. If the soft-
ware has design flaws, or bugs, that make its service time in-

N Clients

ServerQueue

λ

λ

µ

Figure 1. Basic client-server system model

crease abnormally with the number of logged-in users, our
technique would “expose” this problem.

The rest of the paper is as follows: We start by taking
a look at the current approach taken for response time esti-
mation based on a basic client-server model. We then extend
this model to cases where the mean service time is depen-
dent on the population of the system. This modified model
is validated with results from simulations of population de-
pendent service. In the next part of the paper, we develop a
heuristic technique to “discover” the service time complex-
ity of algorithms in a software server, purely based on user-
perceived measures. This technique is validated–first with
results from a simulation of sequential and binary searches,
and then by doing measurements on an actual Web-based
software system hosted on a typical server. This demon-
strates the usefulness of the model and techniques devel-
oped in the present work. Some concluding remarks are of-
fered and directions for future work are explored at the end.

2. Current approach

The performance prediction of a Web-based service (or
any client-server application) typically involves a mix of
measurement and modeling. The steps involved in this ap-
proach would normally be:

• Measure system performance (throughput, response
time) by generating synthetic load with say N virtual
users emulating “sessions”.

• Estimate service time by measuring utilization U and
throughput T of the server and setting service time τ
to τ = U/T .

• Use the well-known basic client-server model [6, 11]
(Fig. 1) to predict response times.

Attention is usually not given to the fact that average ser-
vice time τ could actually vary with changes in N .

This basic model assumes a single server with a FIFO
queue and exponentially distributed service times with

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60

M
ea

n
R

es
po

ns
e

T
im

e
(E

[R
])

Number of Customers (N)

Mean Response Time vs Number of Customers

lambda=1, mu=25

Mean Response Time
Low load asymptote

Heavy load asymptote

Figure 2. Response time vs. population

mean τ = 1/µ. Each client “thinks” for some time be-
fore issuing a request at the server. The think times are as-
sumed to be exponentially distributed with mean 1/λ. After
completion of service the client goes back into the think-
ing state. Thus the clients circulate endlessly in the closed
queueing network.

For a given N , let R(N) denote the mean response time.
Then for this model,

R(N) =
Nτ

U(N)
−

1

λ
(1)

where U(N) is the utilization of the server, and can be cal-
culated from the corresponding Markov chain [11].

Fig. 2 shows the graph of response time vs. population
N . At light loads (N → 1) the expected mean response
time approaches the service time τ . Also as N → ∞, we
have U → 1 and R(N) → (Nτ − (1/λ)). Thus the asymp-
totic behavior of R(N) is linear in N . These light and heavy
load asymptotes are depicted in Fig. 2. The point where
these two meet is termed the “saturation number” [6, 11].

N∗ =
τ + 1

λ

τ
= 1 +

µ

λ
(2)

Fig. 3 shows the results of applying the basic model to a
software server which does a binary search, through a list of
size equal to the population, for every request that comes in.
The analytical results are generated using (1), with τ equal
to the time taken by the server when the population is 50.
The simulation, on the other hand, explicitly performs a bi-
nary search on a data structure whose size is equal to the
population. It is easy to see that as number of users increase,
the response time predicted by the basic equation is an un-
derestimate of the real response time. (The figure also shows
the plot from a simulation of the basic model, which clearly
matches the analytical model.)

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

M
ea

n
R

es
po

ns
e

T
im

e

Number of Customers (N)

Mean Response Time vs Number of Customers

Mean Think Time = 500
Mean Service Time = 8.7

Simulation(Binary Search)
Simulation (Basic Model)
Analytical (Basic Model)

Figure 3. Prediction with current approach

3. Population dependent model

The basic model assumes that the mean service time is
constant. We now model the mean service time as a func-
tion of N , the population of the system. Thus τ(N) is the
mean service time when the user population is N .

Since we are still interested in the steady-state measures
of the system with a fixed number of users, (1) still holds
with the modification of service time τ also reflecting its
dependence on N .

R(N) =
Nτ(N)

U(N)
−

1

λ
(3)

Let us take a look at the common forms that τ(N) can
take. In the case of a search of the session ID in some data
structure as discussed in the introduction, common service
time complexities would be O(N), and O(log N). Other
forms like O(N log N) and O(N 2) can also be present in
cases where a sorting operation is needed to serve every re-
quest. In most well-designed applications, the use of hash-
ing should make complexity of searches O(1).

Equation (3) shows that the asymptotic behavior of
R(N) may no longer be linear. Table 1 shows the asymp-
totic behavior of R(N) corresponding to service times that
are different functions of N .

To predict R(N) accurately, however, the “order of com-
plexity” of the service time is not enough. The value of

τ(N) limU→1 R(N)
O(1) O(N)
O(N) O(N2)
O(log N) O(N log N)

Table 1. Some common forms of τ(N) and the
corresponding forms of R(N)

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
R

es
po

ns
e

T
im

e

Number of Customers (N)

Mean Response Time vs Number of Customers

Analytical
Simulation

Figure 4. Model validation: τ(N) = O(N)

τ(N), i.e., the mean service time as a function of N must
also be known for calculating R(N). We show τ(N) here
for two cases–sequential search and binary search.

Searching consists of a series of successive compare and
forward operations. Let CC and CF denote the operational
cost of a compare and a forward respectively. In our model,
a search is always successful as it is the same users that keep
circulating in the closed queueing network.

Let γ denote the average number of compares. This av-
erage for a successful sequential search is given by

γseq = (N + 1)/2. (4)

For a binary search, on a balanced binary tree or a sorted
array [3], the average is given by

γbin = (N − (2h−1))h +
h

∑

i=2

2h−i (h − i + 1) (5)

where h = blog2 Nc + 1. For a successful search, in both
sequential and binary search methods, the number of com-
pares is one more than the number of forwards. Thus for
both sequential and binary search we have

τ(N) = γCC + (γ − 1)CF . (6)

Using these values of τ(N) in the appropriate cases, R(N)
can be calculated for varying values of N .

In a more general case, one can have a combination of
such different types of algorithms in the software server.
For instance, a constant time computation may follow af-
ter the initial search. In such cases the expected mean re-
sponse time R(N) as seen by a request would be a com-
bination of the different service types. Thus if τ(N) =
B + C.N + D. log N then

lim
U→1

R(N) = A + B.N + C.N2 + D.N log N (7)

where A, B, C, D are constant coefficients. Equation (2) for
the saturation number (N∗) of the system can be re-written

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

M
ea

n
R

es
po

ns
e

T
im

e

Number of Customers (N)

Mean Response Time vs Number of Customers

Analytical
Simulation

Figure 5. Model validation: τ(N) = O(log N)

for this general case as

(N∗ − 1).τ(N∗) =
1

λ
. (8)

This is obtained by finding the meeting point of the low-load
asymptote, which is τ(N) in our model, and the high-load
asymptote (Nτ(N) − (1/λ)).

For a sequential search, the expression for N ∗ can be ob-
tained from (4), (6), (8):

N∗ =
CF ±

√

CC
2 + 2

(

CC+CF

λ

)

CC + CF

(9)

4. Model validation

A simulation of a population dependent server was car-
ried out in order to validate the population dependent ana-
lytical model. Linear and logarithmic types of service time
requirement were simulated by explicitly performing se-
quential search (O(N)) and binary search (O(log N)). The
analytical and simulation results were compared for these
cases with the parameters: λ = 0.004 and CC = CF = 1.
Fig. 4 and Fig. 5 clearly show that the analytical and simu-
lation results match very well.

The analytical value of saturation number for sequential
search was calculated by solving for N ∗ using the above
parameters in (9). For binary search, a numerical solution
of (8) was obtained, referring back to (5) and (6). Solving
the equations we get: N∗ ≈ 16 for sequential search, and
N∗ ≈ 34 for binary search. These values correspond very
well to the plots depicted in Fig. 4 and Fig. 5.

5. Discovering service complexity

In the discussion till now, the composition of service
time was known to us. Thus we were in a so called “white-
box” scenario with a view of what is going on inside the

software server. However, a useful application of our model
is that of “discovering” the complexity of algorithms run-
ning in a server that may be a “black-box”, i.e. we neither
have prior knowledge nor a direct view of the internal work-
ing of the application. Thus the only measures available are
user-perceived measures, i.e. response time and throughput.
In this section, we propose a way to achieve the dual goals
of such discovery and subsequently, the prediction of re-
sponse time of the system.

Such a discovery process may be useful in an application
hosting environment where the operator is required to meet
all the customers’ service level agreements. Before hosting
a new application, the operator may want to characterize
the performance of the application and discover any hid-
den scalability bottlenecks. A similar need is also present
when an organization integrates software developed by an
outside vendor into its IT infrastructure.

Our technique for discovering the service complexity of
a black-box server starts with measurements of response
time and throughput of the server. To discover the character-
istics of the “dependence” of R on N , we heuristically try
to fit some common forms, that can be taken by R(N) (Ta-
ble 1), one by one, to the measured data. The “goodness
of fit” in this process is measured by comparing the devia-
tion between the measured and fitted data. This is depicted
in “error profile graphs”. In the end, a likely estimate of the
composition of the service happening in the server is shown
in the form of “service profile graphs”. These are an esti-
mate of the actual proportion of each kind of service steps
happening inside the server. It is worth noting that our tech-
nique can give good results with measurements at just 8 to
10 points. The technique is presented below.

5.1. Complexity discovery: A heuristic technique

The steps involved in discovering the complexity of al-
gorithms running in a software server are as follows:

1. Obtain response time and throughput data by varying
the number of users between 1 and some Nmax.

2. Plot the response time data obtained, and from the plot
for throughput find the number of users N ′ where the
throughput reaches its peak.

3. Remove the data for the range [1, N ′] or obtain more
data for [N ′, Nmax]. This is necessary since it is the
nature of variation after saturation that brings out the
difference between many types of complexities.

4. After pruning the response time data, fit curves repre-
senting the commonly expected time-complexities to
the observed response time. Do this individually for
each service type. We used least-squares curve fitting.
This initial curve fitting gives us two kinds of data. A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80

M
ea

n
R

es
po

ns
e

T
im

e

Number of Customers (N)

Mean Response Time vs Number of Customers

Mean Response Time (Simulation)
Mean Response Time (Fitted)

Figure 6. Curve fitting for linear search

set of fitted values of R(N) for the given values of N ,
and values of the constants A, B, C, D, . . . in (7).

5. From the fitted data and the measured data, calculate
the sum of square of errors (deviations) in the data, in-
dividually for each service type.

6. Now plot an “error profile graph” (e.g. Fig. 10), which
is a plot of the error-terms calculated above for each
type of service complexity. The service types having
the least (or lower) error-terms give an indication of
the type of algorithms running in the server.

A case where the actual service is a combination of mul-
tiple service-types will show up as multiple relatively low
error-terms in the error profile graphs. In this case, another
cycle of curve fitting and error-term evaluation should be
done. This time, however, the fitting is done only with a
combination of the components having lower error-terms in
the previous step. This gives a better estimate of the val-
ues of the coefficients for the fitted components. The fitted
curve thus obtained, is a fairly good representation of the
actual mean response time R with varying population N .

The above method was used on a linear search simu-
lation and another simulation that had a linear search as
well as an exponentially distributed random time compo-
nent with constant mean 0.5. The parameters were λ = 1
and CC = CF = 1. Fig. 6 and Fig. 7 show the fitted
curves and Fig. 8 shows the corresponding service profile
graphs. The graph on the left in Fig. 8 (for the first sim-
ulation) shows C as the dominant coefficient (with value
≈ 1), thus correctly suggesting a linear-time algorithm. In
the graph on the right (for the second simulation), domi-
nant coefficients B and C correctly indicate a combination
of O(1) and O(N) service types, with a good match on the
values as well.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50 60 70 80

M
ea

n
R

es
po

ns
e

T
im

e

Number of Customers (N)

Mean Response Time vs Number of Customers

Mean Response Time (Simulation)
Mean Response Time (Fitted)

Figure 7. Curve fitting for linear search + a
constant mean random component

6. Measurement based validation

In the previous section we have described a technique
for discovering the service complexity of an algorithm run-
ning in a software server. This technique was validated with
tests on response-time data from simulations of various ser-
vice time complexities. The next step is to move on to mea-
surement based validation and see if the technique works on
data gathered from actual applications. In this manner a pro-
gram based on this technique may be used as a performance
debugging tool to check the behavior of software.

This technique is meant to be applied in a controlled test
environment. Thus the infrastructure that the test is running
on will be known. That would help in making sure that fac-
tors other than the application under test are not influencing
the test. This would minimize/control factors like variable
communication delays and network congestion, thus avoid-
ing spurious results. The ideal option is to run these tests on
an isolated high-speed LAN. Under such a controlled en-
vironment, requests reaching the server are only from load
generated as part of the discovery technique. Thus the as-
sumption that the actual number of users are known and
fixed during one measurement interval is a valid one.

6.1. Test system

The test system used for measurements was a typical
Web-server, hosting static and dynamic Web pages. The
Apache Web-server (ver. 1.3.29), using PHP (ver. 4.3.4)
as the server-side scripting language, was used to serve
Web pages. The host OS was Debian GNU/Linux Sid (up-
dated till June 15, 2004). MySQL (ver. 4.0.18) was used
as the back-end database to store session-data and provide
database services to the applications under test. The server
hardware was an Intel P-IV 2.4 GHz based system with
256MB of RAM and a 40GB hard disk. Client systems used

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A B C D

V
al

ue

Constant Coeffecients

Profile of Fitted Mean Response Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

A B C D

V
al

ue

Constant Coeffecients

Profile of Fitted Mean Response Time

Figure 8. Service profile plots for Figs. 6 & 7.
Dominant coefficients are clearly visible.

for load generation had similar configurations. The above
configuration (LAMP: Linux-Apache-MySQL-PHP) is one
of the most preferred software combinations in use today
for hosting of dynamic Web-based applications.

Some specific changes were made in the configuration
of Apache to ensure that server parameters remain con-
stant throughout the test. KeepAlive Off is necessary
to make sure that each request makes a fresh contention for
the server, irrespective of who made the previous request.
MaxClients 1 is required to make Apache adhere to our
model of a single server by using only one “worker” thread.
MaxRequestsPerChild 0 #unlimited is needed
to prevent periodic “re-spawning” of the server.

6.2. Software under test

In order to test the session-management overheads, a
custom session management system, which stores the ses-
sion data in a database, was written. Both the standard and
the customized session management systems were tested to
be able to distinguish an efficient system from one that runs
slower. The standard session management system in PHP is
designed to be highly efficient. The custom system stores
session-related information in a MySQL database table. A
search is done through this table to locate the current ses-
sion and read the session data.

6.3. Load generation

A session-aware load generator was used to emulate
multiple users issuing requests to the Web-server. The load
generator was made to follow the model of exponentially
distributed think time between successive service requests
from a client.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

M
ea

n
R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

Number of Customers (N)

Mean Response Time vs Number of Customers

Mean Response Time (Measurement)
Mean Response Time (Fitted O(1) service)
Mean Response Time (Fitted O(N) service)

Mean Response Time (Fitted O(log N) service)

Figure 9. Successive fitting to measured re-
sponse time (slow linear search)

6.4. Results

Fig. 9 shows the results of measurements when the pop-
ulation was set to {1, 2, 5, 10, 15, 20, 35, 50, 70, 86, 100,
120, 140} in order to reflect the irregular points of measure-
ment that may be present in a real scenario. The application
under test used a custom session management system that
does a linear search through the table, with slow compar-
isons. The mean think time (1/λ) was set to 200ms. Fig. 10
shows the “error profile” which clearly indicates that the
error-term is lowest for O(N) service.

To validate these results, service time at the server
was measured directly. This was done by using
mod benchmark (http://www.trickytools.com/), an
Apache module meant for such purposes. A plot of this
measured service time vs. population (Fig. 11) clearly indi-
cates that the service time is linear (O(N)).

To test our discovery technique further, we carried out
measurements on an unmodified PHP-based application
that stores the session-table in a database and also gener-
ates Web pages dynamically from data pulled out from the
database. Thus the service time-complexity depends on the
application’s internal working and handling of queries by
the database engine; we do not have any a priori knowl-
edge about the algorithms in the software.

In this case the mean think time was set to 4s. The curve
fitting results and error profiles are depicted in Fig. 12 &
Fig. 13. The profile on the left in Fig. 13 is the first at-
tempt at fitting. The clearly high error-term for O(N) re-
veals that O(N) service is not present here. This is shown,
for contrast, in Fig. 12. Furthermore, error-terms of O(1)
and O(log N) seem to be close. The next step is to fit a
combination of these two types (profile shown on right in
Fig. 13). This shows that the combination has the lowest
error-term, thus revealing that the service seems to com-
prise of O(1) and O(log N) components.

 0

 100

 200

 300

 400

 500

 600

 700

O(log N)O(N)O(1)

E
rr

or
 T

er
m

Service Type

Error Profile of Fitted Mean Response Time

Figure 10. Error profile graph for Fig. 9 (slow
linear search)

Since in this case, we had access to server-side measure-
ments of service time (from mod benchmark), we used
them to verify this predicted composition of service. Fig. 14
shows a plot of the measured service time and a fitted curve.

This confirms that the service is indeed a mixture of a
predominant O(1) component and a rather feeble O(log N)
part. Though the test on this application does not reveal any
great dependence of R on N , our technique itself is shown
to work well towards detecting such a dependence. The co-
efficients obtained in the discovery process can be used to
predict the response time for any given N . This illustrates
the usefulness of our model and heuristic technique in per-
formance prediction and debugging.

7. Conclusions and future work

In this work we started by asking ourselves a sim-
ple question: how would response time vs population
curves look for servers that have population-dependent ser-
vice times? We presented a simple model to capture this
behavior, and specifically validated it for servers perform-
ing linear and binary searches with data from simula-
tions/measurements on an actual software server.

We extended this idea further by suggesting a “com-
plexity discovery” technique, which works only on user-
perceived performance measures. This heuristic technique
was applied and tested on simulation-generated data and
data from measurements on real-world applications.

We believe our results and technique will be of practical
value to software developers and operators of application
hosting centers. Future work involves refining the discovery
technique and applying it in a more general scenario where
the fitting curve may not be just a linear combination of N ,
N log N & N2. Another direction for future is extending
the model to multi-threaded servers, and cases having mul-
tiple classes of requests, each having its own service-type.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120 140

M
ea

n
S

er
vi

ce
 T

im
e

(s
ec

on
ds

)

Number of Customers (N)

Mean Service Time vs Number of Customers

Mean Service Time

Figure 11. Measured mean service time (slow
linear search)

 0

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 120 140

M
ea

n
R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

Number of Customers (N)

Mean Response Time vs Number of Customers

Mean Resp. Time (Measurement)
Mean Resp. Time (Fitted O(N) service)

Mean Resp. Time (Fitted comb. O(1) + O(log N))

Figure 12. Discovery technique results (ses-
sions and application data in database)

References

[1] V. Apte, T. Hansen, and P. Reeser. Performance compari-
son of dynamic web platforms. Computer Communications,
28(8):888–898, may 2003.

[2] A. Avritzer, R. Farel, K. Futamura, M. Hosseini-Nasab,
A. Karasaridis, V. Mainkar, K. Meier-Hellstern, P. Reeser,
P. Wirth, F. Hubner, and D. Lucantoni. Internet application
performance: A signature-based empirical approach. In In-
ternational Teletraffic Congress, 2001.

[3] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Press, 1990.

[4] M. Curiel and R. Puigjaner. Using load dependent servers to
reduce the complexity of large client-server simulation mod-
els. In Performance Engineering, State of the Art and Cur-
rent Trends, pages 131–147. Springer-Verlag, 2001.

[5] G. Franks and M. Woodside. Performance of multi-level
client-server systems with parallel service operations. In

 0

 20

 40

 60

 80

 100

 120

 140

O(log N)O(N)O(1)

E
rr

or
 T

er
m

Service Type

Error Profile of Fitted Mean Response Time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

O(1) + O(log N)O(log N)O(1)

E
rr

or
 T

er
m

Service Type

Error Profile of Fitted Mean Response Time

Figure 13. Error profile graphs (sessions and
application data in database, two steps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 20 40 60 80 100 120 140

M
ea

n
S

er
vi

ce
 T

im
e

(s
ec

on
ds

)

Number of Customers (N)

Mean Service Time vs Number of Customers

Mean Service Time
Fitted: 0.4026 + 0.0075 log(N)

Figure 14. Measured mean service time (ses-
sions and application data in database)

Proceedings of the First International Workshop on Software
and Performance, pages 120–130. ACM Press, 1998.

[6] L. Kleinrock. Queueing Systems, volume II: Computer Ap-
plications. Wiley-Interscience, New York, 1976.

[7] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sev-
cik. Quantitative System Performance. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1984.

[8] P. Reeser and R. Hariharan. An analytic model of web
servers in distributed computing environments. Telecommu-
nication Systems, 21(2):283–299, 2002.

[9] J. A. Rolia and K. C. Sevcik. The method of layers. IEEE
Trans. on Soft. Engg., 21(8):689–700, Aug 1995.

[10] C. Sauer. Computational algorithms for state-dependent
queueing networks. ACM Trans. on Comp. Sys., 1(1), 1983.

[11] K. S. Trivedi. Probability and Statistics with Reliability,
Queuing and Computer Science Applications. John Wiley
and Sons Ltd., New York, 2001.

[12] B. Venners. Inside the Java Virtual Machine. McGraw-Hill
Professional, second edition, 1999.

