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Abstract—Accelerating micro-architecture simulation is 
becoming increasingly urgent as the complexity of workload and 
simulated processor increases. This paper presents a novel two-
stage sampling (TSS) scheme to accelerate the sampling-based 
simulation. It firstly selects some large samples from a dynamic 
instruction stream as candidates of detail simulation and then 
samples some small groups from each selected first stage sample 
to do detail simulation. Since the distribution of standard 
deviation of cycle per instruction (CPI) is insensitive to micro-
architecture, TSS could be used to speedup design space 
exploration by splitting the sampling process into two stages, 
which is able to remove redundant instruction samples from 
detail simulation when the program is in stable program phase 
(standard deviation of CPI is near zero). It also adopts systematic 
sampling to accelerate the functional warm-up in sampling 
simulation. Experimental results show that, by combining these 
two techniques, TSS achieves an average and maximum speedup 
of 1.3 and 2.29 over SMARTS, with the average CPI relative 
error is less than 3%. TSS could significantly accelerate the time 
consuming iterative early design evaluation process. 

Keywords:Micro-architecture Simulation; Two-stage Sampling; 
Functional Warm-up; Performance Evaluation 

I.  INTRODUCTION 
Computer architects heavily rely on cycle-accurate micro-

architecture simulators to evaluate the performance and power 
of different configurations during early design stages. The 
iterative nature of the evaluation process underscores the 
importance of detail simulation speed, which is still 
prohibitively low and fundamentally constraints the scope and 
the efficiency of early design evaluation. It may take a state-of-
the-art simulator days or even weeks to simulate real-world 
workloads. This problem is exacerbated as the size of 
representative workloads continuously increasing (e.g., the 
dynamic instruction count of SPEC CPU2006 is ten times that 
of SPEC CPU2000). Therefore, it becomes increasingly urgent 
to accelerate micro-architecture simulations without losing its 
accuracy and representativeness. 

Previous research on time-efficient simulation can be 
categorized into three dimensions, i.e., input dataset reduction, 
benchmark subsetting, and program phase sampling. Input 
dataset reduction schemes, such as MinneSPEC [1], attempt to 
reduce the dynamic instruction count of a benchmark program 
by substituting the original large dataset with a smaller dataset. 

The benchmark subsetting technique tries to remove the inter-
program redundancy in a benchmark suite by using only a few 
representative programs, as opposed to entire benchmark suite, 
to do architecture evaluation [2][3]. The program phase 
sampling method, however, explores intra-program redundancy 
and accelerates simulation by choosing only portions of the 
program’s dynamic instruction stream for detail simulation. 
Depending on the sampling style, this method could be further 
classified as representative sampling, such as SimPoints [4][5], 
and systematic sampling, such as SMARTS [6]. Among these 
above methods, the program phase sampling approach is 
probably most widely used since it provides high simulation 
accuracy and speedup without undermining the 
representativeness of the workloads. Therefore, this paper 
focuses on improving the sampling-based simulation method, 
in particular, the SMARTS-like systematic sampling approach. 

Although SMARTS achieves high simulation accuracy, its 
simulation speedup is still fundamentally constrained by its 
nature of uniform sampling as well as the speed of functional 
warm-up. On one hand, uniform instruction sampling treats all 
sampled units equally, and makes SMARTS unaware of the 
program phases. Since instruction samples from same program 
phase have similar behaviors, SMARTS may waste a large 
amount of time in simulating instruction samples that do not 
contribute to the simulation accuracy. On the other hand, 
functional warm-up, which is required to maintain the 
simulation accuracy, practically sets an upper bound for the 
potential speedup of SMARTS. To address the above 
limitations in SMARTS, we present a novel Two Stage 
Sampling (TSS) scheme. Unlike previous simulation sampling, 
this scheme samples instructions in two steps: in the first step, 
large groups of instructions (first stage samples) from the 
dynamic instruction stream are chosen as candidates for detail 
simulation; in the second step, small groups of instructions 
(second stage samples) from each of the first stage samples are 
chosen as the final points for detail simulation. Separating the 
sampling process into two stages allows us to monitor the 
statistics of each stage and remove redundant instruction 
samples, leading to a more efficient simulation. In particular, 
the contributions of this paper are as follows: 

• Two stage sampling framework: This framework 
leverages two stage sampling to accelerate sampling-based 
simulation. Experimental results show that it can 
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accelerate simulation speed while maintain high accuracy. 
Along with the framework, we also provide a set of 
mathematic analysis tool in determining the values of the 
tunable parameters. 

(a) 8-way 

(b) 16-way 
Figure 1. CPI standard deviation distribution of perlbmk with different 
processor configurations. The hardware configurations of (a) and (b) are 
listed in Table II column 2 and column 3, respectively. 

• Phase-aware sample reduction: We propose a method to 
remove redundant instruction samples from detail 
simulation when the program is in stable program phase. It 
is unnecessary to do a complete and slow simulation for 
removing redundant samples. This sample pruning 
technique is especially useful in the iterative early design 
evaluation, where same program needs to run multiple 
times. 

The organization of the paper is as follows: Section 2 
describes the background and motivation. Section 3 shows the 
details of TSS approach. Section 4 provides the experiment 
setup, and the result analysis is presented in section 5. Section 
6 gives the related work, and section 7 concludes the paper. 

II. BACKGROUND AND MOTIVATION 
In SMARTS simulation framework, the original dynamic 

instruction stream of a program is broken into three kinds of 
non-overlapping chunks for functional warming, detail 
warming and detail simulation respectively. In the chunks for 
function warming, instructions are simulated on functional 
level with only large micro-architectural states, such as branch 
predictor and caches, maintained and updated. In the chunks 
for detail simulation, instructions are simulated at micro-
architecture level with all relevant micro-architectural states 
updated in a cycle-accurate manner. The detail warming is 
essentially the same as detail simulation since it keeps track of 
all the micro-architectural states. It is introduced before 
running detail simulation in order to prevent the stale states in 
small micro-architecture units, like reservation station, from 
interfering the final performance estimates. All these chunks 
are distributed uniformly across the instruction stream. 

This uniform sampling approach in SMART ignores an 
important program characteristic, that is, programs generally 
exhibit phase behavior [7]. Fig. 1 illustrates the program phases 
of perlbmk from SPEC CPU2000, running on two different 
processor configurations. Each bar in the figure represents the 
standard deviation of CPI in every 1 million instructions, with 
each CPI measured in an interval of 1000 instructions. When 
the bar is near 0, it means that CPI is similar within the 1 
million instructions, and that detail simulation for one sampling 
unit is enough to estimate the overall CPI of the 1 million 
instructions. Therefore, by examining whether program is in 
stable phase, it is possible to further reduce the number of 
instructions for detail simulation without degrading the 
simulation accuracy. This is the key observation that motivates 
this study. In Fig.1, (a) and (b) have the similar shape of CPI 
standard deviation although the simulations run on totally 
different processor configurations. This is another observation 
which proves that program phases are mainly determined by 
program’s inherent characteristics, and could be preserved 
across different micro-architecture configurations. This 
observation allows us to apply the phase information obtained 
from one simulation to the other simulations regardless of the 
micro-architecture changes. 

In order to obtain the distribution of CPI standard deviation, 
small instruction sampling units should be grouped together to 

form a larger instruction chunk. Samples are selected from the 
larger chunk and measured. Consequently, the CPI standard 
deviation of the chunk could be calculated. In other words, the 
sampling process should be composed of two steps. Therefore, 
we employ two-stage sampling technique to exploit this 
opportunity. 

III. TWO-STAGE SYSTEMATIC SAMPLING 
This section presents the details of the framework for Two-

Stage Sampling micro-architecture simulation (TSS). TSS is 
primarily developed around estimating average CPI, but it can 
also be used to estimate the power consumption. 

A. Technique overview 
Two stage sampling means the sampling process consists of 

two stages. Specifically, TSS first uniformly divides the 
dynamic instruction stream of a program into many large 



groups, i.e., first stage sampling units (fsu), and selects some of 
them as the candidates for detail simulation. In the second stage, 
TSS further divides every selected fsu into equally smaller 
groups, i.e., the second stage sampling units (ssu), and chooses 
some of them for detail simulation. The remaining unselected 
groups, including those from the first stages, are simulated in 
functional warm-up mode, which is used to ameliorate the cold 
start effect on the simulation accuracy. Fig. 2 shows how TSS 
alternates between functional warm-up and detail simulation in 
the dynamic instruction stream. The black bar represents detail 
simulation and the white bar represents functional warm-up. 

To keep track of the program phase behaviors, TSS 
measures the CPI of every selected second stage sample. These 
obtained CPI measurements are used to calculate the CPI 
standard deviation of every selected first stage sample, which 
indicates whether the CPI in that sample changes smoothly or 
dramatically. If the CPI standard deviation is near zero, the 
variation of CPI in the fsu is very small and one ssu could 
represent the entire fsu. However, if the CPI standard deviation 
is far from zero, the CPI in the fsu has significant variation, and 
more ssu should be employed for detail simulation. In practice, 
we apply a threshold to the CPI standard deviation to 
differentiate these two cases. Since the CPI estimates are 
obtained when the program is simulated for the first time, the 
phase-aware sample reduction technique is not effective in the 
case that the program is simulated only once. However, in 
practice, especially in early design evaluation process, same 
programs are simulated multiple times to explore the 
performance of different design configurations. TSS could 
significantly accelerate these time-consuming iterative 
evaluation processes. 

B. Sampling unit sizes and strategy 
The implementation of TSS involves the sampling unit sizes 

as well as sampling strategy. The sampling unit size of first 
stage refers to the number of instructions in one first stage 
sample and determines the population size of the first stage 
sampling. Similarly, the sampling unit size of the second stage 
refers the number of instructions in one second stage sample 
and determines the population size in the second stage. In this 
study, we choose 1000 as the sampling unit size of the second 
stage because the coefficient of variation of CPI for SPEC2000 
tends to level off when measurement unit size is larger than 
1000 (instructions) [6]. The sampling unit size of the first stage 
affects the population sizes of both the first and second stages. 
In practice, its choice should ensure the population sizes in 
both first and second stages are large enough so that the 
statistical estimates are within high confidence level. In this 
study, we choose 1 million as the sampling unit size of the first 
stage. 

After sampling unit sizes of the first and second stages are 
selected, the population sizes of them can be determined. The 
next step of implementation of TSS is to determine sampling 
strategy to select samples from the first and second populations. 
The sampling strategy affects simulation results and efficiency 
largely. After comparing simple random sampling, cluster 
sampling, strata sampling, and systematic sampling, we choose 
systematic sampling as the sampling strategies of the first and 

second stages for efficiency and accuracy. That is, for 
systematic sampling at an interval i, TSS repeatedly alternates 
between a functional simulation period of i-1 groups and detail 
simulation period of one group in order. The parameter i may 
be different for the first or second stage. In the next two 
sections, we will carefully discuss how to determine the 
sampling parameters of TSS. 

C. CPI estimation 
In the first stage, the dynamic instruction stream is divided 

into fn groups with the sample unit size fs. The relationship of 
between fn and fs is: 

fs
Lfn =    (1) 

where L is the number of dynamic instructions of a benchmark. 
fn could also be written as: 

knkfn ×=    (2) 

where k is the sampling interval (in terms of units) of the first 
stage, and kn is the number of the sampled units from fn 
groups. Similarly, in the second stage, we divide every 
selected sample from the first stage into sn groups: 

ss
fssn =     (3) 

where ss is the sample unit size of second stages. sn could also 
be written as: 

11 knksn ×=    (4) 
where k1 is the sampling interval of every second stage, and 
kn1 is the number of groups selected from the sn groups. 

For simplicity, we use yij to represent the CPI in the j-th ssu 
of the i-th fsu and iY  to represent the mean CPI of the i-th fsu. 
We have: 
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The CPI standard deviation of the i-th fsu could be 
calculated via: 
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After sampling, we use kn1 samples to the estimate of mean 
CPI of the i-th fsu: 
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The estimate of CPI standard deviation of the i-th fsu is: 
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After getting the estimates of every selected first stage 
sample, we can calculate the estimation variables for the 
whole population by using the formula described in Table I. 



 The ith group of first stage 

The jth group of second stage
Figure 2 Two-stage sampling

 

TABLE I.  SAMPLING VARIABLES OF TSS 

Variables Samples and estimates 
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nssu kn × kn1 
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nfsu------number of sampled fsu 
nssu------number of sampled ssu 
CPI1------CPI estimated by sampled fsu, represented by y  
CPI2------CPI estimated by sampled ssu, represented by y  
std1------estimate of CPI standard deviation by sampled fsu, 
represented by s1 
std2------estimate of CPI standard deviation by sampled ssu, 
represented by s2 

D. Sampling parameters 
One of the most important parameters of TSS is the first 

stage sample size kn, which can be determined under a given 
confidence level and confidence interval of the CPI estimate. 
To calculate the confidence interval of CPI estimate, the mean-
squared error of the CPI estimate should be calculated first. 
The unbiased estimation of mean-squared error is: 
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where
fn
knf =1

, 
sn
knf 1

2 =  

In practice, fn>>kn and sn>>kn1. So we assume f1≈0 and 
f2≈0. We have: 

2
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Therefore, the coefficient of CPI variance can be estimated: 

y
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Given the confidence level 1-α, the maximum relative error 
of CPI estimate can be estimated with the following equation: 

2
1
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where 
2
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−

u  is the 
2

1 α
−  quantile of normal distribution. 

Therefore, the confidence interval of CPI estimate is: 
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To meet this given confidence level, kn must satisfy: 
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To reduce the simulation time, the minimum integer value 
of kn should be chosen. 

Theoretically, the initial values of the sampling parameters: 
kn, kn1 could be set arbitrarily. After the trial simulation, CPI 
mean estimate, CPI mean variance estimate and the relative 
error can be obtained using the aforementioned formula. If the 
selected value of kn and kn1 does not achieve a given 
confidence interval, one can calculate a new value to kn 
through the formula (14) and try again. 

In practice, we could determine the initial value of kn 
through the following equation to accelerate the convergence: 
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s  is the variance of CPI and it is around 1 when sample 

unit size is larger than or equal to 1000 [10]. Hence, equation 
(15) could be simplified to: 
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According to the above equation, if one expects the relative 
error is within 3%, the knini should be 4628 for confidence level 
of 95% and 10000 for 99.7%. 

The value of the sampling parameter kn1 should be at least 
30 according to Center Limit Theory [8]. In this study, we set 
the value of kn1 to 50. 

E. Accelerating functional warm-up 
In order to achieve high simulation accuracy, SMARTS 

employs functional warm-up to update the states of large 
micro-architecture units. Although functional warm-up (FW) is 



much faster than detail simulation, it still suffers from the slow 
speed compared with fast-forwarding (FFWD). As shown in 
Fig. 3, the average speed of FW is almost 3 times slower than 
FFWD on our experiment machine. In addition, the length of 
functional warm-up increases proportionally with the length of 
a program. Therefore, functional warm-up fundamentally limits 
the speedup of SMARTS. Although we also use functional 
warm-up to maintain simulation accuracy in TSS, we use it in a 
different way. That is, we substitute portions of functional 
warm-up with fast-forwarding. We call it systematic sampling 
functional warm-up (SSFW). The reason behind this is that 
large micro-achitecture units tend to use the recent history 
more often than the remote history due to program’s temporal 
locality. Therefore, it is not necessary to update the states of 
cache and branch predictor all the way between detail 
simulation intervals. 

Fig. 4 illustrates the TSS with systematic functional warm-
up. Between the detail simulation intervals, some instruction 
groups are selected to simulate in functional warm-up mode 
and the other instructions are executed in fast-forward mode. 
The intervals between functional warm-up simulations are 
fixed. There are two parameters need to be determined: the 
functional warm-up length (wl) and the interval (wk). Since the 
state updates usually last a few thousands of instructions, we 
suggest setting wl to 10000. The choice of wk depends on not 
only the program inherent characteristics but also the size and 
structure of cache and branch predictors, which can also 
employ the procedure described in sub-section D of section III. 
In this paper, we set wk to 10 for simplicity. 

 

IV. EXPERIMENT SETUP 
To evaluate the performance of our two-stage systematic 

sampling approach, we use sim-outorder simulator in 
SimpleScalar tool set [9] to obtain the baseline simulation rate 

and accuracy. We also extensively modify SMARTsim [6] to 
support the proposed two stage sampling technique. The 
simulator models two different processors, the configurations 
of which are listed in Table II. 

TABLE II.  PROCESSOR CONFIGURATION 

Parameter 8-way  16-way  
Machine 

Width 
8 16 

Memory 
System 

32KB 2-way L1 I/D  
2 ports  8 MSHR   

1M 4-way unified L2 
16-entry store buffer 

128KB 2-way L1 I/D  
4 ports  8 MSHR   

1M 4-way unified L2
16-entry store buffer

ITLB/DTLB 4-way 128 entries/4-
way 256 entries 
200 cycle miss 

4-way 32 entries/4-
way 32 entries 
200 cycle miss 

L1/L2/Mem 
latency  

1/12/100 cycles 1/12/120 cycles 

Function 
Units 

4  I-ALU 
2  I-MUL/DIV 

2  FP-ALU 
1  FP MUL/DIV 

16 I-ALU 
8  I-MUL/DIV 

8  FP-ALU 
4  FP MUL/DIV 

Branch 
predictor 

Combined 2K tables 
7 cycle mispred 

1 prediction/cycle 

Combined 2K tables 
7 cycle mispred 

1 prediction/cycle 

The workload of the experiment is composed of 21 SPEC 
CPU2000 benchmark programs listed in Table III. All of these 
programs are compiled to the alpha ISA. We use the reference 
input data set for every program throughout the experiments. 
According to the rules described in sub-section B of section III, 
we use 1 million as the first stage sample size. The initial 
values of kn and the corresponding k are shown in Table IV. 

V. RESULTS AND ANALYSIS 
In this section, we first evaluate the sampling-based 

functional warm-up strategy, followed by the evaluation of the 
TSS with phase-aware sample reduction techniques and 
sampling-based functional warm-up. 

Fig. 5 shows the comparison of simulation rate between 
SMARTS and TSS with SSFW. The average speed of TSS 
with SSFW is 12.5 MIPS, in comparison to 10.78 MIPS by 
SMARTS, leading to a speedup of 1.16. Fig. 6 shows the 
comparison of the relative CPI error between TSS and TSS 
with SSFW. 8 out of the 21 benchmark programs have the 
same relative CPI error. 4 out of the 21 benchmark programs 
have a slight increase in relative CPI error. On average, the CPI 
relative error of TSS is 2.2% while that of TSS with SSFW is 
2.24%. Therefore, by using sampling-based functional warm-
up alone, TSS could achieve 1.16X speedup with negligible 
increase in error rate. 

Since TSS has two sampling stages, it is easy to observe the 
CPI variation of first stage samples. If CPI is stable in a first  

 
Figure 3  Simulation rates of FFWD and FW 
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stage sample, we can use only one second stage sample to 
represent the first stage sample without losing accuracy. We 
call this technique phase-aware sample reduction technique. 
When applying phase-aware sample reduction technique on top 
of TSS with SSFW, larger speedup could be obtained. As 
shown in Fig. 7, the combination of the two techniques in TSS 
yields speedup up to 2.29X with an average speedup 1.3X. Fig. 
8 shows the CPI comparison among TSS with Program-phase-
aware Sample Pruning techniques, SMARTS and the baseline 

TABLE III.  SPEC2000 BENCHMARKS 

Benchmarks Input data set # of instructions 
(millions) 

164.gzip graphic 103,706 
168.wupwise wupwise.in 349,623 
171.swim swim.in 225,830 
172.mgrid mgrid.in 419,156 
173.applu applu.in 223,883 
175.vpr net.in, arch.in, place.in 67,724 
176.gcc 166.i 46,917 
179.art c756hel.in 41,798 
181.mcf inp.in 61,867 
183.equake inp.in 131,518 
186.crafty crafty.in 191,883 
187.facerec ref.in 211,026 
188.ammp ammp.in 326,548 
189.lucas lucas2.in 142,398 
191.fma3d fma3d.in 268,368 
253.perlbmk diffmail.pl 39,925 
254.gap ref.in 269,037 
255.vortex lendian1.raw 118,972 
256.bzip2 graphic 143,565 
300.twolf ref 346,484 
301.apsi -- 347,923 

TABLE IV.  INITIAL PARAMETERS OF TSS FOR SPEC2000 

Benchmarks kn k 
164.gzip 4628 24 
168.wupwise 4628 81 
171.swim 4628 52 
172.mgrid 4628 98 
173.applu 4628 52 
175.vpr 4628 15 
176.gcc 4628 10 
179.art 4628 9 
181.mcf 4628 14 
183.equake 4628 30 
186.crafty 4628 44 
187.facerec 4628 49 
188.ammp 4628 76 
189.lucas 4628 33 
191.fma3d 4628 62 
253.perlbmk 4628 9 
254.gap 4628 63 
255.vortex 4628 27 
256.bzip2 4628 33 
300.twolf 4628 81 
301.apsi 4628 81 

 

CPI (obtained by sim-outorder). On average, the relative error 
of CPI produced by TSS is 3.1% while that of SMARTS is 1%. 

Generally, the CPI of a first stage sample is considered to be 
stable when CPI standard deviation is near zero. But what 

value of CPI standard deviation can be treated as near zero?  
To address this issue, we experimentally derive a threshold for 
the CPI standard deviation, below which the deviation can be 
regarded as negligible. Fig. 9 shows the CPI variation trend 
along with the CPI standard deviation threshold. As the 
threshold increases, fewer samples would be selected for detail 
simulation, which reduces the simulation time, yet 
compromises the simulation accuracy. Therefore, the value of 
the threshold should be carefully assigned to reach a desired 
trade-off between speedup and accuracy. We suggest that it can 
be set to 0.01 or 0.008 for most SPEC CPU2000 benchmarks. 

Fig. 10 illustrates the performance of TSS with varied CPI 
standard deviation threshold. Generally, it is true that smaller 
CPI standard deviation thresholds require longer simulation 
time because more samples are simulated in detail. However, 
Fig. 10 shows that smaller CPI standard deviation thresholds 
may also lead to a shorter simulation time. This is because 
larger CPI standard deviation thresholds select fewer samples 
to simulate in detail and may result in more cache miss events. 
The miss penalty of these cache miss events may prolong the 

 
 

Figure  5. Comparison of simulation speed 

Figure 6. Comparison of CPI relative error 

overall simulation time. This interesting observation implies 
that the threshold of CPI standard deviation should be chosen 
with cautions to reach a desirable simulation time and accuracy 
trade-off and it provides us an opportunity which can achieve 
high simulation precision with less simulation time. In this 
study, for most SPEC CPU2000 programs, it may result very 



high CPI precision with short simulation time when CPI standard deviation threshold is set to be less than 0.02. 
 

 
Figure 8. CPI of TSS with reduced samples and SMARTS. The 

standard deviation threshold is set to 0.01 
 

Figure 7. Simulation time of TSS with reduced samples and 
SMARTS. The standard deviation threshold is set to 0.01 
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Figure 9  CPI variation trend along with the CPI standard deviation threshold.  
Because the space limit, we only show CPI trends for four benchmarks. 

 



 

VI. RELATED WORKS 
Many have tried to use several sampling techniques to select 

the instructions to execute on simulators in detail. The most 
natural sampling is the simple random sampling. However, it 
may generate poor accuracy results. To improve the accuracy 
of this technique, Conte et al. [10] suggests increasing the 
number of instructions dedicated to processor warm-up before 
each sample and/or increasing the number of samples. 
However, increasing the number of warm-up instructions or 
samples will increase the simulation time. 

Representative sampling attempts to extract from a 
benchmark a subset of its dynamic instructions that matches its 
overall behavior when using the reference input set. Sherwood 
et al. [4][5][7][13] use BBV (basic block vectors) to 
characterize each instruction interval by profiling the 
benchmarks. They use k-means clustering to cluster the 
intervals based on their Euclidean distance and then select the 
interval closest to the centroid of each cluster. After each 
selected instruction interval executed on a simulator, they get 
the overall simulation results by summing the weighted 
individual results together. The experimental results of 
SimPoint (a simulator uses this technique) show that the 
simulation time can be dramatically decreased with an average 
IPC error of 3%. The main advantage of this technique is that it 
can be used across a wide range of micro-architectures because 
it analyzes micro-architecture independent characteristics of 
benchmarks and uses the results to select instructions for detail 
simulation. However, it may generate high simulation error and 
it does not provide a mechanism to assure accuracy of 
simulation results. 

Wunderlich et al. [11] employ Stratified random sampling in 
their micro-architecture simulation study. They separate the 
distinct behaviors of a benchmark into different strata. Each 
behavior can be characterized by a small number of 
measurements. Each of these characterizations is then weighted 
by the size of the stratum to compute an overall estimate. Their 
results show that applying stratified sampling of SPEC 
CPU2000 benchmarks in simulation demonstrates an 
opportunity to reduce required measurement by 43 times over 

simple random sampling. Nevertheless, it is very difficult to 
separate benchmarks’ full dynamic instruction stream into 
strata properly for simulation. Without a powerful stratification 
approaches, stratified sampling does not provide a clear 
advantage over simple random sampling. 

Figure 10 Simulation time variations with varied CPI standard 
deviation threshold. 

Systematic sampling simulates selected portions of the 
dynamic instruction execution at fixed intervals. All intervals 
have the same length. The number of the intervals and the 
length of intervals determine the simulation time. SMARTS [6] 
implements this technique. In order to reduce the error caused 
by “cold-start”, SMARTS adopts the functional warm-up. 
However, the disadvantages of SMARTS are two folds: (1) 
SMARTS ignores program-phases of programs, which may 
take time to simulation unnecessary instructions. (2) The 
functional warm-up of SMARTS limits its simulation speed. 
Even worse, functional warm-up requires simulation time 
proportional to benchmark length rather than sample size. 

Since it is very difficult to determine the length of warm-up, 
many researchers have studied on it. Haskins et al.[16] measure 
the Memory Reference Reuse Latency (MRRL), which refers 
to the elapsed time measured in number of instructions 
between a reference to some memory address and the next 
reference to the same address. Instructions in a sampling unit 
and its pre-sample are profiled to get the distribution of MRRL. 
Since the distribution of the pre-sample may not be the same as 
that of the current sample, the warm-up length determined by 
this technique may not be accurate. Eeckhout et al propose the 
Boundary Line Reuse Latency (BLRL) method to avoid this 
problem [15]. However, neither MRRL nor BLRL takes the 
cache organization into consideration. Luo et al propose Self-
Monitored Adaptive (SMA) warm-up method to consider the 
organization of caches and other factors synthetically [14]. 
Recently, Bryan et al [17] suggest reverse state construction 
reduce the length of functional warm-up. However, it is hard to 
apply these techniques to a wide range of sampling based 
simulation technologies. 

VII. CONCLUSION 
Micro-architecture simulation is an integrate part of modern 

processor design. However, it is difficult to achieve fast 
simulation rate with high accuracy. The new generation of 
SPEC CPU benchmarks and increasingly complicated 
processor designs exacerbate this problem. Even the state of art 
technologies such SMARTS and SimPoint are suffering 
simulation rate and accuracy challenges. This paper presents a 
new sampling scheme named two-stage sampling (TSS) and a 
novel warm-up strategy called systematic sampling functional 
warm-up (SSFW) to address this problem. TSS can apply the 
inherent program characteristics to reduce the samples 
simulated in detail. Our experiments show that TSS (with 
reduced sample technique and SSFW) achieve speed maximum 
and average speedup ratios of 2.29 and 1.3 over SMARTS 
while maintaining the same accuracy level. Additional, we find 
that the CPI standard deviation distribution pattern of 
benchmarks is insensitive to micro-architectures. Therefore, the 
information of one simulation trial can be used to accelerate the 
following simulation significantly. 
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