Business-Oriented Autonomic Load Balancing for

Multitiered

John M. Ewing and
Dept. of Computer

Web Sites

Daniel A. Menascé
Science, MS 4A5

The Volgenau School of Information Technology and Engiimeer
George Mason University
4400 University Dr.
Fairfax, VA 22030
jewing2@gmu.edu, menasce@cs.gmu.edu

Abstract—Autonomic computing systems are able to adapt
to changing environments (such as changes in the workload
intensity or component failures) in a way that preserves hip-
level operational goals, such as service level objectivehis paper
focuses on autonomic computing systems that are self-optining
and self-configuring. More specifically, the paper presentghe
detailed design of an autonomic load balancer (LB) for multi
tiered Web sites. It is assumed that customers can be categoed
into distinct classes (gold, silver, and bronze) accordingo their
business value to the site. While the example used in the pape
is that of an auction site, the approach can be easily applietb
any other Web site. The autonomic LB is able to dynamically
change its request redirection policy as well as its resouec
allocation policy, which determines the allocation of serers to
server clusters, in a way that maximizes a business-oriende
utility function. The autonomic LB was evaluated through vey
detailed and comprehensive simulation experiments and was
compared against a round-robin LB and against a situation wiere
each customer category has a dedicated number of servers. &h
results showed that the autonomic LB outperforms the otherdad
balancing approaches in terms of providing a higher utility for
highly dynamic workloads.

I. INTRODUCTION

In complex environments where the workload varies wide

Load balancing refers to a number of widely used tech-
niques for distributing work among multiple resources ac-
cording to a given policy. In recent work, autonomic prin-
ciples have been applied to the development of dynamic
load balancing policies that allow system adaptation in the
face of an uncertain and changing environment [8], [9], [10]
Some dynamic load balancing policies seek to improve system
efficiency by dispatching a work request to a specific resmurc
where the effort required to process the request is minidnize
where service level objectives are most likely to be met [8],
[9], [10], [11], [12]. Other dynamic load balancing polisie
seek to prioritize work requests that generate more ufilig}.

Our paper uses some of the dynamic load balancing policies
first described in [14] that prioritize the requests moselijk

to generate utility. Our autonomic controller extends oorkv

in [1], allows for greater precision in the development afdb
load balancing policies, provides the capability to rezdke
cluster resources, and is well-suited for highly dynamick~o
loads.

The main contribution of this paper islmsiness-oriented
approach to dispatching incoming requests to servers and
%(Ilocating servers to server clusters according to custome

and is hard to predict, there is a need to design and bulldy ity classes. We differ from our previous work and that
systems that can regulate themselves without human intgf-gthers in that we 1) present a business-oriented utility

vention. Such systems, called autonomic computing syste

M&ximization and workload generation, 2) provide a two-

(also known as self-* systems), are able to adapt to changigge| autonomic policy adaptation, 3) develop an efficieit h

environments (such as changes in the workload intensity

Aimbing heuristic that can quickly search a 6-dimensional

the failure of a component) in a way that preserves givefyjicy space and, 4) demonstrate that our approach adagts an

operational goals (e.g., service level objectives). Theas

reacts well to highly dynamic loads. The approach consitlere

been significant research and attention to autonomic compyit this paper is aimed at improving the revenue of an e-

ing in recent years [1], [2], [3], [4]. Previous work presetta

commerce site, an auction site in our example, by providing

technique to design self-optimizing and self-tuning COBPU hetter performance to groups of customers that have higher
systems based on the combined use of heuristic search teglkiness value at the expense of other less important cus-

niques and analytic queuing network models [1], [4]. Othggmers. More specifically, the contributions of this paper. a

approaches used to design self-configuring systems include
control theory [5], machine-learning [6], and fuzzy logi§.[

This paper shows how autonomic techniques for self-
optimization and self-configuration can be employed to op-
timize the utility of a multi-tiered Web site through an auto
nomic two-level policy adaptation of the application lajyead
balancer.

the design of an autonomic controller that can search
for load dispatching and resource allocation policies
that maximize business-value, as specified by a utility
function,

an evaluation and comparison of the autonomic con-
troller against commonly employed static load balancing

policies through rigorous experimentation that simulates the autonomic policies used by the LB to manage the
a large e-commerce website servicing workloads dravapplication server tier. However, the techniques desdréred

from analysis of real e-commerce systems [15] on a scaealuated here can also be used by the site load balancer to
that is not practical and very expensive to reproduce inmaake more efficient use of the web servers.

laboratory setting, and The workload generated by gold, silver, and bronze cus-
« a procedure to generate dynamic workloads that mimiemers is described using a Customer Behavior Model Graph
extreme phenomena such as flash crowds. (CBMG) (see [16]), for each category of customers. Each node

The rest of this paper is organized as follows. Sectig®f a CBMG represents a state in which a customer may be
two describes the multi-tiered web site, its workload, th®und during a session. Nodes of the CBMG are connected
utility function maximized by the autonomic controller,can by directed arcs that indicate the possible transitiona/éen
its policies. Section three describes the heuristic based cstates. Arcs are labeled with the probability that a tréomsit
troller algorithm in detail. The next section discusses tHetween states occurs.
experimental results used to evaluate the controller asagel Figure 2 shows a simplified version of the CBMG. The
a comparison with other load balancing approaches. Finalfigure only shows the most important states; in each CBMG
section V presents some concluding remarks. there is an additional state, the Exit state, not shown in the
picture to make it easier to read. All the states whose sum
of the probabilities of the outgoing transitions does nad ad
A. The Environment to one have a transition to the Exit state with a probability

We consider a multi-tiered environment (see Fig. 1) thagual to 1 - the sum of the other transition probabilitiesr Ou
consists of a site load balancer that receives requeststfrem experiments use a more elaborate version of the CBMGs, one
Internet and sends them to one wf, web servers. Many per customer category, with different transition probitibd
requests may require the execution of an application by oftg each category.
of the N, application servers, which are divided into three The average number of visits to each state during a session
clusters:gold, silver, andbronze. Each server cluster servicescan be computed by solving a system of linear equations as
requests from its corresponding customer category as welldescribed in [16]. Table | shows the expected percentage of
requests from customers from other categories accordingalb Visits for each customer class to selected states within

Il. BACKGROUND

the re-direction policy to be explained later. the CBMG. As the table illustrates, gold customers submit
______ B almost 25% £ 9.96/8.01) more bids on average than silver
\ customers and silver customers submit 140%8(01/3.31)

_ more bids on average than bronze customers. The gold and
— bronze CBMGs were developed from measurements at a real-
world e-commerce site [15]. The silver CBMG was developed

=

— for this paper to represent a power user who navigates the sit

Site R primarily through searches.
load N
balancer

_! N i Psc,se
. . Search

Browse .
Items in

App/lcatlon Categ Prse Categories

balancer N

Pscv

Pscp

mmmmm Phe
P

.- 2 Py V'm
nws : | Home (Al:ﬁul lMe L P

. ‘ﬂb Pac authentica- Vv

Pen age Pha tion) P’ Place Bid P
ab | (authentica- [g— Vb
on

Se—— ti
Web servers Application servers DB servers Phs 0
. . . Psrb
Fig. 1. Multi-tiered Environment — Psry
movse | P [et
An application load balancer (LB) makes dispatching deci- Regions Regions
sions regarding which cluster should receive an incoming re Psrsr

guest. The number of servers in each application serveteclus
is denoted byng, ng, andnp, for gold, silver, and bronze,
respectively. These numbers vary over time according to the
autonomic behavior of the LB. Howeverg +ns+np = N4. B Utility Function

Backend database servers may be used by the applicatiofihe autonomic LB optimizes a global utility function that
servers to process their requests. This paper concentrai@sulates the business-value generated by the througtiput

Fig. 2. Customer Behavior Model Graph (CBMG).

TABLE | — —
PERCENTAGE OF SESSION VISITS TO SELECTEGBMG STATES For EacH 304l is to maximize bott (X) andU,;,,,(R) in a way that

CUSTOMER CATEGORY maximizes revenue today while ensuring the most important
Customer Category customers are satified and will continue using the site in the

State Gold | Silver | Bronze future. Making the global utilityl/,, the product ofXy;q(X)
Home 103 | 284 | 8.76 dUE. (B hi hi ¥
Browse Catetgories 124 | 037 | 8.90 andU,,,,, (1) achieves this goal:
Browse Regions 0.52 0.15 3.02 - o R o
About Me 17.28 | 11.84 | 2.98 Ug(R, X) = Xpia(X) X Uplyi(R). (4)
Search Items in Categories 1.44 | 18.13 | 15.34 N o
Search ltems in Regions | 0.58 | 13.98 | 5.21 It should be noted that the values Bfand X depend on the
View Item 4.70 1 535 11.10 specific policy vectos used by the LB (see next section) and
Store Bid 9.96 | 801 | 331

on the workload intensityV. Thus, the utility function can be
written as a functiorh of R, X, §, andW as

Ug(E,X):h(E,X7§,W) (5)

specific revenue-generating transactions with a certain ex
pected response time. We use thiel transaction through- C. LB Policies
put because it generates revenue for the bidding site. Goodne LB uses two autonomic policies. The first, callied
response times are also critical to generating value—whggicy, is a re-direction policy that affects the dispatching of
response times are good, current customers continue 10 HS@uests to server clusters. This policy is specified byethre
the auction site and new customers are attracted to the)Siteptérameters of the fornfi, ; € [—1, 1] that indicate the fraction
favorable impressions. If response times are poor, Cus®Mgt requests from priority classto cluster;. In our case, these
are likely to abandon the site and use a competing aUCtiBHrameters ards.q, fp.s, and fz.g. A positive value for
site with better response times—this effect deprives the Slf, ; indicates redirection of clagsrequests to clustef and a
of future business. This work uses the sigmoid utility fumet negative value indicates a redirection in the oppositectioa.
UE(R,) from [1] as the response time factor in the global aAp f-policy is then characterized by the vectgr =
utility function. This response time utility function, sha in (fs.c, fB.s, [.c). The autonomic LB dynamically adjusts the
Eq. (1), model; Whethef utility is ge_nergted by complyingwi f-policy fto maximize the global utility,.
the response time service level objective (SLO): In order to preserve the identity of the clusters, we add one

e~ Rs+Bs more constraint to the values Withift fs¢ and fp ¢ must
T 1t e RABs (1) carry the same sign (i.efs¢ x fp,¢ > 0). Without this
wheres is the priority class (i.e., gold, silver, or bronze), restriction, the autonomic controller WI||. occa§|onallwaq)

the clusters around (e.g., move gold to silver, silver tnkaey

is the average response time SLO, in sec, for cksand X . . .
. 9 P . . & and bronze to gold). At first glance, this behavior might seem
R, is the average response time, in seconds, of all class :)
gcceptable, however, moving clusters around could resut i

between zero and 1 and goes to zero as the response time Qﬁénber of high priority requests being stuck behind a large

to infinity. The value of the utility is 0.5 when the responscf=h ms?ertoil?rvxipr'?trig rte?ueistlfjfrorrr]\ the p:e\t;:ours oc;upe[nt °
time meets the SLO (i.eRs = (3s). We would like our load € cluster. This ulimately yields unacceptable resp

balancing policies to maximize the values Gf* in a way for high priority requests.

that prioritizes those customer classes that are mostliiel The second pol!cy, calleg-policy, is a resource allocation
generate bids. This is achieved by combining the respomee tipollcy that determines how many servers should be allocated
utility factors in a weighted sum: to each cluster. In other words, it determines the valuesof

ng, andng, which combined with the values dfs ¢, /5.3,
Ul (B) =Y we x UR(R,) (2) and fp maximize the global utility function. The s-policy
v s is characterized by the vectary = (ng,ns,ng).
wherew, are weights defined by management to indicate the The state spacé of all possible configurations is formally
priority of classs, and R stands for the vector of averagedescrlbed below with the help of théxz) function defined as
response times for the classes. 0 forz > 0andl for z <0.
The bid throughput, X34 s, for priority classs is the
second factor in the utility. The total bid throughpuy,q,

US(Rs)

= {g: (fS.,GafB,SafB,GanvnS;nB)|

is computed as follows: ne;ns;np € {12, Na =2},
. ng +ns+np = Na,
Xoia(X) = ;Xbid’s ®) fs.c. fBs, fB,c € [-1,1],

= _ fs,a % fBa =0,
where X stands for the vector of average bid throughputs for
the classes. From a business perspectiig;(X) represents (fscllfscl+efpollfpal <1,
how much money is being made today, whilé?, (R) (I —e(fs,@))fs.c +e(fBs)lfBsl <1,
represents the likelihood of customers returning tomorur (1—e(fB,s))fes+ (1 —e(fsa))feac <1}

The three last constraints say that no more than 100% Af Autonomic Agent

the requests initially directed to one cluster can be retB® At the end of every Cl, the autonomic agent (1) receives
from the workload monitor a descriptio®V of the workload
1. A HEURISTIC-BASED CONTROLLERALGORITHM intensity seen in the previous Cl. The workload intensity is
given by the number of customers of each category and their
The problem to be solved by the autonomic LB can be cadferage think times. The autonomic agent then invokes the
as the following non-linear constrained optimization pesb. Neuristic search module (2) to find an f-policy that maxirsize
Find the policy vector 3 such that 3 __ business-value according to the utility function. At theden
max max - . . .
arg maxses {Uy(B,X) = h(R,X,5W)}. Note that the of every 10 Cl_s, the auto_norr_uc agent r_equests the _heunstlc
function h is non-linear and does not have a closed forf®MPonentto find a combination of f-policy and s-policy that

expression because the response time and throughput valf@§imizes the utility function. In the case of a change in f-

have to be determined by solving a multiclass closed quguef?\oncy' the LB changes its routing tables to implement the ne

network model. Although no closed form expression exis’fﬁ'd'rec,t p;ollcy. Ir;]thefcf:ase gfallchange n t::e Server aiiﬁna
for solving multiclass closed queueing networks [17], solh€ LB informs the affected clusters (5) that servers have to

tions can be found through iterative or recursive algor'ﬁthmbe moved according to the values:in.

Section 11I-C provides more details on this. Moreover, thg. Heuristic Search
stat_e §papé‘ IS typl_cally very large. Therefore, using standard The heuristic search component is given the current state
optimization techniques is not an option for an autonomie-co, (fﬁ) and the workload intensityV. For requests
troller that needs to make real-time policy change decision®, . ‘.’ 4 . N ques’

. -~ asking for an optimal value of the f-policy only, the heudst
For that reason, we present an autonomic LB that uses heurist S . .
technigues Search is given a budget @y .. evaluations (200 in our

implementation), while a budget d8; .., evaluations (500

The LB controller algorithm considers that time is d|V|de% our implementation) is provided when Searching for Oﬂllm
into 30-second time intervals callentroller intervals (CI). \ajues off and 7. To reduce the size of the state space

Two control levels are implemented: 1) the f-policy is reggaches forf and 5 are restricted to positive values within

evaluated at the end of each Cl, and the s-policy is re-eteﬂuaf_ This is a contrast with thg f-policy only search which does

by the controller at the end of every 10 Cls. Because of ”&‘ﬂow negative values withirf

switching cost of moving servers from one cluster to thegthe \ya |;se hill-climbing as the heuristic to search the space
the g—policy should be evaluated at a lower frequency then t§ ¢ possible policies. When searching only for an op-
f-policy. timum f-policy, we set the initial step on the values of
Each server manages its own queue of requests. The J§a, .5, fe.c 0 6; = 0.1. The neighboring states of
quests in each queue are ordered by the timestamp of 8&te (fs . 5.5, f5.c.na,ns,np) are states of the form
original request such that the oldest request in the quetheis 3/ — (rg . + 87, fB.s £ 65, fB.c = 65,nc,ng,np) subject

requests from one cluster to another cluster accordingdo th

f-policy. The LB sends requests to servers within a clustex i

round-robin fashion. When the heuristic search compldhes,] 7 ,Z

autonomic controller may need to move one or more servers Autonomic ———"— Controlled

from one cluster to another to comply with a new s-policy. Agent W Site

To move servers between clusters, the controller undestake (1) -] (®)

the following actions: 1) an empty, temporary list for stayi

requests is established for each cluster donating or iegeiv 7, |, 7 e

server 2) before each server is moved, the requests in that o

server's queue are transferred to the temporary list of the]‘3; W Ut

donating cluster 3) within a receiving cluster, all reqgest Heuristic —2—2%—— Furt:(;gon

in server queues are transferred to the temporary list for Search Computation

that receiving cluster 4) the servers are moved to comply (2) v 3)

with the new s-policy 5) the requests in the temporary lists g

are distributed round-robin to the server queues withirheac 7;)9(?; W

cluster. ’ o
The autonomic controller (see Fig. 3) consists of five Performance

elements: the autonomic agent (1), the heuristic searclutaod
(2), the utility function computation module (3), the per-
formance model solver (4), and the workload monitor, not 4)

explicitly shown in Fig. 3, embedded in the controlled site
(5). Fig. 3. Architecture of the autonomic controller.

Model Solver

the policy search performance of other heuristic search-tec The base service demand values (i.e., the service demands
nigues including beam search, simulated annealing, gendtiat would be obtained if there were only one server peretust
algorithms, evolution strategies, and particle swarm.lii@n and no re-direction between clusters) for each user categor
strategies and particle swarm have shown particular peamishe application layer are denoted B ¢, D; s, and D; p at

The hill-climbing heuristic visits the solution that offer device: and categories gold, silver, and bronze, respectively.
the greatest improvement in utility, and then evaluates tfiéne values ofD; ¢, D; s, and D; p are computed as
neighbors of that solution. For improved efficiency, thd-hil B ‘
climbing heuristic stores evaluations with their utilitp & Dis = Zptas < Dj s (6)
hash table. If the heuristic encounters a previously evatla v
neighbor, it retrieves the score from the hash table to avoiheres € {gold, silver, bronzg, ¢ is a generic transaction
an unnecessary evaluation. If no neighboring solutionrsffe@quested by a customer according to the CBM(, is the
an improvement, the hill-climbing heuristic dividet by Percentage of transactions of typeequested by customers of
10, unlessd; is already 0.001. Whem; is 0.001 and no categorys during a session, an®; , is the service demand
neighboring solutions offer improvement, the heuristiarsa Of transactions of type at device: due to users of category
restarts at a randomly selected, legal solution withyaof 5
0.1. This process continues until the evaluation budget hasthe values offs ., fs,s, fB.c, na,ns, andnp are used
been consumed. Testing has shown that the hill-climber &hcompute the values of the service demands at the devices
these policy landscapes is somewhat robust to the selectidrihe QN model that represent the application servers. This
of step size parameters. The values used here are simple igrféPne by adding and subtracting according to the f-valfies o
provide reasonable performance. A more optimal selectfon i€ redirection policy from the original service demand and
step size parameters may offer a slight improvement in keatfen scaling the service demand for the number of servers in
effectiveness. the cluster (from the s-policy).

In the search for an optimal s-policy, which occurs jointly Thus, the performance model solver can be seen as a
with the search for an optimal f-policy, the neighboringesa function M that takes as inputs a system stafe =
of state(fs., f5.s, f5.c.na,ns,np) are states of the form (fs.c, f.s, fB.c,nc,ns,np) and the workload intensityV
§'=(fo.c£0s, f5.5%07, fp.cE0snG+0s,ns+6,,np+ and returns the paifR, X). In other words,

ds) whered, = |N, X (.Sf/QJ + 1, subject to the constraint (R, X) = M(EW). @)
that s’ € S. The variation of; follows the same approach - _ _
as described above for the case of the f-policy only. D. Utility Function Computation

In order to evaluate the utlity of a solution The utility function computation (3) invokes the perfor-
(fs.e» fB.s, fB.a:na,ng,ng), the heuristic search algorithmmance model solver (4) to determine the expected response
needs to obtain, from the performance model solver (3), tieme and bid throughput for each priority class and then uses
performance metrics (i.e., response tinfésand throughputs Eq. (4) to compute the global utility. The use of AMVA makes
X) for a given f-policy, s-policy, and workloaw) . it feasible for a performance model solver to be used by the
autonomic controller, which may require a large number of
C. Performance Model Solver evaluations of the model at each controller interval.

The performance_ model solver (4) uses an analy_tlc mul].:L- Detailed Description
class closed queueing network (QN) model, which is solved
using the Approximate Mean Value Analysis (AMVA) tech- The detailed description of the controller is given in Algo-
nique [17]. A closed QN model is a tup{®, C, W, D) where rithm 1. The following definitions are used in this descopti
D is the set ofK devices used to represent the servers of thes Line 18 of the algorithm shows the operatoy defined
Web site plus a device used to represent users’ think times; as follows: if 5 = (fs.q, fB,s, fB,G,na,ns,np) then
C is the set of user classes—i.e., gold, silver, and bronze in 5 @y x returns the sets'’ = (fs.c*z, fp,s*x, fa*
our case;V is the set of workload intensity specifications ,na,ns,ng) | §' € S}, i.e., the set of all feasible

for each class given by the painM, Z,) where M, is the policies obtained by modifying the f-policy by a step

maximum number of classcustomers that can submit class equal toz in all directions.

requests and, is the average think time for classustomers; « Line 20 of the algorithm shows the operatoy, defined

and D = [D,;] is the K x S matrix of service demands as follows: if 5 = (fs,c, fB,s, fB,G,nG,ns,np) then

where D, ; is the total average service time of requests of § @, k returns the se{s'’ = (fs.c, fp,s, fp,c.nc +

classs (s=1,---,95) at devicei (i =1,---,K). k.ns £k,ng£k)|§’ €S} ie., the set of all feasible
Our performance model has three classés £ 3)— policies obtained by modifying the s-policy by a step

representing gold, silver and bronze users—and a number of equal tok in all directions.

devices that corresponds to the number of web servers plughe parameter Type (see line 1) has a value equal to F
the number of application servers plus the number of databas indicate that the controller must search for the best f-

servers plus one delay device to represent the think time mdlicy only. Otherwise, the controller searches for thetbes

customers of each class. combination of f-policy and s-policy.

IV. EVALUATION OF THE LB CONTROLLER

approaches, round-robin load dispatching is used at the web

We compared the autonomic LB with two other approachéi€', the database tier, and_ With_in _each application tiestelr.
round-robin (RR) and dedicated servers (DS). In all thré&here the approaches differ is in the dispatch of requests

Algorithm 1 Controller Algorithm

1:

2: returns Gpest)

3: Budget«+ 200

4: if Type # F then

5: Budget— 500

6: end if

7: 05 < 0.1; NumEvals— 0; Upest < -1.0;
8 0, = LNG X 5f/2J + 1;

9: while NumEvals< Budgetdo

10: Ulocal — Ug(M(gcurra W))

11: if Uppear > Upest then

12: gbest — gcurr; Ubest — Ulocal;
13: end if

14: NumEvals«— NumEvals + 1;
15: if NumEvals> Budgetthen

16: break while loop

17: end if

18: N — Seurr S 5f

19: if Type # F then

20: N — N U(Beurr ®n ds)

21: end if

22: Foundimprovement— False
23: forall §€ NV do

24: Us — Ug(M(55,V))

25: if Us > Upjpear then

26: glocal — 5 Ulocal — Us;
27: Foundimprovement— True
28: if Us > Upest then

29: §best — §S! Upest < Us;
30: end if

31: end if

32: NumEvals«— NumEvals + 1;
33: if NumEvals> Budgetthen
34: break for loop and while loop
35: end if

36: end for

37: if Foundlmprovementhen

38: [* move to best neighbor */
39 gcurr — glocal

40: else

41: if 67 > 0.001 then

42: 5]0 — 5]0/10;

43: ds = |Na xd7/2] +1

44; else

45; Seurr — randoms’ € S

46: 0 —0.1;

47 0s = [Na x05/2] +1

48: end if

49: end if

50: end while

function Control | er (Type, 5curr, W)

51: end function

to the application tier clusters. In the RR case, requeds ar
dispatched round-robin to the clusters without regard fo-c
tomer category. In the DS case, requests are always diggshtch
to the cluster corresponding to the customer category of the
requester. Table Il shows the number of servers in each
tier and cluster for the different load balancing approache
The allocation of servers for the DS approach optimizes
global utility for the initial workload and is also used byeth
autonomic LB as the starting s-policy.

TABLE Il
NUMBER OF SERVERS IN EACH TIER AND CLUSTER FORR, DS,AND THE
AUTONOMIC LB.

nws | ng | ns | nB | Na | na
RR 99 33| 33 33 99 2
DS 99 12 25 62 99 2
Autonomic LB 99 * * * 99 2

A. Description of the Experiments

The simulation was built using the CSIM 19 C++ library
(www.mesquite.com). Transaction service times are expone
tially distributed with a mean calculated from the experi-
mental results in [14]. In all experiments, the autonomic
controller was initialized with the policyfs ¢ = 0.0, fz.s =
0.0, fe,c = 0.0,ng = 12,ng = 25,np = 62), i.e., no
redirection and the optimal number of servers per cluster fo
the initial workload as in the DS case. The response time
SLO for all customer categories is a mean response tine)
seconds. The response time weights used in the utility fmct
of Eq. (2) arewg = 0.45, wg = 0.35, andwg = 0.20.

Each load balancing approach was tested against 50 ran-
domly generated loads, each with a duration of 480 minutes.
Most web sites including auction sites experience dynamic
loads each day that can sometimes include extreme phenomena
such as flash crowds. Our goal for developing a dynamic
load was to randomly generate realistic and challengingd loa
tests that would sometimes include extreme phenomena such
as a flash crowd. For a more realistic test, we wanted the
loads offered by the customer categories to be moderately
but not perfectly correlated over time. Before the simolati
begins, we randomly generate a load schedule comprised of
load vectors,ﬁt, for each minutet of the test. Each load
vector, N, = (Nt,c, Nt.g, Ni.p), contains a target number
of concurrent customers of each category at the beginning of
minute ¢. For the first five minutes of each load schedule,
N, = (5000, 10000, 35000) allowing the customer population
to become more distributed throughout the CBMG state space.

In generating a dynamic load schedule, time is divided into
minutes and sequences of minutes are aggregated into leariab
length intervals calledpochs denoted byry, 7o, --- , 7 (see
Fig. 4). The duration of an epoch is an integer number of
minutes determined from an exponential distribution with a
average of 5.0 minutes rounded up to the nearest minute.

T T, T T customer starts their first session.

v/ &; time
vl The tests provide a wide range of load compositions and
load levels. The mean load profile of the randomly generated
dynamic test set is shown in Table IIl. Overall, the average
number of customers in the dynamic load tests is about 61,000
concurrent customers, somewhat higher than the starting nu
The first step in the generation of a dynamic load scheduleggy of 50,000 customers. The average range in total number of
the determination of the total number of concurrent custsmeystomers is over 106,000 customers. The ranges in number

Ni(t) for epoch7; and timet. The number of customersof customers for each customer category are relativelyelarg
during an epochr, varies at a rate, given in customers pexs well.

minute, which is sampled at the beginning of each epoch from
a Normal distribution with zero mean and standard deviation
equal to 1,000 customers/minute. Web site workloads also

B. Experimental Results

Fig. 4. Process for generating schedules for dynamic loads.

TABLE Il
AVERAGE MAXIMUM , MEAN, AND MINIMUM CUSTOMER COUNTS.

; ; ; ; Customer Category
tend to be noisy, _whlch may result in autonomic performange Gold T Siver T Bronze Total
agents overreacting to phantom phenomena or underreacting Maximum | 17,151 | 30,033 | 85.286 | 119,401
to real phenomena. For that reason, we add a Gaussian noise Mean 6,355 | 12,391 | 42,561 | 61,308
to the total number of concurrent customers at every minute Minimum 869 | 2,060| 8760] 12,89

t. This value is sampled at every minute from a Normal
distribution with zero mean and standard deviation equal to

2,000 customers. o o
, . expected, the mean composition of the workload is fairlselo
The total number of concurrent customers at time 1 in 4, the tether percentages. However, the composition withen
epoch7, can be written as a function of the total numbefagis shows considerable variation with an average range of
of customers at time in the same ’e_poch a8 (t + 1_> ~ 15.5% for gold, 22.6% for silver, and 27.9% for bronze. When
N (t)+a x 1 minute+ g1, wherezy is the rate of variation . 1ined with the distribution of load levels, this diveysi

of the total number of customers dur?ng.epq@handgtﬂ IS workload composition should pose a significant challenge to
the value sampled from the Normal distribution that repméese the the three load balancing approaches

the noise at time + 1.
The second step consists in determining the mix of cus- TABLE IV

tomers in each category (gold, silver, and bronze) at time AYERACE e oy (CENTAGE OF TOTAL

for each epoch. The mix of customers at time 1 is derived

The mean workload composition is depicted in Table IV. As

. . . Customer Category
from the mix at timef by varying the percentage of customers Gold | Silver | Bronze
in each category so that the sum of the percentages remains at Maximum | 18.4| 31.9 83.9
100%. We allow bidirectional moves of percentages between Mean 1021 2021 696

Minimum 2.9 9.3 56.0

1) gold and silver, 2) silver and bronze, and 3) bronze and
gold. The direction of each move is determined by a flip of a

coin and the size of the move in percentage points is sampledrable V shows the 99% confidence intervals for the mean
from an exponential distribution. To keep the compositibn global utility produced by the three approaches during @ll 5
customers within a reasonable range, each customer categotests. All three confidence intervals are clearly separates

has a tether percentagk, Random moves towards tend to autonomic LB generated significantly higher global utitityan

be larger than moves away frofg. This is done by shrinking either the dedicated or round-robin approaches. Figur@®sh
the mean of the distribution for moves away from a tetheke utility differences between the approaches over time. |
point. This allows the percentages to fluctuate with no hagHe first hour of the tests, the load is generally near théalnit
boundaries but still stay within a reasonable range. Theetet settings, and the performance disparity at this load lesel i
percentages used to generate the dynamic loads tests wejlarge. As time passes, the loads become more varied,
0c = 10%,0s = 20%, and g = 70%. The parameters and the autonomic LB provides superior performance. To
(e.g.,0¢) used to generate the dynamic load schedules ajétter understand why the autonomic LB provided outperform
not derived from the data collected in [15] but were select@He other approaches, we examine in detail a representative
to produce reasonable and interesting experiments. example, test number 46.

Once the full load schedule has been determined, the simuThe load schedule for test 46 is shown in Fig. 6. The
lation begins. The simulation always starts with no custememost obvious feature of this schedule is that the load grows
in the system. When a customer chooses to end a sessohstantially over time reaching a peak of just over 200,000
as a result of a CBMG state decision, the customer restasisiultaneous total customers at minute 420. The number of
the session after waiting for an exponentially distributiete bronze customers also peaks at minute 419 with 152,000
with a mean of 3.0 seconds. This delay is also used beforewstomers. The number of silver customers peaks later at

TABLE V

99% CONFIDENCE INTERVAL FOR MEAN GLOBAL UTILITY. approa(_:h again _Vi0|ates the gold response tim? SLO during
Cower | Sample | Upper load spikes at minutes 307 and 335. Beyond minute 355, the
Bound | Mean | Bound DS approach struggles to meet any of its response time SLOs
DS 112.4 | 124.8 | 137.3 : . , .
RR 959 | 1097 | 1234 Figure 6 also shows the autonomic controller's policy se-

lections. For the first 185 minutes of the test, the autonomic
controller makes small changes to the s-policy (i.e., theese

70 allocation policy). The f-policy (i.e., the request reditien

‘E[(UEB-UER)/UEB]*loo — policy) makes a substantial adjustment between minute 100
60 - E[(ULE- UDS)UL 100 1 and 116 re_directing nearly 40% of silver requests to the gold
cluster. This helps the autonomic controller to initiakyspond
50 B

to a spike in the number of silver users. The load peak at
140 minutes induces a large exchange of servers beween the
bronze cluster and the gold cluster. When the temporary peak
_ load subsides, the controller returns to the previouslyduse
s-policy allocation. When the load begins to ramp up, the
] autonomic controller uses the s-policy to shift resourceaya
from the bronze cluster to the gold and silver clusters. At
minute 240, when the number of silver users declines and
o / \ \ \ \ \ \ \ the number of bronze and gold users grows, the autonomic
60 120 180 240 300 360 420 480 controller moves servers from the silver cluster to the beon
Time (minutes) and gold clusters. The autonomic controller then relieshen t
Fig. 5. Expected percent difference i, between autonomic LB and RR [-POliCY to make sure that the silver cluster does not become
and DS with 95% confidence intervals. over burdened with requests. At minute 355, the number of
bronze customers drops while the number of silver and gold
customers increases sharply. The resulting s-policy moves
minute 444 with nearly 47,000 customers, while the numbetost of the bronze servers to the gold and silver clusters.
of gold customers peaks at minute 416 with over 35,00@hen the number of gold customers passes the number of
customers. silver customers near minute 375, the autonomic controller
When subjected to the load depicted in Fig. 6, the threesponds by shifting a majority of the application servers t
load balancing approaches produced the global utilities althe gold cluster. The number of silver customers passes the
seen in Fig. 6. The three approaches produce similar glolbaimber of gold customers near minute 425, and the s-policy
utility results from the start of the test through an initiltbp begins moving gold cluster servers back to the silver ctuste
off around minute 45 until minute 85 when the autonomic The analytic model used by the autonomic controller to
LB begins generating marginally more global utility. Atshi evaluate policies provided satisfactory estimates. Clamnsig
point the bronze response time in the DS approach is inchilegds with more than 25,000 users, the average percent-diffe
towards a SLO violation, while the RR approach generates lesice between the observed global utility,)} and the analytic
bid throughput than the autonomic LB because the autonomgigeueing model’s prediction &f, was -1.30%t 0.03% at the
LB favors gold and silver users who are more likely to subm#9% confidence level. The single-threaded simulations were
bids. When the load spikes at minute 133, the RR approaskecuted on systems with two dualcore 2.6 GHz Opteron
violates all of its SLOs, while the DS approach violates th€PUs. Searches for f-policies (budget of 200 evaluaticr t
bronze SLO and nearly violates the gold SLO. The autononaa average 1.45- 0.18 seconds at the 95% confidence level,
LB allows the bronze SLO to be violated while preservingvhile searches for f and s-policies (budget of 500 evalualio
the gold and silver SLOs. This behavior repeats with moteok an average of 4.0+ 0.49 seconds at the 95% confidence
severe consequences during the load peak at minute 183. Wiessl.
the overall load ramps up at minute 225, the RR approach
violates all of its response time SLOs at approximately the V- CONCLUDING REMARKS AND FUTURE WORK
same time. As a result, the RR utility collapses and does notThis paper described the design of an autonomic controller
recover during the course of the test. By minute 255, bothat can search for optimal load balancing and resource allo
the autonomic LB and DS approaches are violating the bronzation policies at an e-commerce site according to a busines
customer response time SLO, but the autonomic LB gets mangéented utility function. This approach is general enough
utility by better satisfying the gold and silver respongsedi that it could be used at most e-commerce websites. We have
SLOs. At minute 257, there is a sharp increase in the numhikoroughly tested this controller by simulating a large e-
of gold customers and the DS approach fails to satisfy tktemmerce site using workloads developed from measurements
gold response time SLO-this is reflected in the poor utilityf real customer behavior [15] and real service demands [14]
production of the DS approach until minute 300. The D®/ have designed and applied a new method for generating

40 -

30

20

10

Expected Percent Difference in Global Utility

220000

Gold o T]
200000 o B0]
% o 50 F .
@ 180000 5 ol]
5 160000 ? 0t]
2 10 | E
S 140000 S L s S S
3 60 B
© 120000 50 -]
8 G 40 | _
S 100000 30 4
£ 20 b
-o(e 80000 10 B L L L L L L L L L]
S 70 T T T T n T T T T T
B 60000 _ 60k G i
S o000 £ %0r]
z £ 40 B
> 30 - .
20000 P = 20t]
) s T o % 0 F i
0 Wi e i Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Time (minutes) Time (minutes)
400 T T T T
Autonomic 08} fgg -
Dedicated 3 o6f
350 - Round-Robin -------- § 04 |
300 o fet T ity
o2t vy
1 1 1 1 1 1 1
> 250 08 fagg
% 15 0.6
E=1 04
F 200 S oa2f
o [0
O 150 i 02+ i
- 1 1 1 1 1 1 1 1 1
] 08 | Tsc i
100 3 = 0.6 | o
| : ozl M W M]
. o 0.2 + .
50 | 7 & 0 JadMsy N\ hM
% | vu \ ™ v
%3 -0.2 \4 b
0 Il Il Il Il A A 1 KW Y Il Il Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Time (minutes) Time (minutes)

Fig. 6. Results from test 46 over simulated time includingdigtop left), s-policy values (top right), global utilitypgttom left), and f-policy values (bottom
right).

dynamic workloads that include extreme phenomena suchtasevery 5 minutes as in the f&s approach. However, the s-
flash crowds. only approach may suffer more from the following drawbacks
Our experiments provided the following results: 1) th&ot considered in our simulation: 1) reduced cache effigienc
autonomic LB matches the performance of the DS and R#hen servers are moved since different user classes may have
approaches at low load levels, 2) the autonomic LB generaf@g€ferences or access to different sets of objects 2) extra
substantially more utility than DS or RR at higher load leyel overhead in redistributing queues because servers arednove
3) the autonomic LB shows a significant utility benefit afnore frequently.
the 99% confidence level over the DS and RR approachesWWe believe that our autonomic LB could be extended in a
and 4) a detailed examination of the results shows that thember of ways. It could be extended to handle server falure
autonomic controller redirects requests and allocatesiress by allowing the total number of application servers to vary.
in a manner that maximizes bid throughput while minimizing\Vorkload forecasting similar to that found in [1] could foetr
response times. improve the autonomic LB’s performance. Machine learning
We have also tested an autonomic LB that implemerﬂ!@,ethods similar to those described in [13] could enablea-|
only f-policies and an autonomic LB that implements onlgliscovery of customer behavior patterns and inform custome
s-policies. Due to space limitations the detailed resutts goriority.
not included in this paper, however a summary of the resultsReducing power consumption in the data center through
may be instructive. The f-only autonomic LB performed betteautonomic computing is an active research topic [5]. We see a
than both the RR and DS approaches but worse than the fi@gs ways in which our autonomic controller might be extended
autonomic LB presented here at a 99% confidence level. Timeimprove energy efficiency in the data center. The autonomi
s-only autonomic LB provided a small (1-2%) but statistical controller could consider suspending or shutting downessrv
significant performance improvement over the f&s approachy 1) relaxing the policy space constraityt +ngs+ng = N
The s-only approach only provides this performance bendfitng+ns+npg < Ny, 2) adding an expression for the utility
if the s-policy is re-evaluated every 30 seconds as opposayings of a shutdown server, 3) adding a utility expresiion

the switching cost and 4) adding a utility expression for thi@4] D. A. Menascé and V. Akula, “A business-oriented loadpatching

resource shortage risk involved in shutting down a server. A
more sophisticated approach to reducing power consumption
would be to 1) add a voltage scaling parameter for eagts)
cluster to the resource allocation policy space and 2) scale
service demands appropriately for the voltage scalingn@uri[m]
the heuristic search. The voltage-scaling approach @eate

nine-dimensional search space that may prove difficult
search with the limited evaluation budget available.

The work of Daniel Menascé is partially supported by NSF

ACKNOWLEDGEMENTS

award no. CCF-0820060.

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

(23]

REFERENCES

M. N. Bennani and D. A. Menascé, “Resource allocationgatonomic
data centers using analytic performance modelsPrioc. IEEE Inter-
national Conference on Autonomic Computing (ICACO05), Seattle, WA,
Jun. 2005, pp. 229-240.

M. C. Huebscher and J. A. McCann, “A survey of autonomimpating
— degrees, models, and application&CM Computing Surveys, vol. 40,
no. 3, Aug. 2008.

G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlicting, a@l Pu,
“Generating adaptation policies for multi-tier server kigggions in con-
solidated server environments,” Rroc. |EEE International Conference
on Autonomic Computing (ICAC08), Chicago, IL, Jun. 2008, pp. 23-32.
D. A. Menascé, R. Dodge, and D. Barbara, “PreservingSQd e-
commerce sites through self-tuning: A performance moderagrh,”
in Proc. ACM Conference on E-commerce, Tampa, FL, Oct. 2001, pp.
224-234.

T. Horvath, K. Skadron, and T. Abdelzaher, “Enhancingergy ef-
ficiency in multi-tier web server clusters via prioritizati,” in Proc.
IEEE International Parallel and Distributed Processing Symposium
(IPDPS 07), Long Beach, CA, Mar. 2007, pp. 1-6.

G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hylgahforce-
ment learning approach to autonomic resource allocatiarBtoc. |IEEE
International Conference on Autonomic Computing (ICAC06), Dublin,
Ireland, Jun. 2006, pp. 65-73.

J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “@e use
of fuzzy modeling in virtualized data center management,’Proc.
IEEE International Conference on Autonomic Computing (ICACO07),
Jacksonville, FL, Jun. 2007, p. 25.

A. Bivens, C. Chhuor, D. Dillenberger, G. Ferris, J. Femt and
W. Chou. (2006, Apr.) Autonomic load balancing, part 1: @isc
content switching module. IBM Developer Works. [Onlinejvaflable:
http://www.ibm.com/developerworks/library/ac-ewlratiil/index.html
D. Breitgand, R. Cohen, A. Nahir, and D. Raz, “On fully wisuted
adaptive load balancing[”ecture Notes in Computer Science, vol. 4785,
pp. 74-85, Sep. 2007.

W. S. Li, D. C. Zilio, V. S. Batra, M. Subramanian, C. Zuizg and
I. Narang, “Load balancing for multi-tiered database systehrough
autonomic placement of materialized views,” Broc. |EEE Interna-
tional Conference on Data Engineering (ICDEOQ6), Atlanta, GA, Apr.
2006, p. 102.

Y. Diao, C. W. Wu, J. L. Hellerstein, A. J. Storm, M. Sudza,
S. Lightstone, S. Parekh, C. Garcia-Arellano, M. Carroll, Chu,
and J. Colaco, “Comparative studies of load balancing wihtrol
and optimization techniques,” iRroc. American Control Conference,
Portland, OR, Jun. 2005, pp. 1484-1490.

L. Zhang and D. Ardagna, “SLA based profit optimizationautonomic
computing systems,” inProc. International Conference on Service
Oriented Computing (ICSOC04), New York, NY, Nov. 2004, pp. 173—
182.

N. Poggi, T. Moreno, J. L. Berral, R. Gavalda, and J.r&sr “Self-
adaptive utility-based web session managemeiihe International
Journal of Computer and Telecommunications Networking, vol. 53,
no. 10, pp. 1712-1721, Jul. 2009.

framework for online auction sites,” iRroc. IEEE International Con-
ference on Quantitative Evaluations of Systems (QESTO07), Edinburgh,
Scotland, Sep. 2007, pp. 249-258.

V. Akula and D. A. Menascé, “Two-level workload charadzation
of online auctions,”Electronic Commerce Research and Applications
Journal, vol. 6, no. 2, pp. 192-208, Jun. 2007.

D. A. Menascg, V. Almeida, R. Fonseca, and M. Mendesntathod-
ology for workload characterization for e-commerce sesy@n Proc.
ACM Conference on E-commerce, Denver, CO, Nov. 1999, pp. 119-128.
D. A. Menascg, V. A. F. Almeida, and L. W. Dowdferformance by
Design: Computer Capacity Planning by Example. Upper Saddle River,
NJ: Prentice Hall, 2004.

