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Abstract—Stochastic network calculus is a theory for stochastic
service guarantee analysis of computer communication networks.
In the current stochastic network calculus literature, its traffic
and server models are typically based on the cumulative amount
of traffic and cumulative amount of service respectively. However,
there are network scenarios where the applicability of such
models is limited, and hence new ways of modeling traffic
and service are needed to address this limitation. This paper
presents time-domain models and results for stochastic network
calculus. Particularly, we define traffic models, which are based
on probabilistic lower-bounds on cumulative packet inter-arrival
time, and server models, which are based on probabilistic upper-
bounds on cumulative packet service time. In addition, examples
demonstrating the use of the proposed time-domain models
are provided. On the basis of the proposed models, the five
basic properties of stochastic network calculus are also proved,
which implies broad applicability of the proposed time-domain
approach.

I. I NTRODUCTION

Stochastic network calculus is a theory dealing with queue-
ing systems found in computer communication networks
[4][9][11][13]. It is particularly for analyzing networkswhere
service guarantees are provided stochastically. Such networks
include wireless networks, multi-access networks and multi-
media networks where applications can tolerate some certain
violation of the desired performance [7][8].

Stochastic network calculus is based on properly de-
fined traffic models [3][11][13][14][17][18] and server models
[11][13]. In the existing models of stochastic network cal-
culus, an arrival process and a service process are typically
modeled by some stochastic arrival curve, which probabilis-
tically upper-bounds thecumulative amount of arrival, and
respectively by some stochastic service curve, which prob-
abilistically lower-bounds thecumulative amount of service.
In this paper, we call such modelsspace-domainmodels.
Based on thespace-domaintraffic and server models, a lot
of results have been derived for stochastic network calculus.
Among the others, the most fundamental ones are the five basic
properties [11] [13]: (P.1)Service Guaranteesincluding delay
bound and backlog bound; (P.2)Output Characterization;
(P.3) Concatenation Property; (P.4) Leftover Service; (P.5)
Superposition Property. Examples demonstrating the necessity
of having these basic properties and their use can be found [11]
[13].

Nevertheless, there are still many open research chal-
lenges for stochastic network calculus, and a critical one
is time-domain modeling and analysis[13]. Time-domain
modeling for service guarantee analysis has its root from
the deterministic Guaranteed Rate (GR) server model [10],
where service guarantee is captured by comparing with a
(deterministic) virtual time function in the time-domain.This
time-domain model has been extended to design aggregate-
scheduling networks to support per-flow (deterministic) ser-
vice guarantees [6][12], while few such results are available
from space-domain models. Other network scenarios where
time-domain modeling may be preferable include wireless
networks and multi-access networks. In wireless networks,the
varying wireless link condition can cause the sender fail to
send when the link condition is ‘bad’ and then the sender
may have to hold until the link state becomes ‘good’. For
such cases, characterizing the service process is difficultin
the space-domain, while much easy in the time-domain. In
contention-based multi-access networks, backoff schemesare
often employed to reduce collision occuring. While it is quite
cumbersome for a space-domain server model to characterize
the service taking into account the backoff process, the time-
domain server models well suit the need. Having said these,
however, how to define a stochastic version of the virtual time
function and how to perform the corresponding analysis are
yet open [13].

The objective of this paper is to define traffic models and
server models in thetime-domainand derive the corresponding
five basic properties for stochastic network calculus. Particu-
larly, we define traffic models that are based on probabilistic
lower bounds oncumulative packet inter-arrival time. Also,
we define server models that are based on some virtual time
function and probabilistic upper bounds oncumulative packet
service time. In addition, we establish relationships among the
proposed time-domain models, and the mappings between the
proposed time-domain models and the existing space-domain
models. Furthermore, we prove the five basic properties based
on the proposed time-domain models.

The remainder is structured as follows. Sec. II introduces
the mathematical background and fundamental space-domain
models and relevant results of stochastic network calculus. In
Sec. III, we first introduce the time-domain deterministic traffic
and server models, and then extend them to stochastic versions.
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In addition, the relationships among them as well as with
some existing space-domain models are established. Sec. IV
explores the five basic properties. Finally, Sec. V summarizes
the work.

II. N OTATION AND RELEVANT BACKGROUND

To ease expression, we assume networks withfixed unit
length1 packets. By convention, we assume that a packet is
considered to be received by a network element when and
only when its last bit has arrived to the network element, and
a packet is considered out of a network element when and only
when its last bit has been transmitted by the network element.
A packet can be served only when its last bit has arrived. All
queues are assumed to be empty at time0. Packets within a
flow are served in the first-in-first-out (FIFO) order.

A. Notation

Let pn, r(n), a(n) and d(n) (n = 0, 1, 2, ...) denote the
nth packet of a flow, its allocated service rate, its arrival
time and its departure time, respectively. LetA(t) andA∗(t)
respectively denote the number of cumulative arrival packets
and the number of cumulative departure packets by timet.
By convention, we assumea(0) = 0, d(0) = 0, A(0) = 0
and A∗(0) = 0. For any0 ≤ s ≤ t, we denoteA(s, t) ≡
A(t)−A(s) andA∗(s, t) ≡ A∗(t)−A∗(s).

In this paper,a(n) andA(t) will be used to represent an
arrival process interchangeably. A departure process willbe
represented byd(n) andA∗(t) interchangeably.

The following function sets are often used in this paper.
Specifically, we useG to denote the set of non-negative wide-
sense increasing functions as follows:

G = {g(·) : ∀0 ≤ x ≤ y, 0 ≤ g(x) ≤ g(y); g(0) = 0}

We denote bȳG the set of non-negative wide-sense decreasing
functions:

Ḡ = {g(·) : ∀0 ≤ x ≤ y, 0 ≤ g(y) ≤ g(x)}

Let F̄ denote the set of functions in̄G, where for each function
f(·) ∈ F̄ , its nth-fold integration, denoted byf (n)(x) ≡
( ∫∞

x
dy

)n
f(y), is bounded for anyx ≥ 0 and still belongs to

F̄ for anyn ≥ 0, or

F̄ =
{

f(·) : ∀n ≥ 0,
(

∫ ∞

x

dy
)n
f(y)

}

.

For ease of exposition, we adopt

[x]+ ≡ max[0, x] and [x]1 ≡ min[1, x],

and assume that for any bounding functionf(x), f(x) = 1
for any x < 0.

1The results can also be extended to networks with variable-length packets
while the expression and results will be more complicated.

B. Max-plus and Min-plus Algebra Basics

An essential idea of (stochastic) network calculus is to use
alternate algebras particularly the min-plus algebra and max-
plus algebra [2] to transform complex non-linear network
systems into analytically tractable linear systems [13]. To
the best of our knowledge, the existing models and results
of stochastic network calculus are mainly under thespace-
domain and based on min-plus algebra that has basic op-
erations particularly suitable for characterizing cumulative
arrival and cumulative service. For characterizing arrival and
service processes in thetime-domain, interestingly, the max-
plus algebra has basic operations that well suit the need.

In this paper, the followingmax-plusand min-plusopera-
tions will often be used:

• Max-Plus Convolutionof g1 andg1 is

(g1⊗g2)(n) = sup
0≤m≤n

{g1(m) + g2(n−m)}

• Max-Plus Deconvolutionof g1 andg1 is

(g1⊘g2)(n) = inf
m≥0

{g1(n+m)− g2(m)}

• Min-Plus Convolutionof g1 andg1 is

(g1 ⊗ g2)(n) = inf
0≤m≤n

{g1(m) + g2(n−m)}

• Min-Plus Deconvolutionof g1 andg1 is

(g1 ⊘ g2)(n) = sup
m≥0

{g1(n+m)− g2(m)}

In this paper, when applyingsupremumand infimum, they
may be interpreted asmaximum and minimum whenever
appropriate, respectively.

C. Random Variables and Stochastic Process Basics

Lemma 1. For the sum of a collection of random variables
Z =

∑n
i=1 Xi, no matter whether they are independent or

not, there holds for the complementary cumulative distribution
function (CCDF) ofZ: (See Lemma 1.5 in [13])

F̄Z(z) ≤ F̄X1 ⊗ · · · ⊗ F̄Xn
(z) (1)

whereF̄Z = P{Z > z}, −∞ < z ≤ ∞.

In this paper, we need some transformation between the
number of cumulative arrival packets by timet (i.e., A(t))
and the time of a packet arriving to the system (i.e.,a(n)).
The transformation can be expressed by the following way.
Consider a stochastic process. Let N(t)(t ≥ 0) denote the
number of events occuring by timet andX(n) be the time of
thenth event occuring. By convention, we assumeN(0) = 0
andX(0) = 0. There exists an important relationship between
N(t) andX(n) as follows [15]:

N(t) ≥ n ⇔ X(n) ≤ t (2)

From Eq.(2), we obtain

P{N(t) ≥ n} = P{X(n) ≤ t} (3)



If N(t) is (probabilistically) upper-bounded with respect to
some functionα(t) ∈ G, we have the following relationships
betweenX(n) andN(t):

Lemma 2. (i) For function α(t) ∈ G, if N(s, t) ≤ α(t − s)
for any 0 ≤ s ≤ t, there holds

N ⊗ α(t) = n ⇒ X⊗λ(n) ≥ t (4)

where,λ(n) is the inverse function ofα(t) and is defined as
follows:

λ(n) = inf{t : α(t) ≥ n}. (5)

(ii) Inversely, for functionλ(n) ∈ G, if X(n) − X(m) ≥
λ(n−m) for any 0 ≤ m ≤ n, there holds

X⊗λ(n) = t ⇒ N ⊗ α(t) ≥ n (6)

where,α(t) is the inverse function ofλ(n) and is defined as
follows:

α(t) = sup{n : λ(n) ≤ t}. (7)

Proof: (i) The condition is equivalent to enforcingN(t) ≤
N ⊗ α(t) = n. From Eq.(2), we haveX(n) ≥ t. As X(n) ≤
X⊗α−1(n), we concludeX⊗α−1(n) ≥ t.

(ii) The condition is equivalent to enforcingX(n) ≤
X⊗λ(n) = t. From Eq.(2), we obtainN(t) ≥ n. As
N(t) ≤ N⊗λ−1(t), we haveN ⊗ λ−1(t) ≥ n.

D. Relevant Results under Min-Plus Algebra

This sub-section reviews the basicspace-domaintraffic and
server models of stochastic network calculus under min-plus
algebra [13]. It is worth highlighting that all these modelsare
for discrete time systems with unit discretization step.

The space-domain stochastic traffic models include v.b.c
stochastic arrival curve and m.b.c stochastic arrival curve
defined as follows:

Definition 1. (v.b.c Stochastic Arrival Curve). A flow is
said to have a virtual-backlog-centric (v.b.c) stochasticarrival
curveα(t) ∈ G with bounding functionf(x) ∈ Ḡ, denoted by
A ∼vb 〈α, f〉, if for all t ≥ 0 and all x ≥ 0, there holds

P
{

sup
0≤s≤t

{A(s, t)− α(t− s)} > x
}

≤ f(x). (8)

Definition 2. (m.b.c Stochastic Arrival Curve). A flow is said
to have a maximum-(virtual)-backlog-centric (m.b.c) stochas-
tic arrival curveα(t) ∈ G with bounding functionft(x) ∈ Ḡ,
denoted byA(t) ∼mb 〈α, ft〉, if for all t ≥ 0 and all x ≥ 0,
there holds

P
{

sup
0≤s≤t

sup
0≤u≤s

{A(u, s)− α(s− u)} > x
}

≤ ft(x). (9)

The space-domain stochastic server models include weak
stochastic service curve and stochastic service curve defined
as follows:

Definition 3. (Weak Stochastic Service Curve). A systemS
is said to provide a weak stochastic service curveβ(t) ∈ G

with bounding functiong(x) ∈ Ḡ, denoted byS ∼ws 〈β, g〉,
if for all t ≥ 0 and all x ≥ 0, there holds

P
{

A⊗
(

β(t)− x
)+

−A∗(t) > 0
}

≤ g(x). (10)

Definition 4. (Stochastic Service Curve). A systemS is said
to provide a stochastic service curveβ(t) ∈ G with bounding
functiongt(x) ∈ Ḡ, denoted byS ∼sc 〈β, gt〉, if for all t ≥ 0
and all x ≥ 0, there holds

P
{

sup
0≤s≤t

[A⊗
(

β(s)− x
)+

−A∗(s)] > 0
}

≤ gt(x) (11)

Based on the above space-domain traffic and server models,
a lot of results have been derived for stochastic network
calculus which include the five basic properties [13]. In this
paper, the following result will specifically be made use of in
later analysis and is hence listed:

Lemma 3. (Superposition Property). ConsiderN flows with
arrival processesAi(t), i = 1, ..., N , respectively. LetA(t)
denote the aggregate arrival process. If∀i, Ai ∽vb 〈fi, αi〉,
then A ∽vb 〈f, α〉 with α(t) =

∑N
i=1 αi(t), and f(x) =

f1 ⊗ · · · ⊗ fN(x).

III. T IME-DOMAIN MODELS

This section first reviews the deterministic arrival curve
and service curve models defined in the time-domain. Then,
we generalize them and definetime-domainstochastic arrival
curve and stochastic service curve models.

A. Deterministic Arrival Curve

Consider a flow of which packets arrive to a system at time
a(n). In order to deterministically guarantee a certain level
of quality of service (QoS) to this flow, the traffic sent by
this flow must be limited. The deterministic network calculus
traffic model in the time-domain characterizes packet inter-
arrival time using a lower-bound function, called arrival curve
in this paper and defined as follows [5]:

Definition 5. (Arrival Curve). A flow is said to have a
(deterministic) arrival curveλ(n) ∈ G, if its arrival process
a(n) satisfies, for all0 ≤ m ≤ n,

a(n)− a(m) ≥ λ(n−m). (12)

The arrival curve model has the following triplicity principle
which will be used as the basis in defining the stochastic arrival
curve models in the subsequent subsections.

Lemma 4. The following statements are equivalent:
1) ∀0 ≤ m ≤ n, a(n)− a(m) ≥ λ(n−m)− x;
2) ∀n ≥ 0, sup0≤m≤n{λ(n−m)− [a(n)− a(m)]} ≤ x;
3) ∀n ≥ 0, sup0≤m≤n sup0≤q≤m{λ(m − q) − [a(m) −

a(q)]} ≤ x;
for all x ≥ 0, whereλ ∈ G.

Proof: It is trivially true thatλ(n−m)− [a(n)−a(m)] ≤
sup0≤m≤n{λ(n−m)−[a(n)−a(m)]}, from which, (2) implies
(1). In addition

sup
0≤m≤n

{λ(n−m)− [a(n)− a(m)]}



≤ sup
0≤m≤n

sup
m≤k≤n

{λ(k −m)− [a(k)− a(m)]}

= sup
0≤k≤n

sup
0≤m≤k

{λ(k −m)− [a(k)− a(m)]}

= sup
0≤m≤n

sup
0≤q≤m

{λ(m− q)− [a(m)− a(q)]}

with which, (3) implies (2). For (1)→(2), it holds since
a(n) − a(m) ≥ λ(n − m) − x for all 0 ≤ m ≤ n. For
(2)→(3), sup0≤m≤n sup0≤q≤m{λ(m− q)− [a(m)−a(q)]} ≤
sup0≤m≤n[x] = x. Thus (1), (2) and (3) are equivalent.

From Definition 5, the right-hand side ofa(n) − a(m) ≥
λ(n−m)− x in Lemma 4.(1) defines an arrival curveλ(n−
m) − x. In addition, we can construct a virtual single server
queue (SSQ) system that is initially empty, fed with the same
traffic flow, and have a service curveλ which makesd(n) ≤
a⊗λ(n) (see Definition 9). Then, the delay in the virtual SSQ
system is upper-bounded byd(n)− a(n) ≤ sup0≤m≤n[λ(n−
m) − (a(n) − a(m))] ≤ x, and the maximum system delay
for the firstn packets is upper-bounded bysup0≤m≤n{d(m)−
a(m)} ≤ sup0≤m≤n sup0≤q≤m{λ(m−q)− [a(m)−a(q)]} ≤
x.

In addition, Definition 5 is equivalent to enforcing that for
all n ≥ 0, there holds

a(n) ≤ sup
0≤m≤n

{

a(m) + λ(n−m)
}

= a⊗λ(n). (13)

Example 1. The Generic Cell Rate Algorithm (GCRA) [1]
with parameter(T, τ) is a parallel algorithm to the Leaky
Bucket algorithm and has been used in fixed-length packet
networks such as Asynchronous Transfer Mode (ATM) net-
works. Here,T is an ideal inter-arrival between packets andτ
is the maximum acceptable excursion that quantifies how early
packets may arrive with respect toT . It can be verified that if
a flow is GCRA(T, τ)-constrained, it has an arrival curve

λ(n) = T · n− τ.

B. i.t Stochastic Arrival Curve

Lemma 4.(1) defines a deterministic arrival curveλ(n)− x
which lower-bounds the inter-arrival time between any two
packets. Based on this, we define its probabilistic counterpart
as follows:

Definition 6. (i.t Stochastic Arrival Curve). A flow is said to
have an inter-arrival-time (i.t) stochastic arrival curveλ ∈ G
with bounding functionh ∈ Ḡ, denoted bya(n) ∼it 〈λ, h〉, if
for all n ≥ 0 and all x ≥ 0, there holds

P
{

λ(n−m)− [a(n)− a(m)] > x
}

≤ h(x). (14)

Example 2. Consider a flow with fixed unit packet size.
Suppose its packet inter-arrival time follow an exponential
distribution with mean1

ρ . Then, the packet arrival time has
an Erlang distribution with parameter(n, ρ). And, for any
two packetspm and pn, their inter-arrival timea(n) − a(m)
satisfies, for anyx ≥ 0,

P
{1

ρ
(n−m)− [a(n)− a(m)] > x

}

≤ 1−

n−m−1
∑

k=0

e−ρy(ρy)k

k!
− ρ

e−ρy(ρy)n−m−1

(n−m− 1)!

wherey = 1
ρ(n−m)− x.

The i.t stochastic arrival curve is intuitively simple, butit
has limited use if no additional constraint if enforced. Let
us consider a simple example to understand this problem.
Consider a single node with constant per packet service timeT
and with its input flowF satisfyinga(n) ∼it 〈τ · n, h〉 where
τ ≥ T . Suppose we are interested in the delayD(n), where,
by definition,D(n) = d(n)− a(n). As the node has constant
per packet service timeT , it has a (deterministic) service curve
T ·n. In other words,d(n) ≤ sup0≤m≤n[a(m)+T · (n−m)].
Then we have

D(n) ≤ sup
0≤m≤n

{

a(m) + T · (n−m)
}

− a(n)

= sup
0≤m≤n

{

a(m) + T · (n−m)− a(n)
}

≤ sup
0≤m≤n

{

τ · (n−m)− [a(n)− a(m)]
}

(15)

From Eq.(15), we have difficulty in further deriving more
results if no additional constraint is added because we only
know P{τ · (n − m) − [a(n) − a(m)]} ≤ h(x). When
investigating the performance metrics such as delay bound and
backlog bound in Section IV-A, we meet the similar difficulty.

C. v.s.d Stochastic Arrival Curve

The previous subsection stated the difficulty of applying
i.t stochastic arrival curve to service guarantee analysis. This
subsection introduces another stochastic arrival curve model
that can help avoid such difficulty. This model is called
the virtual-system-delay(v.s.d) stochastic arrival curve. The
model explores thevirtual system delay propertyof determin-
istic arrival curve as implied by Lemma 4.(2), which is that the
amount of time a packet spends in a virtual single server queue
(SSQ) fed with the same flow with a deterministic arrival curve
is lower-bounded.

For a flow having deterministic arrival curve, we can
construct a virtual SSQ system fed with the flow, which has
infinite buffer space and the buffer is initially empty. Then,
suppose the virtual SSQ provides a deterministic service curve
λ to the flow ord(n) = a⊗λ(n) for all n ≥ 0. We now have
that the amount of time packetn spends in the virtual SSQ
system isWs(n) = d(n) − a(n) = sup0≤m≤n{λ(n − m) −
[a(n) − a(m)]}. If the flow is constrained by arrival curve
λ(n)− x for all n ≥ 0, it is obviously thatWs is also lower-
bounded byx.

Based on the virtual system time property, we define virtual-
system-delay (v.s.d) stochastic arrival curve to characterize the
arrival process as follows:

Definition 7. (v.s.d Stochastic Arrival Curve). A flow is said
to have a virtual-system-delay (v.s.d) stochastic arrivalcurve



λ ∈ G with bounding functionh ∈ Ḡ, denoted bya(n) ∼vd

〈λ, h〉, if for all n ≥ 0 and all x ≥ 0, there holds

P
{

sup
0≤m≤n

{

λ(n−m)− [a(n)−a(m)]
}

> x
}

≤ h(x). (16)

Example 3. Consider a flow with the same fixed packet
size. Suppose all packet inter-arrival times are exponentially
distributed with mean1µ . Based on the steady-state probability
mass function (PMF) of the queue-waiting time for an M/D/1
queue [16], we say that the flow has a v.s.d stochastic arrival
curvea(n) ∼vd 〈hexp, D ·n〉 for anyD < 1

µ , with ρ = µ
D and

hexp(x) = 1− (1− ρ)

⌊x/D⌋+1
∑

i=0

e−µ(−x) [µ(−x)]i

i!

where,⌊x/D⌋ denotes the greatest integer less than or equal
to x/D.

The following theorem establishes a relationship between
i.t stochastic arrival curve and v.s.d stochastic arrival curve.

Theorem 1. 1) If a flow has a v.s.d stochastic arrival curve
λ ∈ G with bounding functionh ∈ Ḡ, then the flow has
an i.t stochastic arrival curveλ ∈ G with the same
bounding functionh ∈ Ḡ.

2) Conversely, if a flow has an i.t stochastic arrival curve
λ ∈ G with bounding functionh ∈ F̄ , it also has a
v.s.d stochastic arrival curveλ−η ∈ G with bounding
functionhη ∈ Ḡ where

λη(n) = λ(n) − η · n

hη(x) =
[

h(x) +
1

η

∫ ∞

x

h(y)dy
]

1

for any η > 0.

Proof: The first part follows easily from the fact that for
any0 ≤ m ≤ n, λ(n−m)−[a(n)−a(m)] ≤ sup0≤m≤n{λ(n−
m)− [a(n)− a(m)]}. For the second part, there holds

sup
0≤m≤n

{λ−η(n−m)− [a(n)− a(m)]}

≤st sup
0≤m≤n

{λ−η(n−m)− [a(n)− a(m)]}+

Since for anyx ≥ 0, P
{

{λ(n−m)− η · (n−m)− [a(n)−
a(m)]}+ > x

}

= P
{

{λ(n − m) − η · (n − m) − [a(n) −
a(m)]} > x

}

≤ h
(

x+ η · (n−m)
)

, we have

P
{

sup
0≤m≤n

{λ−η(n−m)− [a(n)− a(m)]} > x
}

≤
n
∑

m=0

P
{

{λ−η(n−m)− [a(n)− a(m)]}+ > x
}

≤

n
∑

m=0

h(x+ η · (n−m)) =

n
∑

k=0

h(x+ η · k)

≤

∞
∑

k=0

h(x+ η · k) = h(x) +

∞
∑

k=1

h(x+ η · k)

≤ h(x) +
1

η

∫ ∞

x

h(y)dy. (17)

which is meaningful only when Eq.(17) is upper-bounded by
one. The 1-fold integration ofh(x) is bounded by one because
the condition assumesh ∈ F̄ as for the [17]. Then the second
part follows from Eq.(17).

Note that in the second part of the above theorem,h(x) ∈ F̄
while not∈ Ḡ. If the requirement on the bounding function is
relaxed toh(x) ∈ Ḡ, the above relationship may not hold in
general.

The v.s.d stochastic arrival curve has a counterpart defined
under min-plus algebra, the v.b.c stochastic arrival curveas
defined in Definition 1. The following result establishes a
relationship between these two models.

Theorem 2. 1) If a flow has a v.b.c stochastic arrival curve
α(t) ∈ G with bounding functionf(x) ∈ Ḡ, the flow has
a v.s.d stochastic arrival curveλ(n) ∈ G with bounding
functionh(x) ∈ Ḡ whereh(x) = f

(

[α(x) − y]+
)

with
y = A⊗α(t)+α(x)−n+1−A(t−x, t), andλ(n) =
inf{t : α(t) ≥ t}.

2) If a flow has a v.s.d stochastic arrival curveλ(n) ∈
G with bounding functionh(x) ∈ Ḡ, the flow has a
v.b.c stochastic arrival curveα(t) ∈ G with bounding
function f(x) ∈ Ḡ wheref(x) = h

(

[λ(x) − θ]+
)

and
α(t) = sup{n : λ(n) ≤ t}.

Proof: For the first part, Eq.(2) implies that for anyx ≥ 0,
if a(n) < a⊗λ(n) − x there must beA(a⊗λ(n) − x) ≥ n
since otherwise ifA(a⊗λ(n)−x) < n thena(n) > a⊗λ(n)−
x, that would contradict the conditiona(n) < a⊗λ(n) − x.
In other words, event{a(n) < a⊗λ(n) − x} implies event
{A(a⊗λ(n) − x) ≥ n} and thus

P{a(n) < a⊗λ(n)− x} ≤ P{A(a⊗λ(n) − x) ≥ n} (18)

Due to the assumption of fixed unit packet size and a packet
being counted when and only when its last bit has arrived,
event{A(a⊗λ(n)−x) ≥ n} implies event{A(a⊗λ(n)−x) >
n− 1} and hence,

P{A(a⊗λ(n)−x) ≥ n} ≤ P{A(a⊗λ(n)−x) > n−1} (19)

Let a⊗λ(n) = t. From Eq.(6), we knowA ⊗ α(t) ≥ n. The
right-hand side of Eq.(19) can be rewritten asA(t−x) > n−1.
As A(t− x) = A(t)−A(t− x, t), we have

A(t) > n− 1 +A(t− x, t) = A⊗ α(t) + α(x)− y (20)

wherey = A⊗α(t)+α(x)−n+1−A(t−x, t). As the flow
has a v.b.c stochastic arrival curveα with bounding function
f(x), we rewrite Eq.(8) as follows

P{A(t)−A⊗ α(t) > x} ≤ f(x)

Then, from Eq.(20), we obtain

P
{

A(t)−A⊗ α(t) > [α(x) − y]+
}

≤ f
(

[α(x) − y]+
)



where, because of the restrictionf(x) = 1 for any x < 0.
According to Eq.(18), we conclude

P
{

a(n) < a⊗λ(n)− x
}

≤ f
(

[α(x) − y]+
)

.

wherea(n) < a⊗λ(n)−x = sup0≤m≤n{λ(n−m)− [a(n)−
a(m)] > x. Thue, the first part is proved.

For the second part, letτ(i), i=1,2,..., denote inter-arrival
time between the(i − 1)th and theith packets, thena(n) =
∑n

i=1 τ(i). Eq.(2) implies that for anyx ≥ 0, if A(t) > A⊗
α(t) + x there must bea(A⊗ α(t) + x) ≤ t since otherwise
if a(A⊗ α(t) + x) > t andA(t) < A⊗ α(t) + x, that would
contradict the conditionA(t) > A⊗α(t)+x. In other words,
event{A(t) > A⊗α(t)+x} implies event{a(A⊗α(t)+x) ≤
t}, and thus

P{A(t) > A⊗ α(t) + x} ≤ P
{

a
(

A⊗ α(t) + x
)

≤ t
}

(21)

For any θ > 0 and θ → 0, event
{

a
(

A ⊗ α(t) + x
)

≤ t
}

implies event
{

a
(

A⊗ α(t) + x
)

< t+ θ
}

and hence

P
{

a
(

A⊗α(t)+x
)

≤ t
}

≤ P
{

a
(

A⊗α(t)+x
)

< t+θ
}

(22)

Let A ⊗ α(t) = n. From Eq.(4), we knowa⊗λ(n) ≥ t. In
addition,a(n + x) − a(n) =

∑n+x
i=n+1 τ(i) ≥ λ(x). Then the

right-hand side of Eq.(22) can be rewritten as follows:

a(n) < t+ θ −

n+x
∑

i=n+1

τ(i) ≤ a⊗λ(n) + θ − λ(x) (23)

As the flow has av.s.d stochastic arrival curveλ(n) with
bounding functionh(x), we rewrite Eq.(16) as follows

P
{

a⊗λ(n)− a(n) > x
}

≤ h(x)

From Eq.(23), we obtain

P
{

a⊗λ(n)− a(n) > λ(x) − θ
}

≤ h
(

λ(x) − θ
)

According to Eq.(21), we conclude

P{A(t) > A⊗ α(t) + x} ≤ h
(

λ(x) − θ
)

whereA(t) > A⊗α(t)+x = sup0≤s≤t[A(s, t)−α(s, t)] > x.
Thus, the second part is proved.

D. m.s.d Stochastic Arrival Curve

The maximum-(virtual)-system-delay (m.s.d) stochastic ar-
rival curve explores themaximum virtual system delay prop-
erty of deterministic arrival curve implied by Lemma 4.(3),
which is that the maximum system delay of a virtual SSQ
fed with the same flow with a deterministic arrival curve is
lower-bounded.

Similar to the discussion for v.s.d stochastic arrival curve,
for a flow having arrival curve, we can construct a virtual
SSQ system fed with the flow, which has infinite buffer space
and the buffer is initially empty. Then, suppose the virtual
SSQ provides a deterministic service curveλ to the flow or
d(n) = a⊗λ(n) for all n ≥ 0. We have the maximum system
delay in the virtual SSQ system for the firstn arrival packets
as sup0≤m≤n Ws(m) = sup0≤m≤n sup0≤q≤m{λ(m − q) −

[a(m) − a(q)]}. If the flow is constrained by arrival curve
λ(n) − x for all n ≥ 0, it is clear that the maximum system
delay in the virtual SSQ is also upper-bounded byx.

Based on the maximum virtual system delay property, we
define m.s.d stochastic arrival curve as follows:

Definition 8. (m.s.d Stochastic Arrival Curve). A flow is said
to have a maximum-(virtual)-system-delay (m.s.d) stochastic
arrival curve λ(n) ∈ G with bounding functionh(x) ∈ Ḡ,
denoted bya(n) ∼md 〈λ, h〉, if for all n ≥ 0 and all x ≥ 0,
there holds

P
{

sup
0≤m≤n

sup
0≤q≤m

{

λ(m− q)− [a(m)−a(q)]
}

> x
}

≤ h(x).

(24)

E. Deterministic Service Curve

To provide service guarantees to an arrival-constrained flow
F , the system usually needs to allocate a minimum service
rate toF . A guaranteed minimum service rate is equivalent
to a guaranteed maximum service time for each packet of the
flow, and accordingly the packet’s departure time from the
system is bounded. As packets of the same flow are served
in FIFO manner, any packetpn from this flow will depart by
d̂(n), with d̂(n) iteratively defined by

d̂(0) = 0

d̂(n) = max[a(n), d̂(n− 1)] + δ(n) (25)

whereδ(n) is the service time guaranteed topn. By applying
Eq.(25) iteratively to its right-hand side, it becomes

d̂(n) = sup
0≤m≤n

[a(m) +

n
∑

i=m

δ(i)] (26)

where
∑n

i=m δ(i) is the guaranteed cumulative service time
for packetpm to pn. Suppose we can use a functionγ(n−m)
for

∑n
i=m δ(i), i.e. γ(n−m) =

∑n
i=m δ(i). Then, the above

equation becomes

d̂(n) = sup
0≤m≤n

[a(m) + γ(n−m)] = a⊗γ(n),

which provides a basis for the followingtime-domain(deter-
ministic) server model that essentially charaterizes the service
using an upper bound on the cumulative service time [5]:

Definition 9. (Service Curve). Consider a systemS with input
processa(n) and output processd(n). The system is said to
provide to the input a (deterministic) service curveγ(n) ∈ G,
if for all n ≥ 0,

d(n) ≤ a⊗γ(n). (27)

The (deterministic) service curve model has the following
duality principle:

Lemma 5. For anyx ≥ 0, d(n)−a⊗γ(n) ≤ x for all n ≥ 0,
if and only if sup0≤m≤n[d(n) − a⊗γ(n)] ≤ x for all n ≥ 0,
whereγ ∈ G.

Proof: For the ”if” part, it holds trivally sinced(n) −
a⊗γ(n) ≤ sup0≤m≤n[d(n)−a⊗γ(n)]. For the ”only if” part,



sinced(n) − a⊗γ(n) ≤ x for all n ≥ 0, sup0≤m≤n[d(n) −
a⊗γ(n)] ≤ sup0≤m≤n[x] = x.

By the definition of service curve, it is clear that the first
part of Lemma 5 defines a service curveγ(n) + x. Lemma 5
states that if a server provides service curveγ(n) + x, then
sup0≤m≤n[d(m) − a⊗γ(m)] ≤ x holds, and vice versa. In
this sense, we call Lemma 5 theduality principle of service
curve.

F. Stochastic Service Curve

For networks providing stochastic service guarantees, fol-
lowing the principle of Eq.(26), we have the following expres-
sion for the expected departure time of packetpn

d̂(n) = sup
0≤m≤n

[a(m) +

n
∑

i=m

(δ(i) + ǫ(i))]

where we assumeδ(i) is the deterministic part whileǫ(i) the
random part in the total service timeδ(i) + ǫ(i) guaranteed
to packetpi. We call ǫ(i) stochastic error termassociated to
δ(i). Here,ǫ(n) is introduced to represent the additional delay
of pn due to some randomness. For example, an error-prone
wireless link is often considered to operate in two states. If
the link is in ‘good’condition, it can send and receive data
correctly; if the link is in ‘bad’condition due to errors, the
data that should be sent immediately has to be queued longer
until the channel changes to ‘good’condition. Then,ǫ(n) in
this case represents the time period in which the channel is
in ‘bad’condition between the time whenpn−1 has been sent
correctly and the time whenpn can be sent.

With the consideration of the stochastic error term, the
(deterministic) service curve can be extended to a stochastic
version as follows:

Definition 10. (i.d Stochastic Service Curve). A system is said
to provide aninter-departure time (i.d) stochastic service curve
γ ∈ G with bounding functionj ∈ Ḡ, denoted byS ∼id 〈j, γ〉,
if for all n ≥ 0 and all x ≥ 0, there holds

P
{

d(n)− a⊗γ(n) > x
}

≤ j(x). (28)

Example 4.Consider two nodes, the sender and the receiver,
communicate through an error-prone wireless link. Packets
have fixed-length. Packets arriving to the sender node are
served in FIFO manner. Assume the guaranteed per-packet
service time isδ without any error. To simplify the analysis,
assume the time slot length equalsδ. The sender sends packets
correctly only when the link is in ‘good’condition. If the
link is in ‘bad’condition, no packets can be sent correctly.In
addition, the sender can send the head-of-queue packet only
at the beginning of a time slot, i.e., the time period during
which the link is in ‘bad’condition should be an integer times
of δ. The probability that a packet can be sent correctly is
determined by packet error rate (PER). PER is determined by
the packet length and the bit error rate (BER). Here, we assume
packet errors happen independently and the same PER denoted
by Pe is applied to all packets. The successful transmission
probability of one packet is hence1− Pe.

SupposeP{∆(n) = i} = P i−1
e (1−Pe), i ≥ 1, where∆(n)

represents the number of time slots necessary to successfully
send thenth packet with respect to the successful transmission
probability 1 − Pe. The number of time slots necessary to
successfully sendn packets is

∑n
k=1 ∆(k) which has the

negative binomial distribution

P
{

n
∑

k=1

∆(k) = i
}

=







(

i− 1
n− 1

)

(1 − Pe)
nP i−n

e , i ≥ n

0, i < n

Then the sender provides to its input a stochastic service curve
γ which has the following distribution

P{γ(n) = ⌈
τ

δ
⌉} =

(

⌈ τ
δ ⌉ − 1
n− 1

)

(1 − Pe)
nP

⌈ τ

δ
⌉−n

e

whereτ is the guaranteed service time to successfully sendn
packets and⌈x⌉ denotes the smallest integer greater than or
equal tox.

We can findn0 ≤ n such thata⊗γ(n) takes its maximum
value, i.e.,a⊗γ(n) = a(n0) + γ(n− n0 + 1). From Eq.(28),
we have

P{γ(n− n0 + 1) < d(n)− a(n0)− x} ≤ j(x)

where

j(x) =

⌈
d(n)−a(n0)−x

δ
⌉−1

∑

i=n

(

i− 1
n− 1

)

(1− Pe)
nP i−n

e

In Sec. IV, we will show that many results can be derived
from i.d stochastic service curve model. However, without
additional constraints, we have difficulty to prove the concate-
nation property for i.d stochastic service curve. To address this
difficulty, we introduce a stronger definition in the following
subsection.

G. Constrained Stochastic Service Curve

The constrained stochastic service curve model is general-
ized from the (deterministic) service curve model based on its
duality principle. From Lemma 5, we know that a system with
input a(n) and outputd(n) has a service curveγ(n) if and
only if for all n ≥ 0,

sup
0≤m≤n

{d(m)− a⊗γ(m)} ≤ x. (29)

Inequality (29) provides the basis to generalize the (determin-
istic) service curve model to the constrained stochastic service
curve defined as follows:

Definition 11. (Constrained Stochastic Service Curve). A
system is said to provide aconstrained stochastic service
curve (c.s) γ ∈ G with bounding functionj ∈ Ḡ, denoted
by S ∼cs 〈j, γ〉, if for all n ≥ 0 and all x ≥ 0, there holds

P
{

sup
0≤m≤n

[d(m)− a⊗γ(m)] > x
}

≤ j(x). (30)

The following theorem establishes a relationship between
i.d stochastic service curve and c.s stochastic service curve.



Theorem 3. 1) If a serverS provides to its inputa(n) a
c.s stochastic service curveγ(n) with bounding function
j(x) ∈ Ḡ, it provides to the inputa(n) an i.d stochastic
service curveγ(n) with the same bounding function
j(x) ∈ Ḡ, i.e.,S ∼id 〈j, γ〉;

2) If a serverS provides to its inputa(n) an i.d stochastic
service curveγ(n) with bounding functionj(x) ∈ F̄ , it
provides to the inputa(n) a c.s stochastic service curve
γ+η(n) = γ(n)+η·n with bounding functionjη(x) ∈ F̄
where

jη(x) =
[1

η

∫ n

x−η·n

j(y)dy
]

1

for any η > 0.

Proof: The first part follows easily, since there always
holdsd(n)− a⊗γ(n) ≤ sup0≤m≤n{d(m)− a⊗γ(m)}.

For the second part, there holds for anyn ≥ m,

a⊗γ+η(m) ≥ a⊗γ(m) + η ·m− η · n

and then

d(m)− a⊗γ+η(m) ≤ d(m)− a⊗γ(m)− η ·m+ η · n

Thus, we obtain

P
{

sup
0≤m≤n

{d(m)− a⊗γ+η(m)} > x
}

≤ P
{

sup
1≤m≤n

[

d(m)− a⊗γ(m)− η(m)
]+

> x− η · n
}

for which whenx− η · n < 0, the right hand side is equal to
1. In the following, we assumex − η · n ≤ 0 under which,
there holds

P
{

sup
0≤m≤n

{d(m)− a⊗γ+η(m)} > x
}

≤

n
∑

m=1

P
{[

d(m)− a⊗γ(m)− η(m)
]

> x− η · n
}

≤
n
∑

m=1

j(x− η · n+ η ·m) ≤
1

η

∫ n

x−η·n

j(y)dy

As the probability is always not greater than 1, the second part
follows the above inequality.

Note that in the second part of the above theorem,j(x) ∈ F̄
while not∈ Ḡ. If the requirement on the bounding function is
relaxed toj(x) ∈ Ḡ, the above relationship may not hold in
general.

IV. BASIC PROPERTIES

This section presents results derived from the time-domain
traffic models and server models introduced in Sec III. Par-
ticularly, we investigate the five basic properties introduced in
Sec. I, which are service guarantees including delay bound and
backlog bound, output characterization, concatenation property
and superposition property. However, some properties can
directly be proved only for the combination of a specific traffic
model and a specific server model. This explains why we
need to establish the various relationships between modelsin
Sec III. With these relationships, we can extend and obtain the
corresponding results for models which we are interested in.

A. Service Guarantees

This subsection investigates probabilistic bounds on delay
and backlog under the combination of v.s.d stochastic arrival
curve and i.d stochastic service curve.

We start with deriving the bound on delay that a packet
would experience in a system.

Theorem 4. (Delay Bound). Consider a systemS providing
an i.d stochastic service curveγ ∈ G with bounding function
j ∈ Ḡ to the input which has a v.s.d arrival curveλ ∈ G with
bounding functionh ∈ Ḡ. Let D(n) = d(n) − a(n) be the
delay in the system of thenth(≥ 0) packet. For anyx ≥ 0,
D(n) is bounded by

P{D(n) > x} ≤ j ⊗ h(x− γ ⊘ λ(0)). (31)

Proof: For anyn ≥ 0, there holds

d(n)− a(n) =
[

d(n)− a⊗γ(n)
]

+
[

a⊗γ(n)− a(n)
]

=
[

d(n)− a⊗γ(n)
]

+ sup
0≤m≤n

{

λ(n−m)−
[

a(n)− a(m)
]

+γ(n−m)− λ(n−m)
}

≤
[

d(n)− a⊗γ(n)
]

+ sup
0≤m≤n

{

λ(n−m)−
[

a(n)− a(m)
]}

+ sup
0≤m≤n

{

γ(n−m)− λ(n−m)
}

≤
[

d(n)− a⊗γ(n)
]

+ sup
0≤m≤n

{

λ(n−m)−
[

a(n)− a(m)
]}

+ sup
k≥0

{

γ(k)− λ(k)
}

. (32)

The right-hand side of Eq.(32) implies a sufficient condition to
obtainP{D(n) > x}, which is thatP

{

d(n)− a⊗γ(n) > x
}

andP
{

sup0≤m≤n

{

λ(n − m) −
[

a(n) − a(m)
]}

> x
}

are
known. To ensure the system’s stability, we should also have

lim
k→∞

1

k
[γ(k)− λ(k)] ≤ 0. (33)

In the rest of the paper, without explicitly stating, we
shall assume inequality (33) holds. From Lemma 1 and
supk≥0

{

γ(k)− λ(k)
}

= γ ⊘ λ(0), we conclude

P{D(n) > x} ≤ j ⊗ h(x− γ ⊘ λ(0)).

Next, we consider backlog bound of a system. By definition,
the backlog in the system at timet ≥ 0 isB(t) = A(t)−A∗(t).
If a(n) is the arrival time of the latest packet arriving to the
system by timet, thenB(t) is

B(t) ≤ inf
{

k ≥ 0 : d(n− k) ≤ a(n)
}

. (34)

Eq.(34) implies that, for anyx ≥ 0, if B(t) > x, there must
bea(n) < d(n−x), since otherwise if there would bea(n) ≥
d(n − x) and we would haveB(t) ≤ x that contradicts the
conditionB(t) > x. In other words, event{B(t) > x} implies
event{a(n) < d(n− x)}, and hence

P{B(t) > x} ≤ P{a(n) < d(n− x)}. (35)



Then we have the following result for backlog.

Theorem 5. (Backlog Bound). Consider a systemS providing
an i.d stochastic service curveγ ∈ G with bounding function
j ∈ Ḡ to the input which has a v.s.d stochastic arrival curve
λ ∈ G with bounding functionh ∈ Ḡ. The backlog at timet
(t ≥ 0), B(t), is bounded by

P{B(t) > H(λ, γ + x)} ≤ j ⊗ h(x) (36)

for any x ≥ 0, where,H(λ, γ + x) = supn≥0

{

inf[k ≥ 0 :
γ(n − k) + x ≤ λ(n)]

}

is the maximum horizontal distance
between functionsλ(n) and γ(n) + x for anyx ≥ 0.

Proof: Similar to prove the delay bound, we have

d(n−x)−a(n) = [d(n−x)−a⊗γ(n−x)]+[a⊗γ(n−x)−a(n)]

=
[

d(n−x)−a⊗γ(n−x)
]

+ sup
0≤k≤n−x

{

λ(n−k)−[a(n)−a(k)]

+γ(n− x− k)− λ(n− k)
}

≤
[

d(n−x)−a⊗γ(n−x)
]

+ sup
0≤k≤n−x

{

λ(n−k)−
[

a(n+x)

−a(k)
]}

+ sup
0≤k≤n−x

{

γ(n− x− k)− λ(n− k)
}

Let v = n− k. The above inequality is written as

d(n−x)−a(n) ≤
[

d(n−x)−a⊗γ(n−x)
]

+ sup
0≤k≤n

{

λ(n−k)

−
[

a(n)− a(k)
]}

+ sup
x≤v≤n

{

γ(v− x)−λ(v)
}

Let x = H(λ, γ + y), we have

d
(

n−h(λ, γ+ y)
)

− a(n) ≤
[

d
(

n−h(λ, γ+ y)
)

−a⊗γ
(

n−h(λ, γ+y)
)]

+ sup
0≤k≤n

{

λ(n−k)−[a(n)−a(k)]
}

−y

(37)
Under the same conditions as analyzing the delay, we obtain

P{B(t) > H(λ, γ + x)} ≤ j ⊗ h(x).

B. Output Characterization

This subsection presents the result for characterizing the
departure process from a system.

Theorem 6. (Output Characterization). Consider a system
S provides an i.d stochastic service curveγ(n) ∈ G with
bounding functionj(x) ∈ Ḡ to its input which has a v.s.d
stochastic arrival curveλ(n) ∈ G with bounding function
h(x) ∈ Ḡ. The output has an i.t stochastic arrival curve
λ⊘̄γ(n−m) with bounding functionj(x) ⊗ h ∈ Ḡ.

Proof: For any two departure packetsm < n, there holds

d(n)−d(m) ≥ a(n)−a⊗γ(m)+a⊗γ(m)−d(m)

−
[

d(n)−d(m)
]

≤
[

d(m)−a⊗γ(m)
]

+a⊗γ(m)−a(n)

≤
[

d(m)− a⊗γ(m)
]

+ sup
0≤k≤n

{

λ(n− k)− [a(n)− a(k)]
}

+ sup
0≤v≤m

{

γ(v)− λ(n−m+ v)
}

=
[

d(m)− a⊗γ(m)
]

+ sup
0≤k≤n

{

λ(n− k)− [a(n)− a(k)]
}

− inf
0≤v≤m

{

λ(n−m+ v)− γ(v)
}

Adding inf0≤v≤m

{

λ(n−m+v)−γ(v)
}

to both sides of the
above inequality, we get

inf
0≤v≤m

{

λ(n−m+ v)−γ(v)
}

− [d(n)−d(m)]

≤
[

d(m)− a⊗γ(m)
]

+ sup
0≤k≤n

{

λ(n− k)− [a(n)− a(k)]
}

With the same conditions as analyzing delay, we conclude

P
{

λ⊘γ(n−m)− [d(n)− d(m)] > x
}

≤ j ⊗ h(x)

C. Concatenation Property

The concatenation property uses an equivalent system to
represent a system of multiple servers connected in tandem,
each of which provides stochastic service curve to the input.
Then the equivalent system provides the input a stochastic
service curve, which is derived from the stochastic service
curve provided by all involved individual servers.

Theorem 7. (Concatenation Property). Consider a flow pass-
ing through a network ofN systems in tandem. If each
systemk(= 1, 2, ..., N) provides a c.s stochastic service curve
Sk ∼cs 〈jk, γk〉 to its input, then the network guarantees to
the flow a c.s stochastic service curveS ∼cs 〈j, γ〉 with

γ(n) = γ1⊗γ2⊗ · · · ⊗γN(n) (38)

j(x) = j1 ⊗ j2 ⊗ · · · ⊗ jN (x). (39)

Proof: We shall only prove the two-node case, from
which, the proof can be easily extended to theN -node case.
The departure of the first node is the arrival to the second node,
sod1(n) = a2(n). In addition, the arrival to the network is the
arrival to the first node, i.e.,a(n) = a1(n), and the departure
from the network is the departure from the second node, i.e.,
d(n) = d2(n), where,a(n) andd(n) denote the arrival process
to and departure process from the network, respectively. We
then have,

sup
0≤m≤n

{d(m)− a⊗γ1⊗γ2(m)}

= sup
0≤m≤n

{d2(m)− (a1⊗γ1)⊗γ2(m)} (40)

Now let us consider anym, (0 ≤ m ≤ n), for which we get,

d2(m)− (a1⊗γ1)⊗γ2(m)

= d2(m)− sup
0≤k≤m

{

a1⊗γ1(k)+ γ2(m− k)− d1(k)+ a2(k)
}

= d2(m)+ inf
0≤k≤m

{

d1(k)− a1⊗γ1(k)− γ2(m− k)− a2(k)
}



≤ sup
0≤k≤m

{d1(k)− a1⊗γ1(k)}+ d2(m)

+ inf
0≤k≤m

{

− [a2(k) + γ2(m− k)]
}

≤ sup
0≤k≤m

{d1(k)− a1⊗γ1(k)}+ [d2(m)− a2⊗γ2(m)] (41)

Applying Eq.(40) to Eq.(41), we obtain

sup
0≤m≤n

{d2(m)− (a1⊗γ1)⊗γ2(m)}

≤ sup
0≤k≤n

{d1(k)−a1⊗γ1(k)}+ sup
0≤m≤n

{d2(m)−a2⊗γ2(m)}

(42)
with which, since both nodes provide c.s stochastic service
curve to their input, the theorem follows from Lemma 1 and
the definition of c.s stochastic service curve.

D. Superposition Property

The superposition property means that the superposition of
flows can be represented using the same traffic model. With
this property, the aggregate of multiple individual flows may be
viewed as a single aggregate flow. Then the service guarantees
for the aggregate flow can be derived in the same way as for
a single flow.

First, we only consider the aggregate of two flows,F1 and
F2. Let a1(n), a2(n) and a(n) be the arrival process ofF1,
F2 and the aggregate flowFA, respectively.

For any packetpn of the aggregate flowFA, it is either the
mth packet from flowF1 or the(n−m)th packet from flow
F2, wherem ∈ [0, n], i.e.

a(n) = max{a1(m), a2(n−m)}

For example, a(1) is either max[a1(0), a2(1)] or
max[a1(1), a2(0)] and is the minimum of these two
possibilities,

a(1) = inf
{

max[a1(0), a2(1)],max[a1(1), a2(0)]
}

.

We can see another example

a(2) = inf
{

max[a1(0), a2(2)],max[a1(1), a2(1)],

max[a1(2), a2(0)]
}

.

Essentially, we have for any packetn of the aggregate flow

a(n) = inf
0≤m≤n

{

max[a1(m), a2(n−m)]
}

. (43)

We generalize the result to the superposition ofN(≥ 2) flows

a(n) = inf
∑

mi=n

{

max[a1(m1), a2(m2), ..., aN (n−

N−1
∑

i=1

mi)]
}

.

(44)
Whereas, it is difficult to characterize the packet inter-arrival

time of the aggregate flow directly from Eq.(44). We know that
if a flow has v.s.d stochastic arrival curve, then with Theorem
2, this flow has a v.b.c stochastic arrival curve as well. It
has been proved that the v.b.c stochastic arrival curve has the
superposition property [13]. Thus, we can indirectly provethat

the superposition property holds for the v.s.d stochastic arrival
curve.

If flow i has v.s.d stochastic arrival curveai(n) ∼vd 〈hi, λi〉
i = 1, 2, ..., N , from Theorem 2, flowi has v.b.c stochastic ar-
rival curveαi(t) with bounding functionfi(x) = hi

(

[λi(x)−
θi]

+
)

for any θi > 0, whereαi(t) = sup{n : λi(n) ≤ t}.
According to Lemma 3, the aggregate flow has a v.b.c stochas-
tic arrival curveα(t) =

∑N
i=1 αi(t) with bounding function

f(x) = f1 ⊗ · · · ⊗ fN (x).
In summary, we can obtain the following result:

Theorem 8. Consider N flows with arrival processes
ai(n) ∼vd 〈hi, λi〉, i = 1, ..., N . For the aggregate of these
flows, the following result holds:
a(n) ∼vd 〈h, λ〉 with λ(n) = inf{t : α(t) ≥ n} andh(x) =

f [α(x)−y]+, wherey = A⊗α(t)+α(x)−n+1−A(t−x, t),
α(t) =

∑n
i=1 αi(t) andαi(t) = sup{n : λi(n) ≤ t}.

E. Leftover Service Characterization

This subsection explores the leftover service characteriza-
tion under aggregate scheduling. To ease the discussion, we
consider the simplest case when there are two flows competing
resource in a system under FIFO aggregation. Suppose that if
packets arrive to the system simultaneously, they are inserted
into the FIFO queue randomly. Consider a system fed with
a flow FA which is the aggregation of two constituent flows
F1 andF2. Suppose both the service characterization from the
server and traffic characterization fromF2 are known. We are
interested in characterizing the service time received byF1,
with which per-flow bounds forF1 can be then easily obtained
using earlier results derived in the previous subsections.

Theorem 9. Consider a systemS with input FA that is the
aggregation of two constituent flowsF1 and F2. SupposeF2

has a (deterministic) arrival curveλ2(n) ∈ G, and the system
provides to the input an i.d stochastic service curveγ ∈ G with
bounding functionj(x) ∈ Ḡ. Then ifγ(n + sup[q : λ2(q) ≤
a1(n)] ∈ G, F1 receives an i.d stochastic service curveγ(n+
sup[q : λ2(q) ≤ a1(n)] with the same bounding functionj(x).

Proof: Suppose packetpn1 is the (n + m)th packet of
FA, i.e., a(n+m) = a1(n), wherem represents the number
of packets fromF2. As the system provides an i.d stochastic
service curveγ(n) to the aggregate flowFA, there holds

P{d(n+m)− a⊗γ(n+m) > x} ≤ j(x).

a1(n) = a(n+m) indicatesa2(m) ≤ a1(n). Let m̄ = sup[q :
λ2(q) ≤ a1(n)]. As λ2 is the (deterministic) arrival curve
of F2, we havem̄ ≥ m because ofa2(m) ≥ λ2(m). Then
γ(n+ m̄) ≥ γ(n+m). Let γ1(n) = γ(n+ m̄). Fromγ1(n) ≥
γ(n+m), we havea1⊗γ1(n) ≥ a⊗γ(n+m). As d(n+m) =
d1(n), there holds

d1(n)− a1⊗γ1(n) ≤ d(n+m)− a⊗γ(n+m)

Thus, we conclude

P{d1(n)− a1⊗γ1(n) > x} ≤ j(x)



F. Discussion

In this section, we have presented the five basic properties
of stochastic network calculus under various traffic models
and server models defined in the time-domain and introduced
some simple applications. For example, a GCRA-constrained
flow has a deterministic arrival curve. If a flow’s packet inter-
arrival times are exponentially distributed, then this flowhas a
v.s.d stochastic arrival curve. The service process of an error-
prone wireless link can be modeled by an i.d stochastic service
curve.

For each basic property, we investigated one combination
of a specific traffic model and a specific server model. Partic-
ularly, we proved that the service guarantees and the output
characterization hold for the combination of v.s.d stochastic
arrival curve and i.d stochastic service curve. For the con-
catenation property, we investigated the case that all servers
provide the constrained service curve to their input but did
not specify the type of arrival curve. In order to prove the
superposition property, we used the transformation between
v.s.d stochastic service curve and v.b.c stochastic service curve.
The leftover service characterization was only proved for the
combination of deterministic arrival curve and i.d stochastic
service curve.

With the relationships and transformations among models
established in Sec. III, these five properties may be directly or
indirectly proved for other combinations of traffic models and
server models. For example, it is easily to prove the service
guarantees and output characterization for the combination of
m.s.d stochastic arrival curve and i.d stochastic service curve.
Due to space limitation, these results are not included. How-
ever, to prove the concatenation property and superposition
property for other server models and traffic models, it will
require additional transformations among models. For the left-
over service characterization, we may need more constraints
or transformations when proving it for other combinations of
traffic models and server models. We leave these as our future
work.

V. CONCLUSION

For stochastic service guarantee analysis, we introduced
severaltime-domainmodels for traffic and service modeling.
The essential idea of them is to base the model on cumu-
lative packet inter-arrival time for traffic and on cumulative
service time for service. Simple examples have been given
to demonstrate the use of them. Based on the proposed time-
domain models, the five basic properties for stochastic network
calculus were derived, with which, the results can be easily
applied to both the single-node and the network cases. We
believe, the proposed time-domain models and derived results
can be particularly useful for analyzing stochastic service
guarantees in systems where the behavior of a server involves
some stochastic processes and due to this, it is difficult to
characterize using the currentspace-domainserver models.
Such systems include wireless links and multi-access networks
where backoff schemes may be employed in case of channel
error or collision occuring. In this paper, however, we only

analyzed a simple case of wireless network to illustrate how
to apply the proposed server model to characterize the service
process of a wireless node. The future work is to investigate
the performance of some typical contention-based multi-access
networks including IEEE 802.11 networks.
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