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Abstract—Stochastic network calculus is a theory for stochastic ~ Nevertheless, there are still many open research chal-
service guarantee analysis of computer communication netwks.  |enges for stochastic network calculus, and a critical one
In the current stochastic network calculus literature, its traffic s time-domain modeling and analys[3]. Time-domain
and server models are typically based on the cumulative amaou : ) . .
of traffic and cumulative amount of service respectively. Hovever, modeling f(.)r. service guarantee analysis has its root from
there are network scenarios where the applicability of such the deterministic Guaranteed Rate (GR) server madel [10],
models is limited, and hence new ways of modeling traffic where service guarantee is captured by comparing with a
and service are needed to address this limitation. This pape (deterministic) virtual time function in the time-domaifihis
presentstlme_domam models_and regults for StOChf‘iStIC network time-domain model has been extended to design aggregate-
calculus. Particularly, we define traffic models, which are lased . ..
on probabilistic lower-bounds on cumulative packet inter-arrival sghedullng networks to support per-flow (determlnlstld)j Se
time, and server models, which are based on probabilistic upper- Vice guarantees [6][12], while few such results are avéglab
bounds on cumulative packet service time. In addition, examples from space-domain models. Other network scenarios where
demonstrating the use of the proposed time-domain models time-domain modeling may be preferable include wireless
are provided. On the basis of the proposed models, the five ety orks and multi-access networks. In wireless netwdhies,
basic properties of stochastic network calculus are also ved, . . . . .
which implies broad applicability of the proposed time-domain ~ V&rYing wireless _Ilnk cono_ll'_uon can cause the sender fail to
approach. send when the link condition is ‘bad’ and then the sender

may have to hold until the link state becomes ‘good’. For
I. INTRODUCTION such cases, characterizing the service process is difficult
the space-domain, while much easy in the time-domain. In

Stochastic network calculus is a theory dealing with queuesntention-based multi-access networks, backoff scheres
ing systems found in computer communication networksiten employed to reduce collision occuring. While it is tqui
[4][O][L1][L3]. It is particularly for analyzing networkeshere cumbersome for a space-domain server model to characterize
service guarantees are provided stochastically. Suchonk$w the service taking into account the backoff process, the-tim
include wireless networks, multi-access networks and imultiomain server models well suit the need. Having said these,
media networks where applications can tolerate some nertabwever, how to define a stochastic version of the virtuagtim
violation of the desired performande [7][8]. function and how to perform the corresponding analysis are

Stochastic network calculus is based on properly dget open|[[13].
fined traffic models [BI[1A[13][14][17[[18] and server meld The objective of this paper is to define traffic models and
[11][23]. In the existing models of stochastic network calserver models in theme-domairand derive the corresponding
culus, an arrival process and a service process are typicdive basic properties for stochastic network calculus.i@art
modeled by some stochastic arrival curve, which probabiligrly, we define traffic models that are based on probalailisti
tically upper-bounds theumulative amount of arrivaland lower bounds orcumulative packet inter-arrival timeAlso,
respectively by some stochastic service curve, which prolve define server models that are based on some virtual time
abilistically lower-bounds theumulative amount of service function and probabilistic upper bounds oamulative packet
In this paper, we call such modelpace-domainmodels. service timeln addition, we establish relationships among the
Based on thespace-domainraffic and server models, a lotproposed time-domain models, and the mappings between the
of results have been derived for stochastic network catculgproposed time-domain models and the existing space-domain
Among the others, the most fundamental ones are the five basiadels. Furthermore, we prove the five basic propertiestbase
properties([11][[1B]: (P.1pervice Guaranteascluding delay on the proposed time-domain models.
bound and backlog bound; (P.Dutput Characterization =~ The remainder is structured as follows. Set. Il introduces
(P.3) Concatenation Property(P.4) Leftover Service (P.5) the mathematical background and fundamental space-domain
Superposition PropertyExamples demonstrating the necessitsnodels and relevant results of stochastic network calclius
of having these basic properties and their use can be fodild [Bec[Tll, we first introduce the time-domain deterministaffic
[13]. and server models, and then extend them to stochastic mersio
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In addition, the relationships among them as well as witB. Max-plus and Min-plus Algebra Basics

some existing space-domain models are established[Sec. I\, essential idea of (stochastic) network calculus is to use
explores the five basic properties. Finally, S€E. V SUMMB&IiZ, 0 nate algebras particularly the min-plus algebra amsl-m

the work. plus algebra[[2] to transform complex non-linear network
systems into analytically tractable linear systerns| [13). T
[I. NOTATION AND RELEVANT BACKGROUND the best of our knowledge, the existing models and results
To ease expression, we assume networks fikéd unit of StO.ChaStIC network CaI.CUIUS are mainly under mmc_e-
. domain and based on min-plus algebra that has basic op-
Iengttﬂ packets. By convention, we assume that a packet |s_.. : . o .
. . er&mons particularly suitable for characterizing cuntiu&a
considered to be received by a network element when and. . . - .
. ) : arrival and cumulative service. For characterizing atravad
only when its last bit has arrived to the network element, and . . . o .
. ; service processes in thene-domain interestingly, the max-
a packet is considered out of a network element when and Onﬁﬁ . . _
. . : s algebra has basic operations that well suit the need.
when its last bit has been transmitted by the network elemeft . : .
. . . In this paper, the followingnax-plusand min-plusopera-
A packet can be served only when its last bit has arrived. Afll . )
s ions will often be used:
gueues are assumed to be empty at tim®ackets within a ) _
flow are served in the first-in-first-out (FIFO) order. « Max-Plus Convolutiorof g, and g, is
_ (91®92)(n) = sup {g1(m) + g2(n —m)}
A. Notation 0<mzn

Let p", r(n), a(n) andd(n) (n = 0,1,2,...) denote the ~* Max-Plus Deconvolutionf g, andy is
nth packet of a flow, its allocated service rate, its arrival > —
. - L : ’ 910g2)(n) = inf {g1(n +m) — g2(m
time and its departure time, respectively. L&ft) and.A*(¢) ( ( mZO{ ( (m)}

respectively denote the number of cumulative arrival pecke , Min-Plus Convolutiorof g; and g is
and the number of cumulative departure packets by time

By convention, we assume(0) = 0, d(0) = 0, A(0) = 0 (91 ® g2)(n) = Inf {gi(m)+ ga(n —m)}
and A*(0) = 0. For any0 < s < t, we denoteA(s,t) = . o .
A(t) — A(s) and A* (s, t) = A*(t) — A*(s). » Min-Plus Deconvolutiorof g; and g, is

In this papera(n) and A(t) will be used to represent an (91 @ g2)(n) = sup{gi(n+m) — ga(m)}
arrival process interchangeably. A departure process il m>0

represented by(n) and.A*(t) interchangeably. In this paper, when applyingupremumand infimum they

The following function sets are often used in this Papefay be interpreted asnaximumand minimum whenever
Specifically, we us& to denote the set of non-negative Wideappropriate respectively.

sense increasing functions as follows:

G={g("):V0<x <y, 0<g(x) < :g(0) =0
t0) Y 9(@) < 9(y);9(0) ) Lemma 1. For the sum of a collection of random variables

We denote byj the set of non-negative wide-sense decreasifg = »_;—; Xi, N0 matter whether they are independent or
functions: not, there holds for the complementary cumulative distidsu

function (CCDF) ofZ: (See Lemma 1.5 in_[13])

C. Random Variables and Stochastic Process Basics

G={g():V0<z<y0< < g(z _ _ _
{9() ¥,0 < g(y) < g(z)} Fo(z) < Fr, ®- - ® Fx. (2) O
Let F denote the set of functions @, where for each function —

= = — < 0.
f(-) € F, its nth-fold integration, denoted by (z) = whereFly = P{Z >z}, —o0 <z 00

U’;" dy)"f(y), is bounded for any: > 0 and still belongs to  In this paper, we need some transformation between the

F foranyn >0, or number of cumulative arrival packets by time(i.e., A(¢))
- and the time of a packet arriving to the system (i&n)).
F={f():¥n>0, (/ dy)" f(y)}. The transformation can be expressed by the following way.
z Consider a stochastic process. Let N{t)> 0) denote the

number of events occuring by tinteand X (n) be the time of
the n'" event occuring. By convention, we assuNg0) = 0
and X (0) = 0. There exists an important relationship between
N(t) and X (n) as follows [15]:

For ease of exposition, we adopt
[z]" = max[0,2] and [z]; = min[l, 2],

and assume that for any bounding functiptx), f(z) = 1 NO)>n o Xn)<t 2)
for anyz < 0. - -
From Eq[2), we obtain

1The results can also be extended to networks with varianigth packets
while the expression and results will be more complicated. P{N(t) > n} = P{X(n) <t} 3)



If N(t) is (probabilistically) upper-bounded with respect tavith bounding functiory(z) € G, denoted byS ~.s (3, 9g),
some functionn(t) € G, we have the following relationshipsif for all ¢ > 0 and all = > 0, there holds

betweenX (n) and N (t): P{A® (3(t) _x)+ _ A () > 0} < gla). (10)

If_emmaOZ% (|)<Fct>r tfrl:nCt'?]nlz(t) €0, it N(s,t) < ot — 5) Definition 4. (Stochastic Service Curve). A systemsS is said
oranyt = s = f, tnere nolds to provide a stochastic service cungét) € G with bounding

N@alt)=n = X®An)>t (4) functiong;(z) € G, denoted byS ~. (5, g,), if for all £ >0

and all z > 0, there holds
where, A\(n) is the inverse function ak(¢) and is defined as .
() ©) P{ sup 46 (8(s) =) = A°(s)] > 0} < i) (1)

follows:

An) = f{t : a(t) > n}. ®) Based on the above space-domain traffic and server models,
(ii) Inversely, for function\(n) € G, if X(n) — X(m) > a lot of results have been derived for stochastic network
’ i ~ calculus which include the five basic properties|[13]. Irsthi

A(n —m) for any 0 < m < n, there holds ) ! = '
paper, the following result will specifically be made userof i

X®An)=t = Nalt)>n (6) later analysis and is hence listed:
where,a(t) is the inverse function ak(n) and is defined as Lemma 3. (Superposition Property). ConsiderN flows with
follows: arrival processesA;(t), i = 1,..., N, respectively. LetA(t)
a(t) = sup{n : A(n) < ). @) denote the aggregate arrival process. W, A; «p {(fi, i),

then A v (f, ) with a(t) = SN, ou(t), and f(z) =
i@ @ fn(z).
Ill. TiIME-DOMAIN MODELS
This section first reviews the deterministic arrival curve

Proof: (i) The condition is equivalent to enforcimg(t)

N ® a(t) = n. From Eql(2), we havX(n) > t. As X (n)
X®a~!(n), we concludeX®a ! (n) > t.

(i) The condition is equivalent to enforcind((n) <

<
<

X®A(n) = . From EqI®), we obtainN(f) > n. As and service curve models defined in the time-domain. Then,
N(t) < NoA~L(t), we haveN' @AL(t) > n - m e generalize them and defitiene-domainstochastic arrival

- ’ - curve and stochastic service curve models.
D. Relevant Results under Min-Plus Algebra A. Deterministic Arrival Curve

This sub-section reviews the basipace-domaitraffic and  Consider a flow of which packets arrive to a system at time
server models of stochastic network calculus under mis-pl(). In order to deterministically guarantee a certain level
algebral[13]. It is worth highlighting that all these modedse of quality of service (QoS) to this flow, the traffic sent by
for discrete time systems with unit discretization step. this flow must be limited. The deterministic network calailu

The space-domain stochastic traffic models include v.ky@ffic model in the time-domain characterizes packet inter
stochastic arrival curve and m.b.c stochastic arrival €urgrrival time using a lower-bound function, called arrivahee
defined as follows: in this paper and defined as follows [5]:

Definition 1. (v.b.c Stochastic Arrival Curve). A flow is Definition 5. (Arrival Curve). A flow is said to have a
said to have a virtual-backlog-centric (v.b.c) stochastidval  (deterministic) arrival curve\(n) € G, if its arrival process
curvea(t) € G with bounding functiorf(z) € G, denoted by q(n) satisfies, for all0 < m < n,

~up (a, f), if for all ¢ >0 and all z > 0, there holds
Ao o f * a(n) —a(m) > A(n —m). (12)

P{ Oiigt{A(S’ t)—alt—s)} >z} < f(x). (8) The arrival curve model has the following triplicity primde
T which will be used as the basis in defining the stochastigarri
Definition 2. (m.b.c Stochastic Arrival Curve). A flow is said curve models in the subsequent subsections.
to have a maximum-(virtual)-backlog-centric (m.b.c) bias:

tic arrival curve a(t) € G with bounding functiory, (z) € G, Lemma 4. The following statements are equivalent:

denoted byA(t) ~ms (a, f,), ifforall t >0 and allz >0, 1) Y0<m<n,a(n)—a(m) = An—m) -z
there holds 2) Vn >0, supg<,, <, {A(n —m) — [a(n) — a(m)]} < z;
3) vn > O! SUPogmgn SuPogqgm{/\(m - q) - [a(m) -
P{ sup sup {A(u,s) —a(s—u)} >z} < fi(z). (9) a(q)]} < x;

0<s<t 0<u<
SESEESuUSS for all z > 0, where) € G.

The space-domain stochastic server models include weak

stochastic service curve and stochastic service curveatkefin Proof: Itis trivially true that)\(n_fm)_[ﬁ.(?_a(m)]l.g
as follows: SUPg<m<niA(n—m)—[a(n)—a(m)]}, from which, (2) implies

(2). In addition
Definition 3. (Weak Stochastic Service Curve). A systemS sup {A(n —m) — [a(n) — a(m)]}
is said to provide a weak stochastic service cup(e) € G OSmI;n



<o 2, (6 = o) el <oy

— sup sup {A(k—m) — [a(k) — a(m)]} =

0<k<n 0<m<k

e Py e P(py)n !
k! P (n—m—1)!

wherey = %(n —m)—x.
= sup sup {A(m—q)—[a(m)—a(q)]} The i.t stochastic arrival curve is intuitively simple, hitt
Osmsn0sqsm has limited use if no additional constraint if enforced. Let
with which, (3) implies (2). For (1(2), it holds since us consider a simple example to understand this problem.
a(n) —a(m) > Xn —m) —z for all 0 < m < n. For Consider a single node with constant per packet servicefime
(2)—(3), suPg< < SUPg<g<m A (M —q) — [a(m) —a(q)]} < and with its input flowF satisfyinga(n) ~;; (r - n, h) where
SUPg<m<n|®] = 2. Thus (1), (2) and (3) are equivalent. @ 7 > T'. Suppose we are interested in the delagn), where,
From Definition[5, the right-hand side af(n) — a(m) > by definition, D(n) = d(n) — a(n). As the node has constant
A(n —m) —x in Lemmal4.(1) defines an arrival curén —  per packet service tini&, it has a (deterministic) service curve
m) — x. In addition, we can construct a virtual single server.n. In other wordsd(n) < supg<,,<,[a(m)+T - (n—m)].
gueue (SSQ) system that is initially empty, fed with the san®hen we have
traffic flow, and have a service curvewhich makesd(n) <
a®\(n) (see Definitio D). Then, the delay in the virtual SSQ D(n) < sup {a(m)+T-(n—m)} —a(n)

system is upper-bounded bin) — a(n) < supg<,,<,[Mn — 0smsn

m) — (a(n) — a(m))] < z, and the maximum system delay

for the firstn packets is upper-bounded byp,,,, <,, {d(m)— T ooip {alm) +T-(n—m)—a(n)}

a(m)} < SUDY< < SUPo g AN —0) —[a(m) —alq)]} < -

Z- < -(n—m) — - 15
In addition, Definitio b is equivalent to enforcing that for - ogs}yllzn {T (n=m) ~fa(n) a(m)]} (19)

all n > 0, there holds - . -
From Eq[(Ib), we have difficulty in further deriving more

a(n) < sup {a(m)+ A(n—m)} =a®\(n).  (13) results if no additional constraint is added because we only
0smzn know P{r - (n — m) — [a(n) — a(m)]} < h(z). When
Example 1 The Generic Cell Rate Algorithm (GCRA)I[1] investigating the performance metrics such as delay bondd a
with parameter(T, 7) is a parallel algorithm to the Leaky backlog bound in SectidnIV4A, we meet the similar difficulty
Bucket algorithm and has been used in fixed-length packet
networks such as Asynchronous Transfer Mode (ATM) net. v s.d Stochastic Arrival Curve
works. Here T is an ideal inter-arrival between packets and ) ) o )
is the maximum acceptable excursion that quantifies how earl 1€ Previous subsection stated the difficulty of applying

packets may arrive with respecta It can be verified that if i.t stochastic arrival curve to service guarantee analyi$is
a flow is GCRAT, 7)-constrained, it has an arrival curve subsection introduces another stochastic arrival curvdeino

that can help avoid such difficulty. This model is called
An)=T-n—r. the virtual-system-delayv.s.d) stochastic arrival curve. The
B. i.t Stochastic Arrival Curve _m(_)del gxplores their_tual_system delay properm_det_ermin-
) . i istic arrival curve as implied by Lemnia 4.(2), which is tha t
Lemmal4.(1) defines a deterministic arrival cuM@) — = 3mount of time a packet spends in a virtual single serverejueu

which lower-bounds the inter-arrival time between any tWassg) fed with the same flow with a deterministic arrival @irv
packets. Based on this, we define its probabilistic couateérpiq |ower-bounded

as follows: For a flow having deterministic arrival curve, we can

Definition 6. (i.t Stochastic Arrival Curve). A flow is said to construct a virtual SSQ system fed with the flow, which has
have an inter-arrival-time (i.t) stochastic arrival curvec G infinite buffer space and the buffer is initially empty. Then
with bounding functiorh € G, denoted byi(n) ~;; (A, h), if suppose the virtual SSQ provides a deterministic servioeecu

for all n > 0 and all z > 0, there holds A to the flow ord(n) = a®X(n) for all n > 0. We now have
that the amount of time packet spends in the virtual SSQ
P{A(n —m) —[a(n) — a(m)] > :r} < h(). (14)  system isW,(n) = d(n) — a(n) = supg<men{A(n —m) —

Example 2. Consider a flow with fixed unit packet size.[¢() — a(m)]}. If the flow is constrained by arvival curve
Suppose its packet inter-arrival time follow an exponénti (n) —z foralln >0, it is obviously thatiV’; is also lower-
distribution with meant. Then, the packet arrival time has ounded byz. . . . .
an Erlang distribution with parametér, p). And, for any Based on the virtual system tlme_ property, we def_lne virtual-
two packetsy™ andp”, their inter-arrival timea(n) — a(m) sys_tem-delay (v.s.d) stochastic arrival curve to chareet¢he
satisfies, for any: > 0, arrival process as follows:

1 Definition 7. (v.s.d Stochastic Arrival Curve). A flow is said
P{;(” —m) = la(n) — a(m)] > x} to have a virtual-system-delay (v.s.d) stochastic arrivaive



A € G with bounding functiorh € G, denoted bya(n) ~uq < h(z) + l/oo h(y)dy. (17)

(A, by, if for all n >0 and all z > 0, there holds nJz

which is meaningful only when E@.(IL7) is upper-bounded by

one. The 1-fold integration df(z) is bounded by one because

{he condition assumés € F as for the[[17]. Then the second

part follows from Eq[(1l7). [ |
Note that in the second part of the above theorefn) € F

P{ sup {A(n—m)—[a(n)—a(m)]} > x} < h(z). (16)
0<m<n

Example 3. Consider a flow with the same fixed packe
size. Suppose all packet inter-arrival times are expoaliynti
distributed with mear®. Based on the steady-state probability , . 5 . . o
mass function (PMF)Lof the queue-waiting éc/ime forpan M/D/}f/vhlle note . If the requirement on _the bpundmg funct|0n_|s
queue[[16], we say that the flow has a v.s.d stochastic arri\53|axed toh(z) € G, the above relationship may not hold in

; eneral.
curve ~uq (he®P D -n) forany D < L, with p = £ and 9 _ _ .
a(n) ~va { n) y Hn P=D The v.s.d stochastic arrival curve has a counterpart defined

lz/D]+1 i under min-plus algebra, the v.b.c stochastic arrival clase
h¥P(z) =1—(1—p) Z e (=) [M(__'x)] defined in Definition[Il. The following result establishes a
i=0 b relationship between these two models.
where, |z/D] denotes the greatest integer less than or equaleorem 2. 1) Ifa flow has a v.b.c stochastic arrival curve
toz/D. a(t) € G with bounding functiory (z) € G, the flow has
The following theorem establishes a relationship between 3 v.s.d stochastic arrival curva(n) € G with bounding
i.t stochastic arrival curve and v.s.d stochastic arrivale. functionh(z) € G whereh(z) = f([e(x) — y]*) with

y=A®a(t)+a(r)—n+1—- At —=z,t), andA(n) =
inf{t: a(t) > t}.

) If a flow has a v.s.d stochastic arrival curvgn) €
G with bounding functionh(z) € G, the flow has a
v.b.c stochastic arrival curvex(t) € G with bounding
function f(z) € G where f(z) = h([A(z) — 6]") and
a(t) =sup{n: A(n) <t}.

Theorem 1. 1) Ifaflow has av.s.d stochastic arrival curve
A € G with bounding functiorh € G, then the flow has
an i.t stochastic arrival curvex € G with the same
bounding functiorh € G.

2) Conversely, if a flow has an i.t stochastic arrival curve
A € G with bounding functionh € F, it also has a
v.s.d stochastic arrival curve_, € G with bounding

function’” € G where Proof: For the first part, EJ.{2) implies that for any> 0,
Ay(n) = A(n) —n-n if a(n) < a®A(n) — z there must bed(a®A(n) —x) > n
K since otherwise ifA(a®\(n) —z) < n thena(n) > a®A(n)—
L[ x, that would contradict the conditiona(n) < a®\(n) — x.
h(xz) = |h - h(y)d ’ —
(z) [ () + /m ) yL In other words, evenf{a(n) < a®A(n) — x} implies event

for anyn > 0. {A(a®\(n) — ) > n} and thus

Proof: The first part follows easily from the fact that for P{a(n) < a®A(n) —z} < P{A(a®A(n) —x) >n} (18)
any0 < m < n, A(n—m)—[a(n)—a(m)] < supgc,,<,{A(n—

m) — a(n) — a(m)]}. For the second part, there holds Due to the assumption of fixed unit packet size and a packet
being counted when and only when its last bit has arrived,
[ Sup {A—n(n —m) —la(n) — a(m)]} event{ A(a®\(n)—z) > n} implies evenf{ A(a®A(n)—z) >

n — 1} and hence,
su —_pln—m)—|a(n) —alm +
=t ogmlin{A ol )~ laln) = alm)l} P{A(@@A(n)—z) > n} < P{A(a@\(n)—z) > n—1} (19)
Since for anyz > 0, P{{\(n —m) —n- (n—m) — [a(n) — | ¢ a®\(n) = t. From Eql(6), we knowd ® a(t) > n. The
a(m)}* >z} = P{{A(n —m) —n- (n—m) - [a(n) - right-hand side of EJ.(19) can be rewrittend&—x) > n—1.

a(m)]} >z} <h(z+n-(n—m)), we have As A(t — ) = A(t) — A(t — z,t), we have
P sup {m(n—m) = lo(n) — a(m)]} > o} A(t) > n—1+A(t—2,t) =A@ a(t) + a(z) —y  (20)
n wherey = A® a(t) + a(z) —n+1—A(t —x,t). As the flow
<> P{{/\—n(” —m) — [a(n) —a(m)]}* > I} has a%/.b.c stochastic arrival cursewith bounding function
m=0 f(x), we rewrite Eql(B) as follows
<Y h(+n-(n-m))=> hz+n-k) P{A(t) - A® a(t) > 2} < f(x)
m=0 k=0

oo - Then, from Eq[(20), we obtain
< Zh(:c—i-n k) =h(z) + Zh(:c—i-n - k) P{A(t) —A®a(t) > alz) - y]*} < f([a(:c) _ y]+)



where, because of the restrictigifz) = 1 for any z < 0. [a(m) — a(q)]}. If the flow is constrained by arrival curve
According to Eq[(IB), we conclude A(n) —z for all n > 0, it is clear that the maximum system
_ delay in the virtual SSQ is also upper-boundediby
P{a(n) < a®A(n) — x} = f([o‘(x) N y]+)' Based on the maximum virtual system delay property, we
wherea(n) < a@A(n) —z = supg<,,<niN(n—m) —[a(n) — define m.s.d stochastic arrival curve as follows:
a(m)] > z. Thue, the first part is proved.

For the second part, let(i), i=1,2,..., denote inter-arrival
time between théi — 1)"* and thei*" packets, them(n) =
>, 7(i). Eq.[2) implies that for any: > 0, if A(t) > A®
a(t) + = there must bey(A ® a(t) + =) < t since otherwise
if a(A® at)+x) >t and A(t) < A® a(t) + z, that would
contradict the conditiotd(t) > A® «(t) + . In other words, P{ sup  sup {A(m—q)—[a(m)—a(q)]} > :c} < h(x).

event{ A(t) > A®a(t)+z} implies evenf{a(A®a(t)+z) < Osmsn0sgsm (24)

t}, and thus
E. Deterministic Service Curve
P{A(t) > A® a(t) + 2} < P{a(A®a(t) +z) < t} (21) _ _ _ _
To provide service guarantees to an arrival-constrained flo

For anyf > 0 and@ — 0, event{a(A ® a(t) + z) < t} F, the system usually needs to allocate a minimum service
implies event{a(A ® a(t) + x) < t+ 6} and hence rate to F'. A guaranteed minimum service rate is equivalent
to a guaranteed maximum service time for each packet of the
<tl <
P{a(A(g)a(t)H) - t} - P{Q(A®a(t)+x) < t+9} (22) flow, and accordingly the packet's departure time from the
Let A ® a(t) = n. From Eql#), we know:®A(n) > ¢. In  system is bounded. As packets of the same flow are served
addition,a(n + x) — a(n) = 3.1 . 7(i) > M(x). Then the in FIFO manner, any packet* from this flow will depart by

Definition 8. (m.s.d Stochastic Arrival Curve). A flow is said
to have a maximume-(virtual)-system-delay (m.s.d) stdahas
arrival curve \(n) € G with bounding functiomi(z) € G,
denoted byu(n) ~,q (A, k), if for all n > 0 and allx > 0,
there holds

1=n+1 s A
right-hand side of Ed.(22) can be rewritten as follows: d(n), with d(n) iteratively defined by
o d(0) =0
a(n) <t+0— > 7(i) <aB®A(n) +0—\z) (23) R A
i=n-+1 d(n) = max[a(n),d(n — 1)] + §(n) (25)
As the flow has av.s.d stochastic arrival curve\(n) with whered(n) is the service time guaranteedit. By applying
bounding functiom(z), we rewrite Eq[(1I6) as follows Eq.[25) iteratively to its right-hand side, it becomes
P{a®@A(n) —a(n) >z} < h(x) . L
{ _ } d(n) = sup [a(m)+ Y 8(i)] (26)
From Eq[(Z2B), we obtain 0<m=n i=m
P{a®A(n) —a(n) > A(z) — 0} < h(\(z) — 0) where}"" 4(i) is the guaranteed cumulative service time
. for packetp™ to p™. Suppose we can use a functipm —m)
According to Eq[(2l1), we conclude for S°°  6(i), i.e.y(n —m) = > &(i). Then, the above
P{A(t) > A® a(t) + 2} < h(X(z) - 6) equation becomes
whereA(t) > A®a(t)+z = supg<,<;[A(s, t) —a(s, t)] > . d(n) = sup [a(m)+(n —m)] = a®y(n),

Thus, the second part is proved. osm=n

m Which provides a basis for the followingme-domain(deter-
_ . ministic) server model that essentially charaterizes #reise
D. m.s.d Stochastic Arrival Curve using an upper bound on the cumulative service time [5]:

The maximum-(virtual)-system-delay (m.s.d) stochastic Definition 9. (Service Curve). Consider a systerff with input

rival curve explores thenaximum virtual system delay prop- . :
A . Lo rocessa(n) and output procesg(n). The system is said to
erty of deterministic arrival curve implied by Lemnia 4'(3)provide t(() t)he input :(dgterminis(tig) servicZ\ cunv@r) < G,

which is that the maximum system delay of a virtual SS
. . 7 . (If for all n >0,

fed with the same flow with a deterministic arrival curve is d(n) < a@v(n) 27)
lower-bounded. A

Similar to the discussion for v.s.d stochastic arrival eyrv  The (deterministic) service curve model has the following
for a flow having arrival curve, we can construct a virtuaduality principle:
SSQ system feq W.'th .the flow, which has infinite buffer spage, o 5 For anyz > 0, d(n) — a@(n) <z for all n > 0,
and the buffer is initially empty. Then, suppose the V|rtuI and onlv if [d(n) — aBy(n)] < 2 for all n > 0
SSQ provides a deterministic service curveo the flow or where eyg SUPo<m<n AN) = ALYIV) = & ="
d(n) = a®A(n) for all n > 0. We have the maximum system veY
delay in the virtual SSQ system for the firstarrival packets Proof: For the "if" part, it holds trivally sinced(n) —

as SUPg<,<p Ws(m) = SUPg<,<p SUPg<g<miAM — @) —  a®y(n) < supg<,,<,[d(n) —a®y(n)]. For the "only if” part,



sinced(n) — a®~y(n) < x for all n > 0, supg<,,<n,ld(n) — SupposeéP{A(n) =i} = Pi=}(1-P.),i > 1, whereA(n)
a®@y(n)] < supg<m<nl®] = . - B represents the number of time slots necessary to sucdgssful
By the definition of service curve, it is clear that the firssend the:*" packet with respect to the successful transmission
part of Lemmdb defines a service curyer) + . Lemmald probability 1 — P.. The number of time slots necessary to
states that if a server provides service cumn(@) + z, then successfully send: packets is> ,_, A(k) which has the
SUPp<menld(m) — a@y(m)] < z holds, and vice versa. In negative binomial distribution
this sense, we call Lemnid 5 thieality principle of service (Z 1

curve. p{zn:A(k) — Z} - n—1
k=1

F. Stochastic Service Curve 0, i1<n

> (1-P)"Pi=™ i>n

For networks providing stochastic service guarantees, fathen the sender provides to its input a stochastic servineecu
lowing the principle of EqL(26), we have the following exgre ~» which has the following distribution

sion for the expected departure time of packet - ESP -
Pom =151 = (1351 a-preli

wherer is the guaranteed service time to successfully send
where we assumé(;) is the deterministic part while(i) the packets andz]| denotes the smallest integer greater than or
random part in the total service tim&i) + €(i) guaranteed equal tox. _ _ _

to packetp’. We calle(i) stochastic error termassociated to Ve can findng < n such thata@y(n) takes its maximum
3(i). Here,e(n) is introduced to represent the additional delay2/Ue; i-€,a27(n) = a(no) +y(n —no +1). From Eql(2B),

of p" due to some randomness. For example, an error-prafig have

wireless link is ofte,n considered to operate in two statés. | P{y(n—mng+1) < d(n) —a(ng) — z} < j(z)

the link is in ‘good’condition, it can send and receive data

correctly; if the link is in ‘bad’condition due to errors,gh where

d(n) = sup [a(m)+2(5(i)+6(i))]

0<m<n

data that should be sent immediately has to be queued longer [dm-amo)—eq_y

until the channel changes to ‘good’condition. Thefw) in N Z i—1 1 — pyrpi-n
. . . . . . ](l’) - —1 ( 6) e

this case represents the time period in which the channel is — n

R " ! 1
in ‘bad'condition between the time whart = has been sent In Sec[1V, we will show that many results can be derived

correctly and the time whep" can be sent. from i.d stochastic service curve model. However, without
With the consideration of the stochastic error term, the ' ' '

C . . a%dditional constraints, we have difficulty to prove the catee
(deterministic) service curve can be extended to a stoichast . . : . .
. : nation property for i.d stochastic service curve. To adslths
version as follows: o . S ;
difficulty, we introduce a stronger definition in the follavg
Definition 10. (i.d Stochastic Service Curve). A system is said subsection.
to provide aninter-departure time (i.d) stochastic service curve

~ € G with bounding function € G, denoted byS ~ig (j, ), G. Constrained Stochastic Service Curve

if for all n > 0 and all z > 0, there holds The constrained stochastic service curve model is general-
. , ized from the (deterministic) service curve model based®n i
P{d(n) —a®y(n) > x} < j(@). (28)  duality principle. From Lemm@l5, we know that a system with

Example 4.Consider two nodes, the sender and the receivg}plUt.]?]E") a}lnd o>u£[)putd(n) has a service curve(n) if and
communicate through an error-prone wireless link. PackquyI oralln =70,
have fixed-length. Packets arriving to the sender node are sup {d(m) — a@vy(m)} < z. (29)
served in FIFO manner. Assume the guaranteed per-packet 0<m<n

service time isj without any error. To simplify the analysis, |nequality [29) provides the basis to generalize the (deiter

assume the time slot length equéalsThe sender sends packetsstic) service curve model to the constrained stochastidce
correctly only when the link is in ‘good’condition. If the cyrve defined as follows:

link is in ‘bad’condition, no packets can be sent corredthy. o ) ) )

addition, the sender can send the head-of-queue packet dAgfinition 11. (Constrained Stochastic Service Curve). A
at the beginning of a time slot, i.e., the time period duringyStem is said to provide aonstrained stochastic service
which the link is in ‘bad’condition should be an integer tsneCUrve (¢.s) 7 € ¢ with bounding functionj € ¢, denoted
of 6. The probability that a packet can be sent correctly Y S ~es (J,7), if for all n >0 and allz > 0, there holds
determined by packet error rate (PER). PER is determined by — )

the packet length and the bit error rate (BER). Here, we agsum P{ Ogs,lizn[d(m) — a®y(m)] > x} <j(@). (30)
packet errors happen independently and the same PER denot
by P, is applied to all packets. The successful transmissic|>
probability of one packet is hende— P.. '

elqwe following theorem establishes a relationship between
'E'| stochastic service curve and c.s stochastic serviogecur



Theorem 3. 1) If a serverS provides to its inputz(n) @ A. Service Guarantees

c.s stochastic service curvén) with bounding function  This subsection investigates probabilistic bounds onydela

j(x) € G, it provides to the input(n) an i.d stochastic ang backlog under the combination of v.s.d stochastic alrriv

service curvey(n) with the same bounding functioncyrve and i.d stochastic service curve.

j(x) € G i, 8 ~ia (4,7); _ _ We start with deriving the bound on delay that a packet
2) If a serverS provides to its input(n) an i.d stochastic \yo1d experience in a system.

service curvey(n) with bounding functiorj(z) € F, it ) o

provides to the input(n) a c.s stochastic service curvelneorem 4. (Delay Bound). Consider a systen providing

~v4n(n) = v(n)+n-n with bounding functio” (z) € 7 an i.d stochastic service curvee G with bounding function

where j € G to the input which has a v.s.d arrival curvec G with
() = F /" (y)d } bounding functiom» € G. Let D(n) = d(n) — a(n) be the
In N m_n,nj vy delay in the system of the’"(> 0) packet. For anyr > 0,

for anyn > 0. D(n) is bounded by

Proof: The first part follows easily, since there always P{D(n) >z} < j® h(z —v @ A0)). (31)

holdsd(n) — a®~(n) < sup<,,<,{d(m) — a®~(m)}.

Proof: For anyn > 0, there holds
For the second part, there holds for amy> m, yn =

aBryin(m) > aBy(m) +n-m—n-n d(n) —a(n) = [d(n) — a®y(n)] + [a®y(n) — a(n)]
and then = [d(n) — a®v(n)] + Jup {AMn —m) — [a(n) — a(m)]

d(m) = a@y4y(m) < d(m) = a@y(m) —n-m+mn-n +(n —m) = X(n —m)}

Thus, we obtain < [d(n) _ a@y(n)} + sup {,\(n —m) — [a(n) - a(m)]}

P{ sup {d(m)—a®y4y(m)} >} 0<m<n
0<m<n
- _ + sup {vy(n—m)—A(n—m)
<P{ sup [d(m)—a®y(m)— 77(mﬂJr >z —n-n} ogmgn{ J
1<m<n —
for which whenz — 1 - < 0, the right hand side is equal to ™= [4(%) —a®7(m)] + oonp {Mn—m) —[a(n) —a(m)] }
1. In the following, we assume — - n < 0 under which, o
there holds +osup {v(k) = (k) }. (32)
P{ Oj;l}in{d(m) — a®74y(m)} > o} The right-hand side of E{.(B2) implies a sufficient conditio
o obtain P{D(n) > z}, which is thatP{d(n) — a®v(n) > x}
< Z P{[d(m) — a@y(m) —n(m)] >z —n-n} and P{ SUP)<m<n, {A(n —m) — [a(n) — a(m)]} > a:} are
m=1 known. To ensure the system’s stability, we should also have
< i(z—n- -m) < = j im — — <0.
<Sdemwnrgmsy [ wa Jim (k) = A(R)] <0 33
As the probability is always not greater than 1, the secomtl p) the rest of the paper, without explicitly stating, we
follows the above inequality. m shall assume inequality (B3) holds. From Lemfda 1 and

Note that in the second part of the above theorgm) € F  SuPxzo {7(k) — A(k)} =7 @ A(0), we conclude
while not e.g_. If the requirement on _the bpunding function_is P{D(n) > 2} < j ® h(z — v @ \0)).
relaxed toj(x) € G, the above relationship may not hold in
general. u
Next, we consider backlog bound of a system. By definition,
. . V. Basic PROPEF?TIES . the backlog in the system at time> 0 is B(t) = A(t)—A*(¢t).
This section presents results derived from the time-domain, ;) is the arrival time of the latest packet arriving to the
t_rafﬂc model_s and_ server m_odels mtroduced_ m_E]c III_. Paé’ystem by timet, thenB(t) is
ticularly, we investigate the five basic properties introg in
Sec[], which are service guarantees including delay boodd a B(t) <inf {k>0:d(n—k) <a(n)}. (34)
backlog bound, output characterization, concatenatiopgnty

and superposition property. However, some properties g, a(n) < d(n—z), since otherwise if there would hen) >

directly be proved only for the combination of a specificfitaf d(n — z) and we ;/vould have(t) < = that contradicts the
model and a _speC|f|c server model. T_h|s explains Why V\(':%nditionB(t) > z. In other words, evenf3(t) > x} implies
need to establish the various relationships between mmelsevent{a(n) < d(n— )}, and hence
SedTll. With these relationships, we can extend and obteen t '

corresponding results for models which we are interested in P{B(t) > z} < P{a(n) < d(n —z)}. (35)

Eg.[(33) implies that, for any > 0, if B(¢) > =, there must



Then we have the following result for backlog. + sup {y(v) = A(n—m+v)}
0<v<m
Theorem 5. (Backlog Bound). Consider a syster§ providing

an i.d stochastic service curvee G with bounding function = [d(m) —a@y(m)] + sup {A(n — k) — [a(n) — a(k)]}

. = . . . . 0<k<n
j € G to the input which has a v.s.d stochastic arrival curve
A € G with bounding functiorh € G. The backlog at time — inf {Mn—m+v)—7(v)}
(t > 0), B(t), is bounded by Osvsm
P{B(t) > HOwy +2)} < j @ h(x) (36) Adding info<y<m {A(n—m+v) —~v(v)} to both sides of the

above inequality, we get
for any = > 0, where, H(\,y + ) = sup,,>, { inf[k > 0
v(n — k) + 2 < A(n)]} is the maximum horizontal d|stanceo<i1£m{/\ n=m+v) =y(v)} = [d(n) —d(m)

between funct|0n$ and~(n) + z for any z > 0. _
o () () < [d(m) — a®7(m)] + sup {/\(n — k) —[a(n) — a(k)]}
Proof: Similar to prove the delay bound, we have 0<k<n

d(n—2)—a(n) = [d(n—z)—aSy(n—z)]+[a®y(n—z)—a(n)] With the same conditions as analyzing delay, we conclude

= [d(n—a)—a@y(n—2)]+ sup {N(n—k)—[a(n)—a(k)] P{Aév(n —m) — [d(n) — d(m)] > :v} <Jj®h(z)
0<k<n—z
[ |
+y(n—z—k)— A(n—k)}

< [d ) —a® ] n {/\ 5 [ ) C. Concatenation Property
< ldn ) —a@r(n—g) og:g—m (n alnte The concatenation property uses an equivalent system to

) represent a system of multiple servers connected in tandem,

)]} + nggj,z (=2 —k) = Aln = k)} each of which provides stochastic service curve to the input

Then the equivalent system provides the input a stochastic
service curve, which is derived from the stochastic service

d(n—z)—a(n) < [d(n—:z:) a®@y(n— x)} + Sup {)\ n—k) curve provided by all involved individual servers.
<k<n

Let v = n — k. The above inequality is written as

Theorem 7. (Concatenation Property). Consider a flow pass-
—la(n) —a(k)]} + sup {y(v—2)=A(v)} ing through a network ofN systems in tandem. If each
z<v<n . . .
== systemk(= 1,2, ..., N) provides a c.s stochastic service curve
Letz = H(\, v +y), we have SF ~cs (5%,9%) to its input, then the network guarantees to

the flow a c.s stochastic service cude~., (j,~) with
d(n—h(\y+y)) —a(n) < [d(n—h(A, 7+y)) {:7)

—a@'y(n—h()\,'w—y))}—i- sup {)\ n—k)— k)Y -y 1(n) =778 - By (n) (38)
(37) j@)=j'ei e o) (39)

we obtain  pyoof \We shall only prove the two-node case, from
P{B(t) > H\,~+2)} < j @ h(z). which, the proof can be easily extended to tMenode case.
The departure of the first node is the arrival to the secon@nod
B s0d'(n) = a®(n). In addition, the arrival to the network is the
arrival to the first node, i.eq(n) = a'(n), and the departure
rom the network is the departure from the second node, i.e.,
= d?(n), where,a(n) andd(n) denote the arrival process
to and departure process from the network, respectively. We
Theorem 6. (Output Characterization). Consider a system then have,
S provides an i.d stochastic service curyé¢n) € G with

Under the same conditions as analyzing the delay,

B. Output Characterization

This subsection presents the result for characterizing t
departure process from a system.

sup {d(m) — a®y'@v*(m)}

bounding functionj(z) € G to its input which has a v.s.d 0<m<n
stochastic arrival curve\(n) € G with bounding function ) I e o
h(z) € G. The output has an i.t stochastic arrival curve = sup {d°(m)— (a° @7 )@y (m)} (40)

0<m<n

A27(n —m) with bounding functionj(z) ® h € G.
Now let us consider anyn, (0 < m < n), for which we get,
Proof: For any two departure packets < n, there holds
d*(m) — (a'®@y")@y*(m)

d(n) —d(m) > a(n) — aBry(m) +a(m) — d(m) 2 Yt o
—[d(n)—d(m)] < [d(m)—aB(m)] +a(m)—a(n) = dim) = sup {a'8Y (k) +%m = k) = d' (k) + @ (k)]
< [d(m) — a®y(m)] + Oill;lgn {An—k) —[a(n) —a(k)]} = d?(m)+ inf {d'(k)—a'®y" (k) —¥*(m—k)—a*(k)}

0<k<m



< sup {d'(k)—a'®y'(k)} +d*(m)

0<k<m

+ inf {—[a*(k) +~*(m —k)]}

0<k<m

< sup {d'(k) —a'®y'(k)} + [d*(m) — a®B*(m)] (41)
0<k<m
Applying Eq.[40) to Eq[{41), we obtain

sup {d(m) — (a"By") 5 (m)}

< sup {d'(k)—a'®y'(k)}+ sup {d*(m)—a’®y*(m)}
0<k<n 0<m<n
(42)

the superposition property holds for the v.s.d stochasticed
curve.

If flow ¢ has v.s.d stochastic arrival curegn) ~uq (hi, Ai)
i=1,2,...,N, from Theoreni2, flowi has v.b.c stochastic ar-
rival curvea; (t) with bounding functionf;(z) = h; ([Ai(z) —

6;]7) for any 6; > 0, wherea;(t) = sup{n : \i(n) < t}.
According to Lemma&]3, the aggregate flow has a v.b.c stochas-
tic arrival curvea(t) = Zfil a;(t) with bounding function
fl@)=fi®- o fn)

In summary, we can obtain the following result:

Theorem 8. Consider N flows with arrival processes
ai(n) ~uq (hi,\i), i = 1,..., N. For the aggregate of these

with which, since both nodes provide c.s stochastic serviiews, the following result holds:
curve to their input, the theorem follows from Lemia 1 and a(n) ~ua (h, A) With A\(n) = inf{t : a(t) > n} andh(z) =

the definition of c.s stochastic service curve. [ |

D. Superposition Property

fla(z)—y]T, wherey = A®a(t)+a(z) —n+1—A(t—z,t),
a(t) =37 a;(t) and a;(t) = sup{n: \;(n) < t}.

E.. Leftover Service Characterization

The superposition property means that the superposition of i i i
flows can be represented using the same traffic model. With! his subsection explores the leftover service characteriz

this property, the aggregate of multiple individual flowsyne

tion under aggregate scheduling. To ease the discussion, we

viewed as a single aggregate flow. Then the service guasante@nsider the simplest case when there are two flows competing
for the aggregate flow can be derived in the same way as f§F0Urce in a system under FIFO aggregation. Suppose that if

a single flow.

First, we only consider the aggregate of two flow$,and
F,. Let ai(n), az(n) anda(n) be the arrival process afy,
F5 and the aggregate flow,, respectively.

For any packep™ of the aggregate flow', it is either the
m'" packet from flowF; or the (n — m)* packet from flow
F>, wherem € [0,n], i.e.

a(n) = max{ai(m),az(n —m)}

For example, a(1) is or

max[a;(1),a2(0)] and
possibilities,

a(1) = inf { max[a1(0), a2(1)], max[a1 (1), a2(0)] }.
We can see another example
a(2) = inf { max([a1(0), a2(2)], max[a1 (1), az(1)],
max[ay (2), az(0)]}.
Essentially, we have for any packetof the aggregate flow
(43)

either max[a;(0), az(1)]

ogirr}zfgn { max[a;(m), az(n — m)]}.

a(n) =

We generalize the result to the superpositiol\gf> 2) flows
N—-1

a(n) = _inf {max[ai(m1),az(my), ...,aN(n—Z m;)]}.
mi=n i=1

(44)

Whereas, it is difficult to characterize the packet inteivat

time of the aggregate flow directly from Eq.(44). We know that

packets arrive to the system simultaneously, they aretecser
into the FIFO queue randomly. Consider a system fed with
a flow F4 which is the aggregation of two constituent flows
Fy and F». Suppose both the service characterization from the
server and traffic characterization frofa are known. We are
interested in characterizing the service time receivedfby
with which per-flow bounds fof; can be then easily obtained
using earlier results derived in the previous subsections.

Theorem 9. Consider a systens with input F4 that is the
aggregation of two constituent flows and F. Supposers

is the minimum of these twohas a (deterministic) arrival curvés(n) € G, and the system

provides to the input an i.d stochastic service cupve G with
bounding functionj(z) € G. Then ify(n + sup|q : A2(q) <
ai1(n)] € G, Fy receives an i.d stochastic service curvg: +
sup[q : A2(q) < a1(n)] with the same bounding functigix).

Proof: Suppose packet? is the (n + m)*" packet of
Fy4, i.e.,a(n+ m) = a1(n), wherem represents the number
of packets fromF,. As the system provides an i.d stochastic
service curvey(n) to the aggregate flow4, there holds

P{d(n +m) — a@y(n+m) > 2} < j(a).

ai(n) = a(n+m) indicatesas(m) < aj(n). Letm = suplq :
X2(g) < ai(n)]. As X2 is the (deterministic) arrival curve
of F», we havemm > m because ohia(m) > A2(m). Then
y(n+m) > y(n+m). Lety,(n) = y(n+m). From~;(n) >
~v(n+m), we havea;®v1(n) > a®vy(n+m). Asd(n+m) =
dy(n), there holds

di(n) — @1 (n) < d(n+m) — aBy(n +m)

if a flow has v.s.d stochastic arrival curve, then with TheoreThus, we conclude

[2, this flow has a v.b.c stochastic arrival curve as well.
has been proved that the v.b.c stochastic arrival curveheas t

superposition property [13]. Thus, we can indirectly prévat

It P{d:(n) — a@yi(n) > 2} < j(x)



F. Discussion analyzed a simple case of wireless network to illustrate how

In this section, we have presented the five basic propertlsaPPly the proposed server model to characterize thecgervi
of stochastic network calculus under various traffic mode§ocess of a wireless node. The future work is to investigate

and server models defined in the time-domain and introducé$§ Performance of some typical contention-based muttess
some simple applications. For example, a GCRA-constrainBgtworks including IEEE 802.11 networks.

flow has a deterministic arrival curve. If a flow's packet inte
arrival times are exponentially distributed, then this floas a
v.s.d stochastic arrival curve. The service process of eor-er [1]
prone wireless link can be modeled by an i.d stochastic servi [2]
curve.

For each basic property, we investigated one combinatiof!
of a specific traffic model and a specific server model. Partic-
ularly, we proved that the service guarantees and the outpit
characterization hold for the combination of v.s.d stotbhas
arrival curve and i.d stochastic service curve. For the cons)
catenation property, we investigated the case that alleserv
provide the constrained service curve to their input but did
not specify the type of arrival curve. In order to prove theps)
superposition property, we used the transformation betwee
v.s.d stochastic service curve and v.b.c stochastic secuove.

The leftover service characterization was only proved fiar t [g]
combination of deterministic arrival curve and i.d stodltas
service curve.

With the relationships and transformations among modeis)
established in SeC.]ll, these five properties may be direxstl
indirectly proved for other combinations of traffic modefeda
server models. For example, it is easily to prove the service
guarantees and output characterization for the combimatio [12]
m.s.d stochastic arrival curve and i.d stochastic serviceec
Due to space limitation, these results are not included. Hoyy4]
ever, to prove the concatenation property and superpnsitio
property for other server models and traffic models, it WiHS]
require additional transformations among models. Foréfie |
over service characterization, we may need more constraiiif]
or transformations when proving it for other combinatioris 917
traffic models and server models. We leave these as our futuré

work.
[18]

V. CONCLUSION

For stochastic service guarantee analysis, we introduced
severaltime-domainmodels for traffic and service modeling.
The essential idea of them is to base the model on cumu-
lative packet inter-arrival time for traffic and on cumulati
service time for service. Simple examples have been given
to demonstrate the use of them. Based on the proposed time-
domain models, the five basic properties for stochastic owdtw
calculus were derived, with which, the results can be easily
applied to both the single-node and the network cases. We
believe, the proposed time-domain models and derivedtsesul
can be particularly useful for analyzing stochastic servic
guarantees in systems where the behavior of a server irs/olve
some stochastic processes and due to this, it is difficult to
characterize using the currespace-domairserver models.
Such systems include wireless links and multi-access resvo
where backoff schemes may be employed in case of channel
error or collision occuring. In this paper, however, we only
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