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Abstract

Designing complex heterogeneous multiprocessor System-
on-Chip (MPSoC) requires support for modeling and analy-
sis of the different layers i.e. application, operating system
(OS) and platform architecture. This paper presents an ab-
stract system-level modeling framework, called ARTS, to sup-
port the MPSoC designers in modeling the different layers
and understanding their causalities. While others have de-
veloped tools for static analysis and modeled limited correla-
tions (processor-memory or processor-communication), our
model captures the impact of dynamic and unpredictable OS
behaviour on processor, memory and communication perfor-
mance. In particular, we focus on analyzing the impact of
application mapping on the processor and memory utiliza-
tion taking the on-chip communication latency into account.
A case-study of a real-time multimedia application consist-
ing of 114 tasks on a 6-processor platform for a hand-held
terminal shows our frameworks co-exploration capabilities.

1. Introduction

A key pre-requisite in the design of heterogeneous mul-
tiprocessor system-on-chip (MPSoC) is an abstract system-
level model that enables evaluation options and make critical
architectural decisions in advance of a detailed design. The
scheduling problem, central to the analysis of the complex-
ity of concurrent MPSoC programs, depends on the way in
which the tasks are mapped on the processing elements (PE).
This, in turn, is linked with the physical architecture of the
computing platforms, i.e. with task execution latency of the
PEs, memory constraints of the PEs which limits the number
of tasks mapped to a given PE, and the amount of data to be
transferred between tasks mapped to different PE, which will
influence communication latency and dynamic memory allo-
cation. When scheduling is handled by a real-time operating
system (RTOS) and not statically during compile-time, the
system analysis becomes particularly challenging.

We propose an abstract system-level modeling framework,
called ARTS, which captures the cross-layer dependencies
of application software, RTOS, and multiprocessor platform
consisting of PEs connected through an on-chip network. In
this paper we focus on two issues of importance for analyz-
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Figure 1. The PE Model: (a) Layer Structure (b)
Block Diagram. (c) Network Model.

ing cross-layer dependencies; static and dynamic memory us-
age and communication latency due to network topology and
protocol. We illustrate the capabilities of ARTS for modeling
and analyzing heterogeneous MPSoC systems, by exploring
a real-time multimedia application consisting of 114 tasks on
a 6-processor MPSoC architecture for a hand-held terminal.

System-level models for design space exploration of em-
bedded systems targeted for real-time applications has been
proposed in [3, 8]. In [3], while supporting extensive RTOS
capabilities to evaluate processor utilization, it does not ad-
dress memory and communication concerns. Tools pre-
sented in [1, 4, 9] support processor-memory or processor-
communication co-exploration and are important contribu-
tion in expanding the scope of design space exploration.
In [4], the proposed framework is integrated with a two step
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co-exploration methodology of static-analysis followed by
trace-driven simulation for design evaluation.

We do not propose any specific methodology for design
exploration, but provide a flexible framework for designer
driven exploration. Using our framework, algorithms such as
energy-delay driven memory analysis [2] can be applied prior
simulation to group and partition application tasks, or post-
simulation traces collected such as those required to identify
and tune platform tradeoff [7].

2. The ARTS Modeling Framework

This section presents the PE and application models, fol-
lowed by details of the communication and memory exten-
sions which are the focus of this paper. The models are im-
plemented in SystemC.

2.1. PE and Application Model
In [5, 6], the PE and application model has shown to be

sufficient to model the execution behaviour of a wide range
of IP cores. In this paper, the model has been extended with
a OCP (v2.0) based core interface, Figure 1(a) and (b), for
inter-processor communication at RT and transaction levels.

The abstract Real-Time Operation System (RTOS) pro-
vides RTOS services, such as task synchronization, alloca-
tion of shared non-preemptive local resource between tasks
and task scheduling for execution. Protocols supported are
Direct Synchronization for the task synchronization, ba-
sic priority inheritance for the resource allocation and Rate
Monotonic (RM) and Earliest Deadline First (EDF) for the
task scheduling. The RTOS manages the tasks and its timing
constrains, which is provided by the application model. The
application model is based on static task graphs (or dataflow
graph). For task modeling, a periodic and sporadic task
model is available. Both models supports preemption.

The core interface consists of an IO task and IO de-
vice, modeling an IO device driver application and a hard-
ware IO port respectively. The IO task manages the encod-
ing/decoding of data to/from the SoC communication inter-
face. The IO task is released for execution, whenever an
inter-processor communication event starts (i.e. transmitting
or receiving data). The IO device implements/manages the
OCP SoC communication protocol.

2.2. Network model
The network model allows modeling of different commu-

nication topologies ranging from a single shared bus to a
1D/2D mesh NoC with minimal path routing. The model is
characterized by having an abstract description of the topol-
ogy but being able to support transmission of real data (e.g.
at RTL). Further, it supports multithreaded out-of-order com-
munication. Figure 1(c) shows a block diagram of the model.

The IO adapter model implements and manages the SoC
communication protocol and the data conversion between the
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Figure 2. (a) Task graph. Memory profile of PE1:
(b) when all tasks run on PE1, and (c) when τ2
is mapped to different PE.

topology model and the SoC communication interface. When
data is received from the SoC communication interface, it is-
sues a process data package message to the topology model.
Similar, when data package message is received from the
topology model (indicating data has reached the destination
node), it initiates a SoC transaction to the particular node.

The topology model describes the communication topol-
ogy. It ensures that a data package message is not released to
the destination IO adapter, until a time interval, equal to the
communication latency, has expired. The allocator models
the actual topology and manages the usage of shared com-
munication resource (e.g. links and routers, bus). It assigns
resources to the messages as they are received. The resource
buffer models the resource usage mechanism, by buffering a
data package before releasing it back to the allocator again.
The interaction between the allocator and the resource buffer
models the chain of communication tasks in the communica-
tion layer (i.e. the usage of different links and routers for a
particular transfer). The scheduler models the scheduling of
data package messages in case of resource contention. Mes-
sages assigned to an occupied resource gets buffered in the
scheduler, until the resource becomes available. The current
protocol implemented is first-come-first-served.

2.3. Memory Model
The memory model, models both static memory alloca-

tion, due to program memory (PM) and dynamic allocation,
due to total data memory of the task. The example in Fig-
ure 2 illustrates the memory model. It shows the scheduling
and resulting memory profile (spilt into static and dynamic
memory). The dynamic part is split into private data mem-
ory (PDM) needed while executing the task and data memory
needed to store data for exchange among tasks.

The total data memory size of the tasks, which is allocated
during runtime by the RTOS, is calculated based on prece-
dence constraints. We take a conservative view, i.e. during
execution, the task data memory profile is the sum of preced-
ing and succeeding data edges. This is observed for data x
of PE1 (Figure 2(b)) which, is created and dynamically allo-
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Applications Tasks/ Deadline/ IP Frequency
Edges Period (ms) Cores (MHz)

GSM Encoder 53/80 20 GPP0 25
GSM Encoder 34/55 20 GPP1 10
MP3 Decoder 16/15 25 GPP2 6.6
JPEG Encoder 6/5 500 FPGA 2.5
JPEG Decoder 5/4 250 ASIC 2.5

(a) (b)

Table 1. Application and IP Characteristics.
PE#0 PE#1 PE#2 PE#3 PE#4 PE#5

Arch1: CT = 57006 µs, BC= 71
IP GPP0 GPP0 ASIC GPP0 GPP0 ASIC
OS RM RM - RM RM -
Tasks 18 19 19 23 19 16
PEU (%) 100 59 47 23 61 24
Arch2: CT = 57568 µs, BC= 79
IP ASIC FPGA ASIC FPGA GPP0 ASIC
OS - RM - RM RM -
Tasks 18 19 19 23 19 16
PEU (%) 40 60 47 26 61 24
Arch3: CT = 58271 µs, BC= 70
IP GPP0 GPP0 ASIC GPP0 GPP0 ASIC
OS EDF EDF - EDF EDF -
Tasks 18 19 19 23 19 16
PEU (%) 100 59 47 23 61 24
Arch4: CT = 58207 µs (Deadline Missed), BC= 97
IP GPP0 GPP0 ASIC GPP0 GPP0 ASIC
OS RM RM - RM RM -
Tasks 19 9 24 24 15 23
PEU (%) 100 52 56 58 19 34

Table 2. Case Study Platform Architectures.

cated for the whole duration of task τ1. As it has to be used
by task τ2, we have to keep the memory allocated until τ2

has completed. After execution, only the succeeding data is
saved, until the time where it is read by the succeeding task,
or transferred to the NoC, after which it is deallocated.

Figure 2(c), shows a scenario with NoC transfer, require-
ing x and y to be transferred over the bus. τio emulates the de-
vice driver for the PEs and, dynamically allocates (y in PE2)
and deallocated (x in PE1) the needed memory. If the IO task
has to stall, i.e. due to bus congestions, the memory profile of
the IO task will be a step function as illustrated with dashed
lines in Figure 2(c). As the IO task is handled by the PE,
any stall will result in an increased latency. Depending on
OS scheduling, the time slot when data memory is initialized
and deallocated has direct impact on network congestion.

3. Case Study

To illustrate the potential of our framework, we look at
an embedded subsystem that executes GSM, JPEG and MP3
applications (Table 1(a)) - in all 114 tasks. Based on the
PE choice of GPP, ASIC or FPGA (Table 1(b)); the tasks
have different execution properties i.e. best- and worst-case
task execution times. Further we can apply, RM or EDF
scheduling to the RTOS. We experiment with different plat-
forms, task partitioning and OS choice on a 6 PEs platform
connected via a bus. Even for this simple platform, there
are in all 15625 (5 IP cores characteristics applied to 6 PEs)
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Figure 3. Bus Contention in Arch2.
possible architectural combinations, for a given partition and
OS. Co-exploration in this multi-dimensional space, presents
many suitable platform architectures and complex trade-off
scenarios.

Table 21 shows four platform architecture instances, la-
beled from Arch1 to Arch4 from the co-exploration space.
The changing characteristics within these platforms is ei-
ther, IP cores, OS or task partitions. The Completion Time
(CT) and the bus contention (BC) is also presented. Using
the ARTS framework, we investigated these platform archi-
tectures in the context of modeling and understanding the
causality between their system properties.

The correlation at t = 0 and t = 20000 µs in BC and mem-
ory profile (Figure 3 and 4), is due to the GSM applications,
which have a period of 20ms (Table 1(a)). However, the cor-
relation is not identical and it depends on the OS applied to
the platform architectures, and the task mapping. Following
is the discussion of the system properties in additional detail.

PE Exploration: Arch1 and Arch2, which use identi-
cal interconnect and OS in their platforms, present interest-
ing trade-off of performance vs flexibility. Arch1, with four
GPP0s, provides greater programming flexibility (software),
while Arch2, with two FPGAs, provides greater flexibility in
configurable hardware. The difference in CT and BC, among
the architectures, is small (Table 2), however the PE utiliza-
tion (PEU) of Arch2 is well balanced among the IPs, com-
pare to Arch1. This is due to the presence of ASIC which
brings added performance.

OS Exploration: For a given platform architecture, a
change of OS on one PE may have non-local consequences
on other system components. This is due to management and
scheduling of task executions by the RTOS, which in turn in-
fluences the causality, for example with bus access and mem-
ory spread. In Arch1 and Arch3, the switch from RM to
EDF, albeit presents limited effect on PEU or CT or BC, it
does impact the peak bus occupation (3 in Arc3 oppose to
5 in Arch3). In this case it is favourable to use EDF, since
majority of bus contention in earlier architectures where due
to conflict between GSM and JPEG, where JPEG transfers
large streams of data over the bus, blocking GSM. Due to

1The simulation time with complete result logging (PE Utilization, bus
contention and memory profiling), for one platform architecture was 0.15sec
on Intel Pentium IV R© 1.99 GHz with 512 MB of RAM.
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Figure 4. Memory Profile for GPP and FPGA PEs.
EDF, the conflicting JPEG task is swapped with local GSM
task, which has higher priority due to its early deadline, there
by reducing bus contention. The impact on memory spread
can be seen in Figure 4.

Communication Exploration: Communication explo-
ration can be undertaken at different granularity. For ex-
ample at architectural level by using bus or multi-hop on-
chip network topology model (Section 2.2), or at component
level by changing the buffer size in the IO adapter. We mod-
eled Arch2 with IO buffer of size 16 words and then with
64 words, as seen in (Figure 3), which reduced the bus con-
tention. The idea behind this experiment, is to show that even
relatively minor tuning within one of the system components,
could provide significant system-level gains, without needing
deployment of ”superior” alternatives, whose impact has not
yet been ascertained.

Memory Exploration: The goal of updating the task par-
tition, from that presented in Arch1 to Arch4 (Figure 4), was
to reduce the peak memory usage of Arch1. However, the re-
sulting architecture Arch4 causes the MP3 to its deadline. It
is because, the two task from concurrent branch of the MP3
Decoder are mapped on to the same PE. Interestingly, the
partition shows a more balanced PEU, low bus contention
and better peak-to-average memory usage, and thus may not
be discarded lightly. Mapping the conflicting MP3 task to an
alternate PE could potentially bring higher benefits compare
to other architectures discussed so far.

The above explorations, shows that choosing an optimum
platform architecture of a cross-layered complex design in-
volves studying a large set of viable solution space.

4. Conclusions

The ARTS is a simulation-based framework for single-
chip designers to model and explore complex MPSoC de-
signs. In this paper, we have presented valuable extensions
to this model by introduction of the communication model
and a memory model. The versatility of quasi-static based
application models, along with runtime independent execu-
tion model, combined with RTOS and communication plat-
form, enables the ARTS framework to develop and explore a
broad class of designs. This has been demonstrated in a co-

exploration case study for multimedia applications typical in
the hand-held device. We have shown various capability and
features of our framework which allow selecting and tuning
platform exploration under given system constraints. In fu-
ture, we will extend the model to include dynamic power and
area analysis, as additional parameters for trade-off analysis
during MPSoC exploration.
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