
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
NVCache: Increasing the Effectiveness of Disk Spin-Down Algorithms with Caching

Permalink
https://escholarship.org/uc/item/02v3f5ts

ISBN
9780769525730

Authors
Bisson, Timothy
Brandt, Scott A
Long, Darrell DE

Publication Date
2006

DOI
10.1109/mascots.2006.34

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/02v3f5ts
https://escholarship.org
http://www.cdlib.org/

NVCache: Increasing the effectiveness of disk spin-down algorithms with
caching

Timothy Bisson Scott A. Brandt Darrell D.E. Long∗

University of California, Santa Cruz
Santa Cruz, CA

Abstract

Being one of the few mechanical components in a typ-
ical computer system, hard drives consume a significant
amount of the overall power used by a computer. Spinning
down a hard drive reduces its power consumption, but only
works when no disk accesses occur, limiting overall effec-
tiveness. We have designed and implemented a technique
to extend disk spin-down times using a small non-volatile
storage cache called NVCache, which contains a combina-
tion of caching techniques to service reads and writes while
the hard disk is in low-power mode. We show that combin-
ing NVCache with an adaptive disk spin-down algorithm,
a hard disk’s power consumption can be reduced by up to
90%.

1 Introduction

Power consumption in computer systems is a problem
in many industries, from mobile computing, where battery
lifetime is a limiting factor, to large storage system installa-
tions, where monetary costs and machine room power limits
become relevant issues. Previous research has shown that
the disk subsystem can be responsible for 20-30% of the
power consumed in a typical computer [13]. With current
CPU architecture trends leaning toward multi-core versus
single-core processors, the disk subsystem may consume a
larger percentage of power in typical computers, as multiple
cores are potentially more power efficient than higher-clock
rates [15]. In larger storage systems, hard disks dominate
power consumption. In an EMC Symmetrix 3000 storage
system [1] and 2003 Dell PowerEdge 6650 system [10],
hard disks represent 86% and 71% of the total power con-
sumed, respectively.

There are two main approaches when trying to conserve
power in hard disks. The first is to use disks which support

∗Supported in part by National Science Foundation Grant CCR-
0310888

multiple speeds by balancing energy consumption with per-
formance [16, 5, 38, 39, 2]. Although multi-speed drives ex-
ist, such as the Hitachi Deskstar 7K400, they cannot yet ser-
vice requests in LowRPM mode [19]. The other approach is
to assume the use of a conventional disk, without multiple
speeds, and alternate it between active and standby mode
using a disk spin-down algorithm. In standby mode, the
platter is not spinning and the heads are parked, making it
consume less power than active mode. Adaptive spin-down
algorithms [12, 18, 27, 14] are very efficient at minimizing
a hard disk’s power consumption. They are timeout driven,
such that a timeout is set on each disk request and if no
request occurs in the timeout duration, the disk is put in
standby mode. The timeout value is recalculated after each
disk request. An adaptive algorithm uses the performance
of previous timeout values to compute the next timeout.
They are very effective and approach the performance of
an optimal offline algorithm, which knows the inter-arrival
time of requests,a priori. Therefore, there is little benefit
to be gained by introducing more complex and expensive
adaptive algorithms with the hopes of gaining a few percent
in energy conservation.

A largely untapped opportunity for improving the effec-
tiveness of disk spin-down algorithms lies in lengthening
disk idle periods. Out of the box operating systems do
this to some extent via the page cache and/or buffer cache,
which exists in some form in most operating systems. The
goal of the page cache is to increase performance. It hides
disk latency by reducing the number of actual disk requests.
Writes are batched up in memory, in the hopes of coalescing
multiple smaller operations into a small number of larger
requests, and to avoid issuing multiple write requests to the
same location in a short time window. Additionally, the
page cache typically keeps recently used pages in-memory
to reduce the number of read operations that must be ser-
viced from disk. Thus, the page cache artificially affects
idle periods as disk requests are often asynchronous with
respect to their corresponding file system calls.

While the goal of the page-cache is performance, ours
is power reduction. Dirty-page write-back timeouts in

the tens of seconds are insufficient for hard disk power
conservation—several minute timeouts are necessary. It is
possible to set the dirty-page write-back timeout to sev-
eral minutes. This will increase idle periods typically in-
terrupted by write operations. However, because main-
memory is volatile, caching several minutes worth of writes
will be lost if a sudden power failure occurs before the cache
contents are written back to disk.

To increase disk idle periods without reducing reliabil-
ity, we have developed an integrated solution, NVCache,
which uses a small low-power non-volatile storage device
to absorb disk accesses while it is spun-down. To maximize
the spin-down duration of a disk, NVCache is composed
of two sub-caches: a write-cache and prefetch read-cache.
The write-cache buffers write traffic while the disk is spun-
down and lazily replays them to the disk after it becomes
active again. Since the device is non-volatile, power out-
ages during caching do not result in data loss. The prefetch
read-cache contains copies of on-disk data with the goal of
satisfying disk read requests while it is spun-down. We in-
vestigate two prefetch read-cache policies: LRU and LFU.

2 NVCache

We propose to increase the performance of any disk spin-
down algorithm by servicing I/Os from a small low-power
non-volatile storage device, NVCache, while the disk is
in standby mode. By servicing I/O from the NVCache
while the disk is in standby mode, a disk can remain spun-
down longer, reducing its power consumption. Incorporat-
ing NVCache with a spin-down algorithm also decreases
the effect a spin-down algorithm has on disk reliability and
aggregate spin-up latency, by reducing the total number of
cycle start-stop operations.

NVCache sits beneath the file system level at the block
level. As a result, it is file system independent and com-
patible with any file system. NVCache also works on a per
disk granularity, transparently supporting a disk with mul-
tiple partitions; NVCache has no notion of partition tables,
so to the NVCache, redirecting disk I/O requests from dif-
ferent partitions is the same as redirecting requests from the
same partition—they are just requests for the same disk with
varying LBAs.

By using an NVCache device that is non-volatile, write
requests redirected to the NVCache survive power failures.
During reboot after an unexpected power failure, redirected
writes in the NVCache can be written back to their in-
tended disk locations, but before a file system verification
operation, such as fsck. Note that if the system crashes,
the data in main memory is still lost, which makes longer
main-memory dirty-page write-back timeouts undesirable.
NVCache does not try to improve reliability of a system
that crashes, merely maintain the same reliability level had

NVCache not been present.
NVCache has knowledge of the disk’s power state and

uses it to decide when to redirect requests between the disk
and NVCache. While the disk is spun-down, write oper-
ations are redirected to the NVCache. NVCache also at-
tempts to redirect read requests for a spun-down disk. If the
NVCache has the requested data, it is returned and the disk
remains spun-down. If not, the disk is spun-up and must
service the request. In order to increase the likelihood that
read operations are satisfied by the NVCache when the disk
is spun-down, NVCache caches popular on-disk data while
it is active.

� � � � � �
� � � 	 �

 � � � � � � �
�
 � � � � � � �
 � � �

� � � � � � � � � �

� � � � � � � � � � � 	
� � � � �

� � � 	 �

� � �
 ! " # $ %

� � �
& ' () * + , -)

. / % 0 % " ! 1 � % 2 3 * + 2 " 2
 4 5 , / # " 1 6

� / # " %
� % ! ,) ! # 4 # 2 " # ,)

Figure 1. NVCache Organization

The NVCache organization is shown in Figure 1. There
are two caches: a write-cache holding redirected writes
while the disk is spun-down, and a prefetch read-cache.
The prefetch-read cache is populated by the Prefetch Read-
Data algorithm when disk is active. To determine what
to prefetch, it records all disk read requests. Write rec-
onciliation occurs to keep a disk consistent after a spin-
down period. The metadata contains state statistics for the
NVCache, such as disk power state, size, and spin-down
iteration.

2.1 Read/Write Caching

The goal of NVCache is to extend spin-down periods
by servicing as many disk I/O operations as possible while
the disk is spun-down. To do this, we use write and read
caching. The write-cache is straight forward—while the
disk is spun-down writes are redirected to the write-cache.
To the file system, redirected writes are committed oper-
ations. However, ensuring disk data consistency is more
complicated. Our approach is to flush the write-cache con-
tents back to disk when it is spun-up. To reduce the over-
head of copying data from the NVCache to disk, we flush
the smallest amount of data from the write-cache to disk

which doesn’t cause write-cache capacity fills to initiate
future spin-ups. We track the total amount of redirected
write data for each spin-down period and compute an aver-
age from the most recentN spin-down periods to compute
the amount of data to flush each spin-down period. To pre-
vent the empty write-cache space from perpetually getting
smaller, the amount of data flushed is artificially increased
by a small percentage (25%) when a redirected write ends a
spin-down period with a capacity fill.

The remaining write-cache data is lazily flushed to disk
by letting the file system initiate consistency. We keep an
in-memory list of data in the write-cache. While the disk is
active, disk requests are first checked if they overlap with
data from the NVCache. If the request is a write and over-
laps with write-cache data, the associated in-memory list
element is removed, and the request continues on to disk. If
the request is a read and overlaps with all write-cache data,
the request returns with write-cache data. However, if the
request isn’t completely covered by write-cache data, the
overlapping region is still read from the write-cache, but
the non-overlapping regions are read from disk. The two
data sources are merged in memory and returned to the re-
quest. In both read cases, since write-cache data is already
in memory, it is written back to its original location on disk,
then removed from the in-memory list.

The read-cache is populated with copies of data from the
disk that is likely to be read while the disk is spun-down.
The prefetching algorithm that populates the NVCache only
considers read operations as candidates for the read-cache.
Since NVCache resides at the block level, we only uti-
lize temporal information about the disk request pattern to
drive the prefetching algorithm. In this work, we investi-
gate the use of two traditional temporal caching algorithms:
LRU/MRU and LFU/MFU, as well as a combination of the
two, to prefetch data into the read-cache.

Justifying MRU/LRU is simple—data that is recently
read is likely to be read in the near future. However, since
operating system buffer caches typically use some variant of
LRU, it is likely that prefetching the most recently used data
will result in double caching, with the buffer cache satisfy-
ing requests of the doubled cached data. Yet, the MRU/LRU
prefetching algorithm has several distinctions from a nor-
mal LRU buffer cache algorithm. First, only read requested
data is prefetched to the NVCache while a buffer cache typ-
ically does not discriminate between reads and writes. Sec-
ond, the prefetching algorithm for the NVCache is driven
by disk accesses, not file system accesses, which hopefully
yields different working sets. We also look at an MFU/LFU
prefetching algorithm to avoid potential double caching ef-
fects. Finally, we investigate combining the two caching
policies to exploit the benefits of each policy.

We choose to put the read-cache on the NVCache and
not in main-memory for several reasons. First, populating

Notebook Compact
drive Flash

Read/Write 2W .17W
Idle 1.8W 2.5mW

Standby .2W 2.5mW
Capacity 60-100GB 256MB-8GB

Table 1. Power requirements and capacity of
a Hitachi Travelstar E7K100 notebook drive
and a Sandisk Ultra II CompactFlash Memory
Card

the buffer cache with data from disk will cause evictions for
data recently used by the file system, which are likely to
be accessed again. Unfortunately, such requests must now
go to disk, thus negating the benefit of prefetching into the
buffer cache. Second, the file system should drive what is
in the buffer cache, not the disk request pattern, as the disk
request pattern is an effect of the file system request pattern,
and buffer cache size and policy.

2.2 NVCache Device

Our focus is not on the type of NVCache device used
but rather about the power saving potential of a generic
NVCache, yet the design, implementation, and performance
rely on specific properties of the NVCache device. There-
fore, we will briefly discuss the type of device we designed
NVCache for: flash memory. We chose flash memory for
several reasons. It is readily available, has a large capacity,
is non-volatile, and has a low-power requirement relative to
notebook disk drives. Table 1 shows the requirements of a
modern notebook disk drive and a compact flash memory
card. Compact flash requires significantly less power than a
notebook drive and has roughly 10% the capacity of a note-
book drive.

Flash has several unique properties. It has a page alloca-
tion unit and a block erase unit, where a block size is several
times larger than a page. Data cannot simply be overwritten
in flash—it must first be erased, then written to. Therefore,
Flash Translation Layers (FTL) are used to map LBAs to
pages. Additionally, blocks have a limited number of era-
sures, 2 million is a current threshold [9], which means that
wear-leveling techniques are necessary to distribute erase
operations across the device. It is important to note that a
failed block is still readable, just not writable. The FTL
should remove the block from potential mappings, simi-
lar to a file system finding bad disk sectors and not using
them. Some flash device manufacturers, such as Sandisk,
provide both wear-leveling and an internal FTL, embedding
the functionality in the controller of a compact flash device.

Although compact flash can be treated as a pure block
device, it is still useful to keep its physical properties in
mind when designing the NVCache data layout format,
especially when wear-leveling implementations vary from
manufacturer to manufacturer. For example, Sandisk has a
patented regional wear-leveling algorithm, where a compact
flash device is broken up into multiple logical regions [34].
With wear-leveling in mind, the obvious choice for the read
and write cache layout is in a log format. By writing data
out in a log format, erase cycles will be distributed across
the entire device.

3 Implementation

NVCache is implemented in the Linux Kernel and as
a simulator. Both implementations use the dynamic spin-
down algorithm developed by Helmboldet al. [18]. Their
spin-down algorithm is based on a machine learning class of
algorithms known as Multiple Experts [6]. In the dynamic
spin-down algorithm, each expert has a fixed time-out value
and weight associated with it. The time-out value used is
the weighted average of each expert’s weight and time-out
value. It is computed at the end of each idle period. Af-
ter calculating the next time-out value, each expert’s weight
is decreased proportional to the performance of its timeout
value.

3.1 Kernel

The kernel implementation with a focus on the write-
cache is discussed in this section. We only describe the
write-cache implementation as the read-cache is part of fu-
ture work. As mentioned in the previous section, a log is a
suitable format for a flash NVCache device, which we use.
Figure 2 shows the data layout. A meta-block describes
one or more data-blocks to its right. A meta-block contains
the location on disk of the data-block(s), including LBA,
offset, length, checksum, and status field. A meta-block
is currently 512 bytes. Each redirected write contains one
meta-block followed by one or more data-blocks(s).

Intercepting and redirecting requests occurs at the block
level. When a write request comes in for a disk that is spun-
down, it is intercepted and the I/O structure is modified. The
I/O destination is redirected to the write-cache and a meta-
block sector is prepeneded to the I/O structure’s data field.
The location of the the redirected I/O is the next set of avail-
able contiguous sectors large enough to hold the meta-block
and data field. To make write-cache space allocation effi-
cient, we don’t write to the write-cache in page sized chunks
(Linux’s base allocation unit for I/O), but rather, only write
actual data from within the page to the write-cache.

In order to make searching through the write-cache more
efficient, we keep information about the data stored on the

� � � � � � �
� � � 	
 	 � 	

� �
 � � 	 �
� � � �

� � � � � � 	 � � � � � 	 � � 	 � � �

� � � 	 � � � � � � � � � � � � � � � �

 	 � 	 � � � � � � � � � � � � � � � � �
 � �

 	 � 	 � � � � � � � � � � � � � � � �
� � � � 	 � � � � � � � � � � � � � � ! �

Figure 2. NVCache Data Layout

write-cache in memory. Currently, we use a list, sorted by
time, but will switch to a hash table to yield faster search
performance. The in-memory list is searched when a read
operation occurs while the disk is spun-down, but also while
the disk is active (for lazy consistency). Each element in the
list contains: a meta-block number, disk sector, length, and
status. The meta-block number is the logical block address
of the meta-block that describes one or more data-block(s).
When appending to the write-cache, the list is scanned to
see if it overlaps with any previous writes. If so, the over-
lapped list entry is removed. Finally, the I/O entry is ap-
pended to the in-memory list.

To reduce block erase operations, when an in-memory
list element is removed, it isn’t marked as clear on the ac-
tual device. As a result, all data in the write-cache will get
written to disk, including stale data. However, since the
write-cache is ordered by time, any stale data written to disk
will eventually get overwritten by newer data. For example,
when an older data block is written back to disk but the
newer block isn’t (due to lazy consistency), a read opera-
tion will still be redirected to newer data on the NVCache
until it is written back to disk thus overwriting the old data.

On a read that is only covered by a portion of the data
in the write-cache, overlapping data is still read into mem-
ory. The non-overlapping regions residing on disk are also
read into memory. When all of the data is in memory, it
is merged and returned to the caller. However, before fin-
ishing the request and discarding the data, the redirected
request, which is now in memory, is reformatted to look
like the original write request and written back to disk. The
associated entry in the in-memory list is then removed.

Seconds MB/S
Flash Read 19.85 2.51
Disk Write 44.48 1.12

Total 64.60 0.77

Table 2. Flushing write-cache to Disk

3.2 Simulator

In addition to the kernel implementation, we imple-
mented an NVCache simulator. The simulator has several
run-time options: write-cache consistency model, prefetch-
ing algorithm for the prefetch read-cache, and the size for
each cache. Both LRU/MRU and LFU/MFU prefetching al-
gorithms are available. Any configuration of the two caches
is possible simply by specifying the cache desired and size.
When both prefetching algorithms are selected, they each
have their own logical partition within the read-cache spec-
ified by its size. There are two options for the consistency
model. They are full-flush and lazy consistency. Full flush
flushes the entire write-cache back to disk on a spin-up. In
our evaluation we use the lazy consistency technique.

The LRU/MRU prefetching algorithm is implemented by
prefetching each read access (MRU) from the disk while it
is active to the read-cache if it is not already in the read-
cache and using LRU eviction policy. The LFU/MFU im-
plementation is slightly more complex. We maintain a hash
of all disk read requests. A request consists of its sector,
offset, and length. The hash value is the frequency of that
particular request. Every time the same request occurs, the
frequency is incremented. If the request is not in the read-
cache, its frequency is compared against the request with
the lowest frequency from the read-cache, and replaces it if
the request not in the read cache has a higher frequency.

4 Evaluation

We evaluate NVCache using the simulator implementa-
tion. However, we did test the overhead of full-flush with
the kernel implementation. The results are in Table 2. The
kernel implementation uses Linux kernel version 2.6.8.1
(Gentoo distribution) on a 3GHz Pentium 4 machine. The
compact flash and disk used are described in Table 1. The
interconnect is over USB 2.0. This experiment measures the
total time to flush 50MB of non-sequential data back to the
hard-disk. Reading from flash is significantly faster than
writing to disk because of the log data layout format. We
exploit this layout by reading 1MB of write-cache at a time,
then reconstructing multiple original disk I/Os in-memory
and resubmitting them to the disk queue.

4.1 Traces

To properly evaluate the simulator, we use three disk
traces from real workloads: cello, an engineering worksta-
tion, and a personal web/mail server.

The Cello trace is from an HP-UX server in 1999 and
records disk activity. We use a seven-day snapshot of the
trace from 5/10/1999 through 5/16/1999.

We recorded disk accesses from an engineering worksta-
tion and web/mail server. The workstation was traced for 5
days, and the server trace for 71 days. Both systems were
running Linux from a Gentoo Distribution with a 2.6 kernel.
The engineering workstation was used primarily for soft-
ware development, e-mail, web-browsing, and text prepara-
tion. Newer software packages were automatically updated
each night from source on the system. The disk being traced
held the root file system (ReiserFS).

The web/mail server used apache and postfix for serv-
ing web content and mail services, respectively. The disk
traced contained the data directory for both the mail and
web server applications, and the root file system (ReiserFS).
It is important to note that both systems ran fcron, which
updated the spool file every 15 minutes.

We recorded all I/O operations destined for the traced
disk at the disk driver level and appended an entry describ-
ing each I/O request to an in-memory kernel data structure
containing 8KB worth of entries. To avoid affecting the
trace itself, when the data structure filled up, it was passed
to a user-space process, which appended the data structure
to a file on another disk. The format of a trace entry is:

struct trace_entry{
unsigned long long time;
unsigned int rw;
unsigned long long sector;
unsigned int size;

};

4.2 Experiments

In most figures, there is an ”ME SD” plot. This plot
stands for the Multiple Experts Spin-Down algorithm. It
represents using the Multiple Experts Spin-Down algorithm
without an NVCache, which is why the plot is horizon-
tal with respect to NVCache size. All other plots use an
NVCache with the Multiple Experts Spin-Down algorithm.

There are four possible NVCache combinations:write,
write/LFU, write/LRU, and write/LRU/LFU. Write repre-
sents the write-cache, whileLRU and LFU represent the
prefetching algorithm for the read-cache. We use equal
cache size partitioning in our experiments when combin-
ing multiple read-cache policies. For example, in Fig-
ure 3(a), plotwrite/LRU/LFUwith cache size 1MB, the ac-
tual size of the write-cache is 333KB while the read-cache is

666.66KB, divided equally for the LRU and LFU prefetch-
ing algorithm. Similarly, if the total cache size is 1MB and
the plot iswrite/LRU, the write-cache and read-cache are
both 500KB.

Figure 3 shows the percentage of energy consumed rela-
tive to not spinning down the hard disk. We use the energy
model for a hard disk and compact flash device described
in Table 1. For NVCache sizes under 10MB, the write-
cache alone performs better than any combination includ-
ing a read-cache. This is primarily due to the fact that any
combination effectively decreases the write-cache size by
two or three times. This effect is more pronounced in the
personal server and engineering workstation because writes
occur more frequently between idle periods—fcron period-
ically updating the spool file.

In plot write, the effectiveness of the write-cache alone
plateaus between 1 and 10MB as read requests are not sat-
isfied by write-cache content. With larger NVCache sizes,
a read-cache is effective at increasing spin-down periods.
Looking at the results for the Cello trace at a 2GB NVCache
size, the energy consumed goes from 90% to 70% when
partitioning the NVCache equally into awrite/LFU cache
from awrite cache alone. Since the personal server and en-
gineering workstation are write-dominated during idle peri-
ods, relative to Cello, a 10MB write-cache alone decreases
their energy consumption down to 20%. Yet, adding an
LFU read cache to the personal server when the NVCache
device is greater than 2GB still decreases the energy con-
sumption from 20% to 10%.

Figure 3 also shows how different prefetching algorithms
affect NVCache performance. Thewrite/LFU combina-
tion significantly outperforms thewrite/LRU combination.
We speculate this is because double caching occurs be-
tween the LRU read-cache and buffer cache, which explains
why the performance of thewrite/LRU configuration is not
much better than thewrite only configuration. However, by
prefetching only the most frequently used data to the read-
cache we can avoid double caching effects. We also tried
using both an LRU and LFU prefetching algorithm, but the
results do not show a noticeable difference when compared
to thewrite/LFU configuration.

Figure 4 shows the average number of ops satisfied by
the NVCache per spin-down period. This includes both
read and write operations. The plot ”ME SD” is missing
from all three figures because no operations can be satisfied
without an NVCache. Again, thewrite/LRU marginally in-
creases the average number of satisfied operations over the
write plot alone, probably because of the previously men-
tioned effects of double caching. However, Figure 4(a)
write/LRU deviates from this pattern by increasing propor-
tionally to the other two read-cache combinations. Nei-
ther LFU read-cache combinations in Figure 4(a) make the
dramatic increase in satisfied operations that the personal

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

NVCache Size (MB)

ME SD
write

write/LFU
write/LRU

write/LRU/LFU

(a) Engineering Workstation

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

NVCache Size (MB)

ME SD
write

write/LFU
write/LRU

write/LRU/LFU

(b) Personal Server

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

NVCache Size (MB)

ME SD
write

write/LFU
write/LRU

write/LRU/LFU

(c) Cello

Figure 3. Energy Consumption: relative to an
always on hard disk

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.01 0.1 1 10 100 1000 10000

A
ve

 O
ps

 w
hi

le
 S

pu
n-

do
w

n

NVCache Size (MB)

write/LRU/LFU
write/LFU

wo/LRU
write

(a) Engineering Workstation

 0

 500

 1000

 1500

 2000

 0.01 0.1 1 10 100 1000 10000

A
ve

 O
ps

 w
hi

le
 S

pu
n-

do
w

n

NVCache Size (MB)

write/LRU/LFU
write/LFU

wo/LRU
write

(b) Personal Server

 0

 100

 200

 300

 400

 500

 600

 0.01 0.1 1 10 100 1000 10000

A
ve

 O
ps

 w
hi

le
 S

pu
n-

do
w

n

NVCache Size (MB)

write/LRU/LFU
write/LFU

wo/LRU
write

(c) Cello

Figure 4. Average # of I/Os satisfied per spin-
down period

server or Cello make with an LFU read-combination at
larger NVCache sizes, allowing thewrite/LRU plot in Fig-
ure 4(a) to increase proportionally to the LFU read-cache
combinations. At NVCache size 2GB, cello has a fifteen
times increase withwrite/LFU overwrite, while the engi-
neering workstation only has a 50% increase.

Figure 5 shows the percentage of time the hard disk was
spun-down relative to the duration of the trace. For the
Cello trace, the disk was spun-down for 4% of the trace
duration without an NVCache. Adding a write-cache of
size 2GB increased this percentage to 10%, and partition-
ing the NVCache into awrite/LFU cache at NVCache size
2GB, the total spin-down percentage increased to 30% for
an improvement of seven and half times over the spin-down
algorithm alone. For the other two traces, the spin-down al-
gorithm alone kept the disk spun down for just under 40%
of the trace. By only adding thewrite cache, the spun-down
percentage roughly doubled. Adding anLRU or LRU cache
marginally increased their total spin-down time.

An interesting result in Figures 5(a) and 5(b) is that
for cache sizes of 100KB or less, the actual time spent
spun-down was actually less than the multiple experts al-
gorithm alone. Although we expected this for energy
consumption—buffering a few additional operations does
not justify the additional power consumption of a flash de-
vice. However, seeing similar results in a time-only met-
ric was unexpected. We discovered it is an artifact of the
spin-down algorithm’s time-out calculation. When the spin-
down algorithm was used alone, it would generate small
time-out values and therefore stay spun-down longer. With
a small NVCache, a couple operations could be satisfied
by the NVCache, which caused the spin-down algorithm to
generate slightly longer time-out values keeping the disk in
active mode longer.

Figure 6 shows the overhead of adding a read-cache to
the NVCache. These figures shows the percentage of read-
updates to actual disk read operations. It includes updates
where the data has gone stale in the read-cache due to a
disk over-write operation. Fundamentally, they represent
the total number of cache insertions, which impacts perfor-
mance and NVCache device reliability. In (a), (b), and (c)
thewrite/LFU read-cache incurs the least number of inser-
tions. For all the traces, a 1.3GB LFU read-cache is suffi-
cient to contain a large percentage of the working set.

5 Related work

Power Management is traditionally performed in the
Operating System. However, applications are responsible
for generating the I/O which OS-level power management
policies are designed for. By providing applications with
power-aware interfaces or dynamically modifying an appli-
cation to be power-conscious, OS-level power management

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

S
pi

n-
D

ow
n

T
im

e
(%

)

NVCache Size (MB)

write/LFU/LRU
write/LRU
write/LFU

write
ME SD

(a) Engineering Workstation

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

S
pi

n-
D

ow
n

T
im

e
(%

)

NVCache Size (MB)

write/LFU/LRU
write/LRU
write/LFU

write
ME SD

(b) Personal Server

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

 S
pi

n-
D

ow
n

T
im

e
(%

)

NVCache Size (MB)

write/LFU/LRU
write/LRU
write/LFU

write
ME SD

(c) Cello

Figure 5. Spin-down time: relative to an al-
ways on hard disk

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

N
V

C
ac

he
 u

pd
at

e
%

NVCACHE Size (MB)

write/LFU/LRU
write/LFU
write/LRU

(a) Engineering Workstation

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

N
V

C
ac

he
 u

pd
at

e
%

NVCACHE Size (MB)

write/LFU/LRU
write/LFU
write/LRU

(b) Personal Server

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100 1000 10000

N
V

C
ac

he
 u

pd
at

e
%

Cache Size (MB)

write/LFU/LRU
write/LFU
write/LRU

(c) Cello

Figure 6. Read-cache overhead: read-cache
updates vs. total read I/Os

schemes can perform better.
Cooperative I/O proposes to provide power-aware I/O in-

terfaces to applications [36]. This work introduces three re-
placement I/O operations for open, read, and write. The
main contribution of this work is that when these coopera-
tive I/O interfaces are used, their work can be deferred till
an opportune time, such as when the disk is back in active
mode, from a low-power mode.

Heathet al. propose to increase disk idle periods [17].
Their approach is done within the compiler by profiling
source code, then generating code that increases idle times.
Their compiler also generates code that notifies the operat-
ing system of upcoming idle periods and their length.

5.1 Non-Volatile Memory File Systems

There are several file systems whose physical media is
designed for solid-state memory. Examples of such file sys-
tems include JFFS2 [30] and YAFFS [8]. They are de-
signed for raw flash and implement a Flash Translation
Layer (FTL) to provide a mapping between flash and a
block device interface. They also implement their own
wear-leveling techniques. eNVy is another flash file system,
but it uses SRAM to minimize block-erase operations [37].
Some flash devices, such as CompactFlash by Sandisk [33]
build an FTL into the controller such that an operating sys-
tem can treat the device as a normal block device.

Douglis et al. looked at storage solutions for Mobile
computing [11]. They primarily investigate the trade-offs
of using flash memory versus hard disks for primary stor-
age. Additionally, they look at using SRAM and DRAM to
function as a buffer cache. They found that flash memory
can provide significant energy conservation while providing
decent I/O performance.

Hybrid disk/non-volatile memory file systems aim to in-
crease performance by using non-volatile memory to store
data alongside the disk [35, 25]. The fundamental design
question is, which data should be placed in non-volatile
memory to provide faster I/O. Conquest proposes to use
non-volatile memory to store small data files, all metadata,
and shared libraries. HeRMES stores all meta-data and
the first few bytes of files in non-volatile memory. HeR-
MES also uses the non-volatile memory as a persistent write
cache.

5.2 Non-Volatile Memory as a write cache

After analyzing traces of several systems, Ruemmler and
Wilkes concluded that using a small non-volatile memory
write cache for each disk can significantly improve perfor-
mance [31]. Bakeret al. looked at using NVRAM as a file
cache to reduce write traffic to a file server [3]. RAPID-
Cache proposes to use two caches, of which one is required

to be NVRAM, on top of a log-structured cache-disk resid-
ing on primary RAID storage [20]. By caching at so many
hierarchies, disk latencies can be hidden.

Preliminary work has been performed by looking at flash
as a cache to decrease power consumption of disks [24, 23].
”FLASHCACHE” is a read/write flash cache that exists be-
tween disk and memory. FLASHCACHE differs from our
work because it directly sits in between RAM and disk, and
services requests while the disk is in active mode, which
is done for performance reasons. However, an artifact of
this design is that FLASHCACHE’s ability to absorb write-
traffic while the disk is spun-down is diminished. FLASH-
CACHE only uses LRU as it’s replacement policy, while we
investigate other replacement and insertion policies. Addi-
tionally, FLASHCACHE does not describe meta-data man-
agement or consistency.

Microsoft has proposed an extension to hard disk drives
to include a non-volatile cache, which a host can then man-
age through an extended set of ATA commands [26]. Cou-
pling the non-volatile cache the disk drive reduces possible
cache corruption, but restricts it’s usefulness to a particular
disk. Microsoft plans to use such a drive to reduce power
consumption, but also decrease boot and resume times. Un-
fortunately, there are no details describing the non-volatile
cache data layout or management policies.

5.3 Prefetching for Power

Papathanasiou and Scott show that prefetching is use-
ful for power conservation as well as performance [28].
Their work focuses on speculative file prefetching into main
memory using file access hints passed from the applica-
tion. The hints include access sequentially, loop, and ran-
dom access. The operating system uses file access infor-
mation to perform intelligent prefetching and make more
informed spin-down decisions. Additionally, they increase
the dirty page write-back time-out from 30 seconds to 1
minute. Rybczynskiet al. show that when prefetching to
conserve energy, a single prefetching algorithm may not be
sufficient [32]. A supervisor algorithm is useful to dynami-
cally select the most energy efficient prefetching algorithm.

LaRosa and Bailey attempt to provide a new approach to
reduce energy consumption for mobile devices [21]. Their
approach uses non-volatile memory to reduce energy con-
sumption during mobile use by prefetching likely to be used
files to a non-volatile cache during plugged-in mode. When
the laptop enters mobile-mode the hard disk is spun-down
and files are accessed from the non-volatile memory cache.

5.4 Storage System Power Management

Power is becoming a design consideration for storage
systems since a large portion of the TCO for storage system

comes from power consumption. Recent work into reducing
the power consumption of disks in storage systems includes
Hibernator, a storage system designed around multi-speed
disks [38]. Hibernator tries to balance energy consumption
with desired performance goals. MAID (massive arrays of
idle disks) performs power management by treating a subset
of disks in the storage system as as cache disks to absorb I/O
traffic [7]. Pinheiro and Bianchini take the approach of data
migration, rather than caching, by distinguishing between
hot and cold data. Hot data is migrated to active disks and
cold data is is migrated to disks which are spun-down [29].

5.5 I/O redirection

Redirecting I/O to another source while a disk has been
spun-down has been done with RAID 1 schemes, in which
reads to a spun-down disk are redirected to its mirror [22].
In previous work, we proposed I/O redirection for a dis-
tributed object-based file system with smart disks [4]. The
approach redirects both reads and writes to other disks in
the file system. Reads are redirected to locations containing
replicas and writes are redirected temporarily to a cache on
other active disks.

6 Conclusion

In this paper, we have presented the design, implementa-
tion, and evaluation of NVCache - a technique to decrease
energy consumption by increasing idle periods of spun-
down hard disks. NVCache buffers writes to a non-volatile
low-power device while the disk is spun-down. NVCache
also services reads on behalf of the spun-down disk from
the write-cache as well as a read-cache, which is also lo-
cated on the device. The read-cache contains cached copies
of popular disk data, prefetched from the disk while it was
active using using temporal caching algorithms. We investi-
gated the use of two popular caching algorithms: LRU and
LFU, and their combination. NVCache is complimentary
to any disk spin-down algorithm. We have shown that by
combining NVCache with an adaptive disk spin-down al-
gorithm, a hard disk’s energy consumption can be reduced
by up to 90%.

References

[1] Symmetrix 3000 and 5000 enterprise storage systems prod-
uct description guide.http://www.emc.com, 1999.

[2] X. L. , Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Ku-
mar. Performance-directed energy management for main
memory and disks. InProceedings of the Eleventh Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’04), Oc-
tober 2004.

[3] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer.
Non-volatile memory for fast, reliable file systems. InPro-
ceedings of the 5th International Conference on Architec-
tural Support for Programming Languages and Operating
System (ASPLOS), pages 10–22, 1992.

[4] T. Bisson, J. Wu, and S. A. Brandt. A distributed spin-down
algorithm for an object-based storage device with write redi-
rection. InProceedings of the 7th Workshop on Distributed
Data and Structures (WDAS ’06), January 2006.

[5] E. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk
energy in network servers. InProceedings of the 17th Inter-
national Conference on Supercomputing, June 2003.

[6] N. Cesa-Bianchi, Y. Freund, D. Haussler, and D. P. Helm-
bold. How to use expert advice.Journal of the ACM,
44(3):427–485, 1997.

[7] D. Colarelli and D. Grunwald. Massive arrays of idle disks
for storage archives. InSupercomputing ’02: Proceedings of
the 2002 ACM/IEEE conference on Supercomputing, pages
1–11, Los Alamitos, CA, USA, 2002. IEEE Computer Soci-
ety Press.

[8] A. O. Company. Yet another flash file system.www.
aleph1.co.uk/yaffs, 2004.

[9] A. Corporation. Executive summary: Flash
quality. http://www.adtron.com/pdf/
AdtronFlashQual121103.pdf, 2003.

[10] Dell. Dell poweredge 6650 executive summary.http://
www.tpc.org/results/individual results/
Dell/dell 6650 010603 es.pdf, Mar 2003.

[11] F. Douglis, R. Caceres, M. F. Kaashoek, K. Li, B. Marsh,
and J. A. Tauber. Storage alternatives for mobile computers.
In Operating Systems Design and Implementation, pages
25–37, 1994.

[12] F. Douglis, P. Krishnan, and B. Bershad. Adaptive disk
spin-down policies for mobile computers. InProc. 2nd
USENIX Symp. on Mobile and Location-Independent Com-
puting, pages 130–142, 1996.

[13] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the power-
hungry disk. InUSENIX Winter, pages 292–306, 1994.

[14] Y. G. De Micheli. Adaptive hard disk power management
on personal computers. InIEEE Greate Lakes Symposium
on VLSI, pages 50–53, March 1999.

[15] D. Geer. Industry trends: Chip makers turn to multicore
processors.Computer, 38(5):11–13, 2005.

[16] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. Rpm: dynamic speed control for power man-
agement in server class disks. InProceedings of the 30th
Annual International Symposium on Computer Architecture
(ISCA-03), pages 169—181, June 2003.

[17] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini.
Application transformations for energy and performance-
aware device management. InProceedings of the Eleventh
Conference on Parallel Architectures and Compilation Tech-
niques (PACT’02), September 2002.

[18] D. P. Helmbold, D. D. E. Long, and B. Sherrod. A dynamic
disk spin-down technique for mobile computing. InPro-
ceedings of the 2nd annual international conference on Mo-
bile computing and networking, pages 130–142, 1996.

[19] Hitachi. Deskstar 7k400.http://www.hitachigst.
com/tech/techlib.nsf/products/
Deskstar 7K400, 2004.

[20] Y. Hu, T. Nightingale, and Q. Yang. Rapid-cache-a reliable
and inexpensive write cache for high performance storage
systems.IEEE Trans. Parallel Distrib. Syst., 13(3):290–307,
2002.

[21] C. R. LaRosa and M. W. Bailey. A docked-aware storage ar-
chitecture for mobile computing. InProceedings of the first
conference on computing frontiers on Computing frontiers,
pages 255–262, 2004.

[22] D. Li and J. Want. Conserving energy in conventional disk
based raid systems.

[23] K. Li. Towards a low power file system. Technical Report
UCB/CSD-94-814.

[24] B. Marsh, F. Douglis, and P. Krishnan. Flash memory file
caching for mobile computers. InTo appare in Proceedings
of the 27th Hawaii Conference on Systems Science, 1994.

[25] E. L. Miller, S. A. Brandt, and D. D. E. Long. Hermes:
High-performance reliable mram-enabled storage. InPro-
ceedings of the Eighth Workshop on Hot Topics in Operating
Systems, page 95. IEEE Computer Society, 2001.

[26] N. Obr and F. Shu. Non volatile cache command proposal
for ata8-acs.http://t13.org, 2005.

[27] J. V. P. Krishnam, P.M. Long. Adaptive disk spin-down via
optimal rent-to-buy in probabilistic environments. InPro-
ceedings of the 12th annual Internation Conference on Ma-
chine Learning, pages 322–330, July 1995.

[28] A. Papathanasiou and M. L. Scott. Energy efficient prefetch-
ing and caching. InUsenix ’04 Annual Technical Confer-
ence, June 2004.

[29] E. Pinheiro and R. Bianchini. Energy conservation tech-
niques for disk array-based servers. InICS ’04: Proceed-
ings of the 18th annual international conference on Super-
computing, pages 68–78. ACM Press, 2004.

[30] I. Red Hat. Jffs2: The journalling flash file system.http:
//sources.redhat.com/jffs2/jffs2.pdf,
2001.

[31] C. Ruemmler and J. Wilkes. UNIX disk access patterns.
Technical Report HPL-92-152, HP Laboratories, December
1992.

[32] J. P. Rybczynski, D. D. E. Long, and A. Amer. Expecting the
unexpected: adaptation for predictive energy conservation.
In StorageSS ’05: Proceedings of the 2005 ACM workshop
on Storage security and survivability, pages 130–134, New
York, NY, USA, 2005. ACM Press.

[33] Sandisk. Operation of cf host operation.http://www.
sandisk.com.

[34] Sandisk. Sandisk flash memory cards wear leveling.
http://www.sandisk.com/Assets/File/
OEM/WhitePapersAndBrochures/RS-MMC/
WPaperWearLevelv1.0.pdf, 2003.

[35] A.-I. Wang, P. L. Reiher, G. J. Popek, and G. H. Kuenning.
Conquest: Better performance through a disk/persistent-ram
hybrid file system. InUSENIX Annual Technical Confer-
ence, General Track, pages 15–28, 2002.

[36] A. Weissel, B. Beutel, and F. Bellosa. Cooperative i/o:a
novel i/o semantics for energy-aware applications.SIGOPS
Oper. Syst. Rev., pages 117–129, 2002.

[37] M. Wu and W. Zwaenepoel. envy: a non-volatile, main
memory storage system. InASPLOS-VI: Proceedings of the
sixth international conference on Architectural support for

programming languages and operating systems, pages 86–
97, New York, NY, USA, 1994. ACM Press.

[38] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.
Hibernator: helping disk arrays sleep through the winter. In
SOSP ’05: Proceedings of the twentieth ACM symposium
on Operating systems principles, pages 177–190, New York,
NY, USA, 2005. ACM Press.

[39] Q. Zhu and Y. Zhou. Power-aware storage cache manage-
ment. IEEE Transactions on Computers, pages 587—602,
May 2005.

