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Abstract—Performance control and power management in
virtualized machines (VM) are two major research issues in
modern data centers. They are challenging due to complexities
of hosted Internet applications, high dynamics in workloads
and the shared virtualized infrastructure. Obtaining a model
among VM capacity, server configuration, performance and
power consumption is a very hard problem even for just one
application. In this paper, we propose and develop GARL,
a genetic algorithm with multi-agent reinforcement learning
approach for coordinated VM resizing and server tuning. In
GARL, model-independent reinforcement learning agents gener-
ate VM capacity and server configuration options and the genetic
algorithm evaluates different combinations of those options for
maximizing a global utilization function of system throughput
and power efficiency. The multi-agent design makes GARL
a scalable approach, which is important as more and more
applications are hosted in data centers using cloud services. We
build a testbed in a prototype data center and deploy multiple
RUBiS benchmark applications. We apply a power budget in
the testbed and observe superior system throughput and power
efficiency of GARL. Experimental results also find that GARL
significantly outperforms a representative reinforcement learning
based approach in performance control. GARL shows better
scalability when compared to a centralized approach.

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) is one important form

of cloud computing. In IaaS, users are provided with on-

demand virtual machines (VMs). Besides the benefit to users,

a key benefit of IaaS to the cloud provider is the high

resource utilization in data centers. Due to the high flexibility

in adjusting VM capacity for resource utilization efficiency,

cloud providers can consolidate Internet applications into a

fewer number of physical servers by multiplexing among the

workload patterns of multiple VMs [14].

Performance control and power management in VMs are

two major research issues in modern data centers provisioning

cloud services. From the perspective of cloud providers, the

objective is to meet the service level agreement (SLA) of indi-

vidual applications, to improve the overall system throughput

and to optimize resource utilization in the data center [17].

There are significant challenges. First, the user perceived

performance of hosted applications relies on effective manage-

ment of VM capacity configurations. It is non-trivial because

of the complexity of applications, shared underlying hardware

infrastructure, and the resulted performance correlation and

interference among applications [10], [15], [16].

Second, Internet server applications have many configurable

parameters that related to server concurrency level, worker

process generating and network link alive time. They are

very important to the performance of applications and to the

resource utilization of the underlying computer system. An

improper configuration can harm the application performance

and resource utilization. However, server parameter tuning is

a challenging task because of the complexities in workloads,

parameter dependencies and variances in VM capacities. In

order to improve the overall system throughput and to optimize

resource utilization in the data center, those parameters must

be tuned to match the workloads and VM capacities.

Third, power budget has been widely adopted for power and

thermal management in data centers. It helps cloud providers

to reduce the running cost. But enforcing power budget and

improving system performance can be in conflict. Finding

a good trade-off between power consumption and system

performance is crucial for power management in data centers.

Power efficiency is a popular metric for evaluation of different

trade-offs [4], [6], [8]. But the power consumption of VMs is

highly related to their resource utilizations, workload volumes

and application characteristics [18], [26].

Moreover, as cloud services become popular, more and

more applications are hosted in data centers. This imposes

the scalability challenge to the performance control and power

management. Obtaining an accurate model among VM capac-

ity, server configuration, performance and power consumption

is a very hard problem even for just one application due to the

complexity of application characteristics, workload dynamics

and burstiness.

In this paper, we propose and develop GARL, a model-

independent and scalable approach for coordinated VM resiz-

ing and server parameter tuning. GARL targets a common

scenario that multiple Internet applications are hosted in a

shared resource pool with a certain power budget. It aims to

improve the throughput and power efficiency of applications

while meeting the resource constraints and the power budget

in an IaaS environment.

GARL integrates the strengths of genetic algorithms and

multi-agent reinforcement learning. Due to the model indepen-

dency, reinforcement learning has been used in performance

and power control in data centers [2], [20], [21], [23]. It is

effective in a complex environment lacking an accurate per-

formance model. Recently, Rao et al. proposed iBalloon [21],
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a multi-agent reinforcement learning approach for improving

performance of multiple applications via VM resizing. iBal-

loon improved application performance and achieved near-

optimal resource allocation within an acceptable amount of

time. However, iBalloon did not consider the coordination

between VM resizing and server parameter tuning. Its multi-

agent reinforcement learning approach is lacking of explicit

coordination among multiple applications. Power efficiency

is also not considered in iBalloon. These issues have sig-

nificantly restricted the ability in improving both application

performance and power efficiency in an IaaS environment.
In GARL, each application has two corresponding reinforce-

ment learning agents, one performance agent and one power

agent. The performance agent generates VM capacity and

server configuration options. The power agent generates the

prediction on power consumption. GARL’s genetic algorithm

based coordinator evaluates different combinations of those

options for maximizing a global utilization function of system

throughput and power efficiency. Because the state space size

will increase exponentially when the number and complexity

of applications increase, the traditional reinforcement learning

based on Q-Table is poor in scalability. We employ function

approximation to represent the Q-Table as a linear function to

improve the scalability.
We implement GARL in a testbed of virtualized server

cluster hosting multiple RUBiS benchmark applications. The

testbed consists of 5 Dell PowerEdge R610 servers and 2

Dell PowerEdge R810 servers using VMware vSphere 5.0.

Experimental results demonstrate that GARL outperforms a

representative multi-agent reinforcement learning based ap-

proach (MRL) used in iBalloon [21] in system throughput and

power efficiency. GARL achieves 5%− 16% higher effective

system throughput than MRL for different combinations of

RUBiS applications. It significantly outperforms MRL on

power efficiency. Results also show that GARL has good

scalability when the number of applications increases.
The main contributions of our work are:

• We propose to coordinate VM auto-configuration with

server parameter tuning to maximize the system through-

put and power efficiency in an IaaS environment.

• We develop a model-independent approach that integrates

the strengths of genetic algorithms and reinforcement

learning. It is effective in a complex environment lacking

an accurate model among VM capacity, server configu-

ration, performance and power consumption.

• We enhance the approach with a multi-agent design for

the scalability in an IaaS environment.

• We build a testbed in a prototype data center and evaluate

the new approach with benchmark applications.

In the following, Section II discusses related work. Sec-

tion III describes the system design of GARL. Section IV

presents the reinforcement learning agents of GARL. Section

V describes the genetic algorithm for the coordination of VM

resizing and server tuning in GARL. Section VI gives the

testbed implementation. Section VII presents the experimental

results and analysis. Section VIII concludes the paper.

II. RELATED WORK

VM capacity planning is crucial to application performance

assurance. Recent studies focused on improving user-perceived

performance through automated VM resizing [19], [20], [21].

VCONF is a reinforcement learning based approach for VM

auto-configuration [20]. It identifies the performance interfer-

ence between different VMs and the sequence dependent of

VM performance as the major challenges. It achieved good

performance for TPC-W, TPC-C, and SPECjbb benchmark

applications. VCONF is based on a centralized design of

reinforcement learning. It has the scalability problem when

being applied to multiple complex applications.

Recently, iBalloon is proposed to improve the average

response time and throughput for multiple applications using

VM resizing [21]. It is a multi-agent reinforcement learning

approach, in which each agent is associated with one appli-

cation. The major benefit of the decentralized design is the

scalability. iBalloon generalized the reinforcement learning by

function approximation. It reduced the complexity of rein-

forcement learning agent. But iBalloon is lacking of explicit

coordination among multiple applications. This restricts its

capability of improving application performance. There is

no coordination between VM resizing and server parameter

tuning. It does not address the important power efficiency

issue.

A few recent studies focused on automated server parameter

tuning for multi-tier server systems [2], [7]. In our recent

study [7], we proposed to use the effective system throughput

as the primary performance metric for multi-tier Internet

applications. We employed a neural fuzzy control based

approach to achieve automated and agile server parameter

tuning and used it to improve the application performance.

Experimental results showed that server parameter tuning

can improve application performance without increasing the

VM capacity. However, the tuning approach has a limitation

of fixed VM capacity. Due to the correlation between VM

capacity and server configuration, it is necessary to perform

server parameter tuning and VM resizing in a coordinated

manner.

In an IaaS platform, multiple complex applications are

hosted in a virtualized and shared server infrastructure.

Power control is a complex issue due to the correlation

between the power consumption and the resulted performance.

Performance-oriented approaches aim to guarantee a perfor-

mance target and do not have explicit control over power

consumption [3], [9], [29]. Power-oriented approaches aim

to enforce power budget and disregard the SLA of hosted

applications [13], [18], [27], [28]. Power efficiency is used

to achieve a trade-off between performance gain and power

consumption [4], [6], [8].

Recent studies focused on coordinated power and perfor-

mance control. pMapper [25] tackles power-cost trade-offs

under a fixed performance constraints. vManage [8] performs

VM placement to save power without degrading performance.

Co-Con [28] is a two-level control architecture for power
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Fig. 1. The architecture of GARL.

and performance coordination in virtualized server clusters.

It gives a higher priority to enforcing power budget and set

performance as a secondary goal. vPnP [5] coordinates power

and performance in virtualized servers using utility function

optimization. It provides the flexibility to choose various trade-

offs between power and performance. PERFUME [12] em-

ployed a fuzzy MIMO control technique to providing accuracy

and stability for joint power and performance control under

highly dynamic workloads.

In GARL, we integrate the strengths of genetic algorithm

and multi-agent reinforcement learning to achieve coordination

between VM resizing and server parameter tuning. The re-

sulted approach can significantly improve the effective system

throughput, power efficiency, and scalability.

III. GARL: SYSTEM DESIGN

The joint performance and power management imposes

three major requirements to our new approach. First, the

approach must perform VM resizing and server parameter

tuning coordinately to achieve best performance in an IaaS

platform. Second, there should be coordination among applica-

tions to find the best tradeoff for improving the overall system

throughput and power efficiency. Third, the approach has to

be scalable so that it can support many complex applications.

A. Architecture of GARL

Figure 1 illustrates the architecture of GARL. The system

under control is a virtualized server cluster hosting multiple

multi-tier Internet applications. Each application consists of

multiple VMs. All applications share the same resource pool.

Each application is associated with one performance monitor,

one reinforcement learning based performance agent and one

reinforcement learning based power agent.

By using the VMware’s Intelligent Power Management

Interface, the VM power monitor periodically measures the

average power consumption of the server system at the VM
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Fig. 2. Linear decaying function for effective system throughput definition.

level and feeds the power consumption data into the power

agent. The performance agent obtains the performance data

via the performance monitor of each application. The rein-

forcement learning agents generate VM capacity and server

configuration options and the multi-agent coordinator uses

genetic algorithm to evaluate different combinations of those

options for maximizing a global utilization function of system

performance and power efficiency.

B. Effective System Throughput
From the perspective of cloud providers, the objective is to

meet the SLA of individual applications but also to improve

the overall system throughput and to optimize resource utiliza-

tion in the data center. Effective system throughput is defined

as the number of requests that meet the SLA requirement on

the application response time [7].
We use a SLA with two response time bounds, hard

response time and soft response time. The effective throughput

is the number of requests that are processed within the SLA

time bounds. If a request is processed between the hard and

soft response time bounds, its effective throughput is measured

according to a utility decaying function. Figure 2 illustrates the

example of a linear function based effective throughput. We

define the normalized effective throughput as the ratio of the

effective throughput to the total number of incoming requests.

IV. GARL: REINFORCEMENT LEARNING AGENTS

Reinforcement learning is a process of learning through

interactions with an external environment. The VM resizing

and server parameter tuning problem can be formulated as a

finite Markov decision process. It consists of a set of states

and several actions for each state. During the transition of

each state, the learning agent perceives the reward defined

by a reward function r(s, a). The goal of the reinforcement

learning agent is to develop the policy π : S → A, which can

maximize the cumulative rewards through iterative trial-and-

error interactions.
For each application, the state space S is defined as the set

of possible resource allocations and server parameter values

for each VM. For an application that has n VMs, the state

space (S) is represented as a collection of state vectors (s):

s = [R11, R12, · · · , Rni, P11, P12, · · · , Pnj ].

The elements in the state vector are resource allocations

and server parameters, in which i and j are the number
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of the resource types and the number of server parameters,

respectively. In this work, we focus on CPU and memory

resources. Note that the hard disk size is online configurable

but the I/O bandwidth is not controllable.

The action for each state element is represented as a vector.

We define three actions for each state element: keep, increase,

and decrease. Hence, an action vector can be (1, 0, 0), or

(0, 1, 0), or (0, 0, 1). For example, (1, 0, 0) means to keep

the current value of one state element. The action set (A)

is represented as a collection of action vectors (a):

a = [aR11 , aR12 , · · · , aRni , aP11 , aP12 , · · · , aPnj ].

A. Performance Agent

We use a Q-Learning agent to control the effective system

throughput. The Q-Learning agent uses a Q-Table to determine

the action choice on each state. The Q-Table stores the Q-

Value for each state-action pair. The learning process will

continuously update the Q-Values based on the reward it

receives. The reward function of an action a on state s in

kth time slot is defined using the effective throughput (ET)

and the normalized effective throughput (NET):

r(sk, ak) = β|ETsk,ak
− ETsk−1,ak−1

| (1)

where β = NETsk,ak
−NETsk−1,ak−1

. It uses the change in

normalized effective throughput β as the correction factor. For

example, if the effective throughput has increased significantly

and the normalized effective throughput has almost no change,

it implies that the change in the effective throughput could be

just due to the variance of the number of incoming requests.

This phenomenon indicates that the current server system

configuration is favorable for the present workload and no

significant update should be applied to the reinforcement

learning. With the reward function, the Q-Value of an action

a on state vector s in kth time slot is updated as Q(sk, ak).
It is refined by

Q(sk, ak) = Q(sk, ak) + ε[r(sk, ak)−Q(sk, ak)

+ γQ(sk+1, ak+1)]
(2)

where ε is the learning rate and γ is the discount rate to

guarantee that the accumulated reward converges in continuing

tasks. We apply a variable learning rate for fast convergence.

The learning rate for different state-action pair is defined as

ε =
μ

N(s, a)
(3)

where μ is a given constant and N(s, a) is the number of

times that state-action pair (s,a) has been visited. The future

action ak+1 is determined by the multi-agent coordinator.

B. Power Agent

For the power consumption of each application, we use a

temporal-difference agent to learn the model between resource

allocation and power consumption. The power agent observes

the power consumptions for all state in the state space (S).

The updating function of power agent is defined as

U(sk−1) = U(sk−1) + ε[p(sk−1) + γU(sk)− U(sk−1)]
(4)

where ε is the learning rate, γ is the discount rate, and

p(sk−1) is the change in power consumption. It will update the

resource-power model using the measure power consumption.

Through reinforcement learning, the resource-power model

converges and reflects the relations between resource alloca-

tion and power consumption.

C. Generalization of Reinforcement Learning

The state space consists of multiple discrete states. There-

fore, the reachable configurations are limited due to the

sparsity of state space and the predefined adjustment value for

each tuning action. Using a small adjustment value improves

the performance of reinforcement learning and increases the

number of states in the state space.

However, this approach only works in small-scale problems

that do not have a lot of states. For the coordinated VM re-

sizing and server parameter tuning problem in complex multi-

tier applications, the size of state space increases exponentially

with the increasing number of applications. This will signif-

icantly reduce the converging speed and make reinforcement

learning poor in scalability or even infeasible.

One way to handling such a problem is function approxi-

mation [22]. The function approximator use a Q-Function to

calculate the Q-Value. It breaks the limitation of the predefined

adjustment value and allows the learning agent to calculate

the Q-Value for any state-action pair. The Q-Function can be

defined as

Qθ(s, a) = θ0 + θ1R11 + θ2R12 + · · · + θinRni

+ θin+1P11 + θin+2P12 + · · · + θ(i+j)nPnj

+ θ(i+j)n+1aR11 + θ(i+j)n+2aR12 + · · · + θ(2i+j)naRni

+ θ(2i+j)n+1aP11 + θ(2i+j)n+2aP12 + · · · + θ2(i+j)naPnj

(5)

where the values for the parameters θ0, θ1, θ2, · · · , θ2(i+j)n are

learned through the reinforcement learning algorithm.

We use an online learning algorithm to update the param-

eters in each time slot. The most common approach is using

the Widrow-Hoff rule [22]. The Widrow-Hoff rule calculates

the error as the squared difference between successive states.

To move the parameter in the direction of decreasing the error,

the parameter should be updated using

θp = θp − ε
∂E(s, a)

∂θi
= θp + ε[r(st, at)−Qθ(st, at)

+ γQθ(st+1, at+1)]
∂Qθ(st, at)

∂θi
.

(6)

Similarly, the utility function of temporal-difference agent

is represented as

Uϕ(s) = ϕ0 + ϕ1R11 + ϕ2R12 + · · · + ϕinRni

+ ϕin+1P11 + ϕin+2P12 + · · · + ϕ(i+j)nPnj .
(7)
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Fig. 3. Solution spaces of multiple reinforcement learning agents.

By using the Widrow-Hoff rule, the update function of param-

eters ϕ0, ϕ1, ϕ2, · · · , ϕ(i+j)n is defined by

ϕq = ϕq + ε[p(st−1 + γUϕ(st)− Uϕ(st−1)]
∂Uϕ(st−1)

∂ϕi
.

(8)

V. GARL: GENETIC ALGORITHMS FOR COORDINATION

OF VM RESIZING AND SERVER TUNING

A. The Coordination Problem

The objective of GARL is to generate VM configurations

and server parameter values for each application that can

maximize the effective system throughput and power efficiency

while meeting the resource and power constraints. Rein-

forcement learning is able to find the optimal configuration

for each application separately. However, the local optimal

configuration for each application is not necessarily able to

yield global optimal performance and power efficiency for all

application in an IaaS platform.

For example, Figure 3 shows the solution spaces of rein-

forcement learning agents of two applications. The ‘+’ sign

and ‘*’ sign represent the state-action pair candidates of

each application, respectively. The overlap of state-action pair

spaces is determined by the resource constraint and power

budget. Therefore, only the combining configuration options

in the overlap area of the two state-action pair spaces can

satisfy the global constraints. As the number of application

increases, the complexity of searching and finding such a good

operation set increases exponentially. Therefore, we need to

find an effective way to solving the coordination problem of

multiple reinforcement learning agents.

B. The Genetic Algorithm in GARL for Coordination

The genetic algorithm is a search heuristic that is used

to generate solutions for optimization and search problem.

In the genetic algorithm, we represent one operation set

as a chromosome. The structure of the chromosome for m
applications is represented as

c = {(s, a)1, (s, a)2, · · · , (s, a)m} (9)

where each segment of the chromosome represents a config-

uration option for one application. GARL generates a pop-

ulation with different chromosomes. The population evolves

by forming a child population with chromosomes in the

parent population. This is motivated by a hope that the new

population will be better than the old one. Chromosomes are

selected to form new solutions by their fitness - the higher

fitness they are the higher chance they will be selected. During

each evolution, the genetic algorithm has two major steps:

crossover and mutation.
In crossover, the algorithm will pick parent chromosomes

form the current population by their fitness, generate child

chromosomes by swapping the codes at random locus (point

in chromosome). After that, those low fitness chromosomes

will be replaced by the new chromosomes. In mutation, the

algorithm will select a chromosome and randomly change the

code at one locus. Then, it is put back into the population. Dur-

ing each evolution, the crossover and mutation are controlled

by the crossover rate and mutation rate respectively.
GARL aims to improve the effective system throughput and

power efficiency. Therefore, the fitness function is defined as

F (c) = C1(R)C2(p)
∑

i=VMj∈c
ωi

Qθ(s, a)i
Uθ(s)i

(10)

where ωi is the weight of ith application, C1(R) and C2(R)
are the resource pool constraint and power budget, respec-

tively. The definitions of C1(R) and C2(R) are

C1(R) =

{
Rmax −

∑
allV Ms Ri if

∑
Ri ≤ Rmax

0 if
∑

Ri > Rmax.

C2(p) =

{
pmax −

∑
allV Ms pi if

∑
pi ≤ pmax

0 if
∑

pi > pmax.

If either the resource allocation constraints or the power budget

has been violated, the fitness function will result in zero.

The summation part of the fitness function is the weighted

effective throughput per power consumption. The heuristic for

the fitness is to find the combination of configuration options

that achieve the highest fitness function value.

VI. SYSTEM IMPLEMENTATION

We build our testbed in a university prototype data center,

which consists of five Dell PowerEdge R610 servers and two

Dell PowerEdge R810 servers. Totally, they have 10 Intel

hexa-core Xeon X5650 CPUs, 8 Intel hexa-core E7540 CPUs,

and 704 GB memory. Each server is equipped with 2-way Intel

quad-core Xeon E5530 CPUs and 32GB memory. The servers

are connected with 10 Gbps Ethernet. VMware vSphere 5.0

is used for server virtualization.
As many others in [2], [11], [12], [20], [24], [30], we

use RUBiS [1] as the benchmark application in conducting

the experiments. RUBiS is an open source multi-tier Internet

benchmark application. RUBiS emulates three different cate-

gories of workload at different concurrent level. We implement

a bursty workload generator for RUBiS benchmark using the

approach proposed by Mi et al. [16], which changes the think

time of each user.
By mixing different architectures, workload mixes and

burstiness, we create twelve RUBiS application templates

as shown in Table I. Each application template represents

different resource demands in CPU and memory. For example,

a multi-tier application needs more resources than a single-

tier application due to the operating system overhead and
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communication overhead of each VM. Different workload

mixes result in different resource demand on each tier. A

bursty workload uses more resource usage than a stationary

workload when processing the same volume of workload.

TABLE I
RUBIS APPLICATION TESTING TEMPLATES.

Name Architecture Workload
RUBiS-A1 Multi-tier Stationary Browsing
RUBiS-A2 Multi-tier Stationary Selling
RUBiS-A3 Multi-tier Stationary Bidding
RUBiS-B1 Single-tier Stationary Browsing
RUBiS-B2 Single-tier Stationary Selling
RUBiS-B3 Single-tier Stationary Bidding
RUBiS-C1 Multi-tier Bursty Browsing
RUBiS-C2 Multi-tier Bursty Selling
RUBiS-C3 Multi-tier Bursty Bidding
RUBiS-D1 Single-tier Bursty Browsing
RUBiS-D2 Single-tier Bursty Selling
RUBiS-D3 Single-tier Bursty Bidding

For multi-tier applications, we allocate three VMs for each

application, Apache web server in the first, PHP application

server in the second, and MYSQL database server in the third.

The maximum capacity of all three VMs is the same, which is

1 VCPU (up to 2.66 GHz) and 1 GB memory. For single-tier

applications, the web server, the application server, and the

database server reside in the same VM. The maximum VM

capacity is 2 VCPU (up to 5.32 GHz) and 2 GB memory.

All VMs use Ubuntu server 10.04 with Linux kernel 2.6.35.

We consider to tune the server parameter MaxClients as our

previous study [7] found that it dominates the performance

impact on server performance.

VII. EVALUATIONS

We first focus on the achieved effective system throughput

and power efficiency of multiple applications due to GARL.

Then we explore the trade-offs between applications. Finally,

we study the scalability of GARL using different number of

applications and compare the achieved system throughput.

A. Effective Throughput and Resource Allocation

We use four different applications, RUBiS-A1, RUBiS-A3,

RUBiS-D2, and RUBiS-C3. Initially their VMs are set to half

of the maximum capacity. It satisfies the demand of the initial

workload of each application. The resource pool is configured

as 20 GHz in CPU and 8 GB in memory. The power budget of

the resource pool is set at 150 Watt. The control interval is 30

seconds and the experiment lasts for 2 hours. The experiment

is separated into four stages. At the 60th, 120th, and 180th
control intervals, workload of RUBiS-A1, RUBiS-A3, and

RUBiS-D2 is increased from 1000 to 2000 concurrent users,

respectively. We assign the same weight to each application’s

throughput. For comparison, we also implement a multi-agent

reinforcement learning (MRL) approach that was used in

iBalloon [21]. We measure the reference effective system

throughput, power efficiency and resource allocations of the

chosen applications without a resource constraint and power
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Fig. 5. Performance trace of different approaches on four RUBiS applications.

budget. It represents the best effective system throughput and

the resource demands of those applications.

Figure 4 depicts the normalized effective system throughput

of all four applications. In stage 1 and stage 2, the resource

pool has sufficient resources to satisfy the increased demand.

Therefore, GARL and MRL achieve similar effective system

throughput. In stage 3 and stage 4, there is not enough resource

left in the resource pool to satisfy the increased demand of

all applications. GARL outperforms MRL in achieving the

normalized effective system throughput by 12% and 13% more

respectively in the two stages by coordinating the VM resizing

and server parameter tuning of multiple applications.

Figure 5 illustrates more detailed performance trace of
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(b) CPU Allocation due to MRL.
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(c) CPU Allocation due to Reference.
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(d) Memory Allocation due to GARL.

 2048

 4096

 6144

 8192

 0  60  120  180  240

M
e
m

o
ry

 (
M

B
)

Tuning Interval (-th)

RUBiS-A1
RUBiS-A3

RUBiS-D2
RUBiS-C3

(e) Memory Allocation due to MRL.
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(f) Memory Allocation due to Reference.

Fig. 6. Traces of CPU and memory allocations using GARL and MRL.

GARL, MRL and the reference performance of four ap-

plications. The performance degradation occurs at a stage

when each workload volume increases. Both GARL and MRL

show the adaptiveness to the workload changes, but GARL

significantly outperforms MRL. In stage 3 and stage 4, GARL

achieves 49% and 82% more effective system throughput

of applications RUBiS-A3 and RUBiS-D2 than MRL does.

Due to the coordination among applications, GARL improves

the effective throughput of RUBiS-A3 and RUBiS-D2 signif-

icantly with slightly performance degradation of RUBiS-A1

and RUBiS-C3. It significantly improves the overall system

throughput. On the contrast, MRL is lacking of such a coor-

dinated VM resizing and server parameter tuning. Therefore,

the effective system throughput due to MRL is lower.

Figure 6 shows the CPU and memory allocations due to

GARL and MRL. Figures 6(a) and 6(b) show that in stage

1 and stage 2, GARL and MRL have very similar CPU

allocations. In stage 3, the increased demand of CPU resource

for RUBiS-A3 is higher than the available CPU capacity of

the resource pool. Both GARL and MRL allocate the available

CPU resource to RUBiS-A3. After reaching CPU constraint

of the resource pool, GARL reduces the CPU allocation of

RUBiS-A1 and reallocates it to RUBiS-A3. Doing so, it im-

proves the effective throughput of RUBiS-A3 by 49% by only

sacrificing less than 10% throughput of RUBiS-A1. In stage

4, GARL reduces the CPU allocations RUBiS-A1, RUBiS-A3,

and RUBiS-C3 to increase the CPU allocation of RUBiS-D2.

It improves the effective throughput of RUBiS-D2 by 82%,

and importantly it improves the overall system throughput by

13%. Through the coordination among applications, GARL

is able to make favorable trade-off between applications for

maximizing the effective system throughput. MRL is not able

to coordinate the resource allocation of the applications in

such a self-optimizing manner, which results in lower overall

effective system throughput.

Figure 6(d) and 6(e) show the memory allocations due to

GARL and MRL. In stage 3, GARL reduces the memory

allocation of RUBiS-A1 when reducing the CPU allocation.

This is because the memory demand decreases when the CPU

allocation is reduced. By doing this, GARL avoids resource

wastage and improves power efficiency. However, MRL does

not have the capability of self-managing the resource alloca-

tion for power efficiency.

Figures 6(c) and 6(f) show the reference demands on CPU

and memory of those four application. Results show that

GARL is able to achieve near to the optimal performance with

respect to the achieved effective system throughput, but also

meet the resource and power constraints. Note that for the

reference approach, the CPU demands in stage 3 and stage 4

are much higher than the resource pool’s total CPU capacity.

B. Power Efficiency and Resource Allocation

We evaluate the power efficiency of the GARL and MRL

with respect to the effective system throughput per watt

(TPW). Figure 7 plots the TPW of GARL, MRL, and Ref-

erence. In stage 1 and stage 2, the resource pool has suf-

ficient available resources to satisfy the increased demand.

Both GARL and MRL achieve similar TPWs. In stage 3

and 4, GARL achieves 15% and 20% higher TPW than

MRL does. This is because RUBiS-A3 and RUBiS-D2 have

significant performance degradation due to MRL. One interest

phenomenon is that GARL can achieve higher TPW than

the reference value. Although GARL achieves slightly lower

effective system throughput to the reference, it uses much less

resource than the reference. Therefore, we observe that the

TPW of GARL is 3.2% higher than the reference in stage 3.
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Fig. 7. Power efficiency comparison of of GARL and MRL.
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Fig. 8. Performance comparison of applications due to GARL and MRL.

As the performance degradation increases in stage 4, the TPW

due to GARL is lower than the reference.

We conclude that the differences in effective system

throughput and power efficiency between GARL and MRL

are mainly because MRL is lacking of the coordination among

multiple applications. Without the coordination, it is infeasible

for MRL to optimize its actions for the maximized effective

system throughput and the power efficiency.

C. Trade-offs among Multiple Applications

Figure 8 shows the normalized effective throughput of

individual applications and the system overall due to GARL

and MRL. It shows that the effective throughput of RUBiS-A3

and RUBiS-D2 due to GARL are 42% and 82% higher than

those due to MRL, while the effective throughput of RUBiS-

A1 and RUBiS-C3 due to GARL are 15.6% and 20% lower

than those due to MRL. GARL improves the overall system

throughput by 13%.

Furthermore, we apply different combinations of applica-

tions to evaluate the effective system throughput difference

between GARL and MRL. Table II gives the comparison.

As the resource requirement of the application combination

increases, GARL shows more performance improvement than

MRL. For example, application combination (B1, B1, B2,
B3) is consisted of single-tier applications and application

combination (A1, A3, B1, B3) is consisted of multi-tier and

single-tier applications. Performance gain by GARL is more

significant with the combination (A1, A3, B1, B3) than that of

application combination (B1, B1, B2, B3).

TABLE II
OVERALL PERFORMANCE IMPROVEMENT OF GARL.

RUBiS Apps Stage 2 Stage 3 Stage 4 Overall
B1, B1, B2, B3 2% 3% 5% 5%
A1, A3, B1, B3 5% 18% 27% 16%
A1, A1, A2, A3 10% 21% 17% 16%
C1, C1, C2, C3 21% 14% 6% 14%

TABLE III
PER-APPLICATION PERFORMANCE IMPROVEMENT OF GARL.

RUBiS Apps App1 App2 App3 App4
B1, B1, B2, B3 8% 10% 7% < 1%
A1, A3, B1, B3 -5% 36% 24% -2%
A1, A1, A2, A3 -12% 51% 67% -19%
C1, C1, C2, C3 -16% 37% 40% -21%

Table III shows per-application effective throughput im-

provement due to GARL. It shows the trade-offs between

multiple applications. GARL sacrifices the effective through-

put of some applications slightly to improve the effective

throughput of others as the resource contention level increases.

Such a trade-off results in the improvement of effective system

throughput. However, when the resource contention is too

severe, the gain due to the GARL’s coordination among

application is significantly reduced.

D. The Scalability of GARL

We evaluate GARL’s scalability. We deploy multiple single

tier applications. We run GARL with an increasing number of

applications, from 2 to 20, to evaluate the normalized effective

system throughput. Each application has a VM capacity of

2.66 GHz CPU and 1 GB memory. For comparison, we im-

plement a centralized reinforcement learning (RL) approach.

The centralized RL approach puts all resource and server

parameters into one large Q-Table. It uses ε-greedy policy

to generate resource allocations and server parameters for all

applications.

Figure 9 shows when the number of applications is equal

or less than 16, the centralized RL approach and GARL

achieve similar performance. When the number of applications

is greater than 16, the effective system throughput due to

the centralized RL decreases significantly. This because in

the centralized RL approach, the size of Q-Table increases

exponentially when the number of applications increases.

The complexity of learning agent makes it harder for the

centralized RL approach to converge and to find the optimal

solution. In GARL’s multi-agent design, the Q-table size of

each reinforcement learning agent is fixed. Increasing the

number of applications will not significantly increase the

complexity of reinforcement learning. Therefore, GARL has

good scalability.

VIII. CONCLUSIONS

This paper tackles the important but challenging problem

of improving performance and power efficiency for multiple

complex applications co-hosted in a data center. We have
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Fig. 9. Impact of scalability of different approaches on performance.

proposed GARL, an integration of genetic algorithm and

multi-agent reinforcement learning approach, for coordinated

VM resizing and server parameter tuning. GARL integrates

the model-independency of reinforcement learning with the

global optimization capability of genetic algorithm. It can sig-

nificantly improve the effective system throughput and power

efficiency of multiple complex applications while meeting the

resource constraints and power budget of the shared resource

pool. We have implemented GARL on a testbed in our

university prototype data center. Experimental results using

RUBiS benchmark applications have demonstrated that GARL

significantly outperforms a multi-agent reinforcement learning

approach in both performance improvement and power effi-

ciency. The results have also demonstrated the good scalability

of GARL. It outperforms a centralized reinforcement learning

approach.

Our future work will be to explore the interaction among

VM capacity planning and resizing, workload multiplexing,

and server parameter tuning in Cloud-computing data centers.
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