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Abstract—The exponential growth in user and application data
entails new means for providing fault tolerance and protection
against data loss. High Performance Computing (HPC) storage
systems, which are at the forefront of handling the data deluge,
typically employ hardware RAID at the backend. However, such
solutions are costly, do not ensure end-to-end data integrity,
and can become a bottleneck during data reconstruction. In this
paper, we design an innovative solution to achieve a flexible, fault-
tolerant, and high-performance RAID-6 solution for a parallel file
system (PFS). Our system utilizes low-cost, strategically placed
GPUs — both on the client and server sides — to accelerate
parity computation. In contrast to hardware-based approaches,
we provide full control over the size, length and location of
a RAID array on a per file basis, end-to-end data integrity
checking, and parallelization of RAID array reconstruction. We
have deployed our system in conjunction with the widely-used
Lustre PFS, and show that our approach is feasible and imposes
acceptable overhead.

I. INTRODUCTION

The deluge of data from scientific instruments (SNS [1],

LHC [2]), experiments (DZero [3]) and observations (SDSS

[4]) will soon surpass the ability of storage systems to store

and retrieve data in a reliable and cost-effective manner. While

the capacity, performance and the mean time to failure (MTTF)

of a single disk has been improving, large-scale storage

systems and parallel file systems (PFS) can comprise tens of

thousands of drives, thus bringing down the overall mean time

to data loss (MTTDL) of the entire system to unacceptably

low levels. For example, the Lustre-based Spider PFS of the

Jaguar supercomputer (No. 3 machine on the Top500 [5] list)

comprises 10,000+ disks [6]. An exaflop machine in 2018 is

projected [7] to host hundreds of thousands of drives to support

the desired I/O throughput. The “law of large numbers” in

this case only reiterates that failure will be a norm and not

an exception. The reliability and robustness of the I/O system

is crucial to large-scale applications that generate and analyze

terabytes of data. Trends from commercial and HPC centers

suggest, that on average, 3% to 7% of disks fail per year [8].

Thus, storage systems are a significant contributor to system

failure.

To increase the fault tolerance of storage systems, disks

in each storage server are usually combined in a RAID

(Redundant Array of Independent Disks) array that provides

some level of redundancy. For example, RAID-6 contains k +

m disks, with k data disks and m = 2 parity disks. The array

can recover from simultaneous failure of up to m disks. Data

reconstruction time (in the event of a failure) is proportional

to the drive size, load and the number of drives in the RAID

group, and is in the order of a few hours even for standard

disk sizes. For example, the reconstruction time for a 2 GB

disk is approximately 30 minutes [9]. During reconstruction,

applications achieve degraded I/O rates, at best. This is only

bound to get worse with large-scale storage systems.

Historically, RAID has been implemented in hardware be-

cause of its high throughput compared to a software based

solution. Hardware RAID controllers, unlike the rest of the

storage system, rely on proprietary hardware. These non-

commodity parts are usually expensive, receive infrequent

software upgrades, and can become a bottleneck, especially

during degraded array reconstruction. The high cost of so-

phisticated embedded RAID controllers — a typical 16 TB

RAID setup could easily cost in excess of $15000 [10] —

also implies that such solutions are beyond the reach of mid-

sized institutions, small-scale clusters, and storage systems

with limited provisioning budgets. Even with supercomputing

centers, where the cost of provisioning and operating a scal-

able, reliable storage system can run on the order of millions

of dollars, there is a need to reconcile the storage cost against

the FLOPS purchased, as machines are often ranked in terms

of peak FLOPS. Thus, providing a desired level of reliability

and redundancy for the storage system under a given budget

constraint is always a challenge, be it in supercomputing

centers, mid-sized or small-scale systems.

In recent years, GPUs from NVIDIA and AMD have shifted

from closed peripherals used to render graphics images to

inexpensive commodity parallel accelerators. They provide

general-purpose APIs that can be used to accelerate many

types of computations. While currently GPUs are mainly used

in scientific workloads, recent studies have explored applying

them to I/O workloads [11]–[15]. These efforts have shown

that GPUs can be used effectively for parity computation using

Reed-Solomon coding [16] as well as other I/O workloads,

such as hashing [17].

Further, large-scale machines are beginning to be provi-

sioned with GPUs. For example, the state-of-the-art Keeneland

supercomputer [18], is a combination of Intel Nehalem and

NVIDIA Tesla GPUs. Similarly, a planned 20 petaflop ma-

chine for 2012, Titan [20], will use a hybrid architecture, with

each node featuring two 16-core AMD Opteron processors and

two Tesla X2090 GPUs. Additionally, GPUs provide a cost-

efficient solution compared to general purpose CPUs (GPPs),

especially when GPUs are coupled with a few GPPs [21].



Thus, GPUs are quickly being adopted in a myriad of fields,

ranging from scientific workload processing [22] to education

in the developing world [23]. These architectures present

opportunities to explore the utility of GPUs towards improving

storage system reliability.

In this paper we propose a novel way to utilize low-cost

GPUs in conjunction with a PFS to provide fault tolerance

and end-to-end data integrity. We capitalize the resources

provided by the PFS, such as striping individual files over

multiple disks, with the computational power of a GPU to

provide flexible and fast parity computation for encoding and

rebuilding of degraded RAID arrays. We attain end-to-end data

integrity by performing encoding and decoding at the compute

node, where data is produced and consumed. We implement

our client-driven, per-file RAID in the widely used Lustre

PFS [24], which will facilitate wider adoption of our system.

Specifically, this paper makes the following contributions:
• We parallelize and accelerate two state-of-the-art mini-

mum density RAID-6 coding schemes – Blaum-Roth [25]

and Liberation codes [26] – on GPUs using CUDA.
• We analyze the coding process and extract fine and

coarse-grain parallelism. We leverage both types of par-

allelism to maximize the acceleration at GPUs.

• We present a novel system design with client-driven, per-

file parity computation accelerated by a GPU. Unlike
traditional hardware-based approaches it is flexible, as it

can transparently switch between a per-file RAID-1 for

small files to a desired sized RAID-6 as the file grows,

and provides end-to-end data integrity guarantees.
• We show through a prototype implementation that client-

side parity generation using a GPU imposes an acceptable

overhead on the overall client performance and achieves

a coding throughput of over 3.0 GB/s on each client, thus

saturating the network.
We evaluate our system using a medium-scale cluster based

on nodes with off-the-shelf, GPUs and show that our ap-

proach: provides a customizable interface for an application

to tailor the RAID array parameters and provides default

values to support legacy applications. The results demonstrate

that leveraging GPUs for I/O support functions, i.e., RAID

parity computation, is a feasible approach and can provide an

efficient alternative to specialized-hardware-based solutions.

II. BACKGROUND
A. Rationale

A PFS typically provides fault tolerance at the storage back-

end. For example, the data drives on each storage server are

arranged in a RAID-5 (or higher) configuration. An alternative

of computing parity at the backend is client-driven, per-file

RAID [27]. In this section, we highlight the potential benefits

and drawbacks of this approach, and make the case that such

a framework is a good candidate for GPU acceleration.
1) Backend vs. Client-driven Parity Generation: GPUs are

becoming ubiquitous, with good performance and flexibility

features. Modern HPC clusters and supercomputers are being

equipped with GPUs. In such settings, a client-driven parity

generation can utilize the GPU resources already available on

the client machines. Such a trend will also be supported by

emerging technologies such as the Intel Sandy Bridge chip,

which supports an integrated GPU and CPU [28]. Further-

more, client-driven parity generation allows for unprecedented

flexibility. For example, the parity computation power of the

system is not constrained by the hardware at the backend, and

can be changed dynamically with the number of clients.

Hardware RAID controllers typically require all disks in

an array to be co-located on the same blade. This can result

in data loss because all the drives in the array can fail

simultaneously, due to power failure, over-heating, etc. A

client driven per-file RAID system does not impose any spatial

limitation on the locality of drives, allowing data to be spread

across the system and not just one location. Furthermore,

the ability of each client to generate parity opens the door

for end-to-end data integrity checking. Typically, data has

to pass through several network interconnects, and memory

and storage hierarchies, all of which can introduce errors,

albeit with very small probability. If absolute data integrity

is required, the client can choose to obtain parity as part of a

read operation and check consistency of the data on the fly.

2) Block-based vs. Per-file RAID: When compared to

block-based RAID, a per-file RAID scheme will allow each

file or directory tree to have a desired fault tolerance level. For

example, small files can use a simple RAID-1, while large

ones can use the state-of-the-art RAID-6 code. In a block-

based RAID, it is difficult or impossible to directly map any

lost sectors back to higher-level file system data structures. In

fact, it has been recently argued [29] that such factors will

continue to diminish the utility of simple block-based RAID.

In a conventional hardware RAID, a single RAID controller

is responsible for parity coding. For a large array, that can

mean hours until the array is rebuilt — during which time, an

unrecoverable read error (URE) can occur, potentially causing

the entire array to fail. Using a software RAID, rebuilding of

the array can be done in parallel. A number of machines at

the backend can be equipped with GPUs and rebuilding of

separate files can be farmed out to different machines.

3) Hardware vs. Accelerated Software RAID: Direct per-

formance comparison between a hardware RAID controller

and a GPU is hard to quantify, given that the two carry very

different hardware. In the context of our approach, however,

such a performance comparison is not necessary. For one,

unlike a hardware RAID, the GPU in our system resides on

the client and as such its available throughput to the storage

drives is limited to the network throughput of the client. We

show that a GPU can sustain encoding throughput that exceeds

available network bandwidth even if the client is connected

over 10 Gbps interconnect. A CPU alone, however, is not

enough to meet such performance requirements. Previous

research has shown that unlike GPUs, conventional x86-based

processors are slow in performing a large number of finite

field multiplications – the majority of operations required for

parity generation [16].

One area that a GPU has a clear advantage over a hardware

RAID solution, however, is programmability. The best fault



Fig. 1: Logical overview of a RAID-6 system.

tolerance that a hardware RAID controller typically supports is

a Reed-Solomon [30] implementation of RAID-6. In contrast,

any number of coding techniques can be used in a software

solution, including triple parity RAID or any implementation

of RAID-6. The programmability of the GPUs, thus, provides

a unique opportunity to exploit the advances in parity encod-

ing, such as minimum density coding schemes like Blaum-

Roth [25] and Liberation codes [26].
4) Discussion: Unprecedented flexibility and increased

fault tolerance do not come for free, of course, because

more data has to move over the client-server interconnects.

Moreover, parity generation can be computationally expensive

and thus a burden to the clients. We address the later by

offloading the computationally expensive codes to a GPU and

show that in doing so we introduce acceptable overheads to

the client systems. While some increase in data traffic is

unavoidable in a client-driven approach, modern PFSs, like

Lustre, maintain large caches on the client side, which absorb

a large portion of parity modification caused by frequent small

writes. Thus, a large portion of parity updates never hit the

interconnect. Even in the context of frequent large writes that

exceed client caches, our system provides enough flexibility

to address the increase in traffic. Applications can set their

own operating point with respect to data reliability and I/O

performance. For example, by switching a file to a RAID-

5 from a RAID-6, an application achieves a 2× decrease in

network traffic due to parity. Another approach is increasing

the per-file RAID array size. For example, moving from a (8,2)

to a (16,2) RAID-6 array, drops parity from 20% to 11% of

overall data. Normally a hardware RAID array is not larger

than 16 drives, because increasing its size would result in

unacceptably long time to rebuild it. As per-file arrays can be

rebuilt in parallel in a client-driven approach, an application

can set its desired array size based on network traffic and

GPUs available to rebuild the array.

B. Enabling Technologies

In the following, we describe the enabling technologies

that are used in realizing our GPU accelerated software-based

RAID-6 distributed PFS.
1) Erasure Codes: In recent years, RAID-6 systems have

become increasingly important as they can tolerate a complete

failure of one drive occurring in combination with a latent

failure of a block on a second drive. Such a failure scenario

would result in a permanent data loss on a RAID-5 system.

Unlike RAID-1 through RAID-5, which provide exact data

encoding techniques, RAID-6 is only a specification and

as a consequence there are a number of available coding

techniques. The recently introduced Liberation codes promise

to become a standard for RAID-6.
A RAID-6 system (Figure 1) is composed of k + 2 data

nodes and can tolerate the failure of any two devices. Devices

Fig. 2: Bottom row of BDM used to compute parity for the Q device
for a system with 7 devices and word size of 7. Gray boxes represent
a 1, white a 0.

D0 through Dk−1 can each store B bytes, whereas the remain-

ing 2B bytes are in the P and Q coding devices. The P device

is calculated to be the parity of all data devices, while the

implementation of the Q device is left to the designer, with

the sole constraint that it cannot hold more than B bytes and

the resulting system must be able to recover from the failure

of any two devices.

Liberation coding (Figure 2) is similar to Cauchy Reed-

Solomon coding [31]. The system splits each data device into

w words and uses a w(k + m) × wk matrix to perform the

encoding, where k and m represent the number of data and

encoding devices respectively. For all RAID-6 techniques, the

value for m is two. All operations are performed in Galois

Field (2), where addition and multiplication are bitwise XOR

and AND operations, respectively. The matrix is called a

Binary Distribution Matrix (BDM) and each element is either

one or zero. BDM is multiplied by the vector representing

device bits, to produce a vector representing the data and

encoding devices. The BDM is quite restricted as the top

k(w × w) portion of the matrix is the identity, D0,1 through

D0,k−1 are also identity matrices that produce the P device,

and the bottom row can be customized as per rules laid out

in [31].

The encoding matrices for the Liberation codes are shown

to be optimal or close to optimal. The decoding matrix is

produced by inverting the portion of the encoding matrix that

corresponds to the data devices that are still active. However,

the resulting matrix typically has far more 1s than optimal and

in some cases it is more efficient to calculate a word in one of

the failed devices from a previously computed product, rather

than from the original BDM matrix by data vector product. To

take advantage of this, a schedule is created from the BDM

that does the least number of XORs. The optimized schedule

produces a significant speedup for decoding. A schedule can

also be used in the encoding process as it is a more compact

representation of the operations than the BDM itself [26].

2) The Lustre Parallel File System: Lustre [24] is a storage

architecture for Linux-based clusters and provides a POSIX-

compliant UNIX file system interface. It is best known for

powering seven of the ten largest HPC machines worldwide,

with thousands of client systems, petabytes of storage and hun-

dreds of gigabytes per second I/O throughput. Many HPC sites

use Lustre as a site-wide global file system, serving dozens

of clusters on an unprecedented scale, e.g., the Spider file

system [32]. A Lustre file system comprises of the following

key components: Client, MDS (MetaData Server) and OSS

(Object Storage Server). Each OSS can be configured to host

several OSTs (Object Storage Target) that manage the storage

devices.



Fig. 3: High-level architecture of the GPU-enabled RAID system.

The Lustre client that runs on the compute nodes of the

cluster communicates with the MDS to obtain privileges and

layout for a given file. Once file metadata has been received,

the client is able to directly communicate with the OSTs that

house the objects associated with the file. An important feature

of the Lustre file system that we exploit in our design is its

ability to store files in multiple same-sized objects striped over

multiple OSTs. Moreover Lustre provides extensive manage-

ment and recovery features that are useful in identifying the

files affected in the event of an OST failure. Thus, Lustre

provides some key building blocks to turn each file into its

own RAID array.

Lustre also supports hot-swappable hard-drives on each

OSS. In the case of a disk failure, a new disk can easily

replace the failed disk. Upon a mount, the Lustre manager

node detects and recreates the objects that were present in the

failed disk. During the per-file RAID array rebuild process,

our system restores the data in the lost objects, while reusing

the objects that have not failed.

3) KGPU: Recent research has explored the potential

of GPUs to accelerate computationally intense OS opera-

tions [33], [34]. The current state-of-the-art NVIDIA’s and

AMD’s proprietary drivers do not support accessing the

GPU from kernel space, therefore all these efforts rely on a

userspace daemon to execute the GPU requests.

We use KGPU [33] in our implementation because of

its service oriented approach and associated low latency. In

contrast to the standard approach, where both data and kernel

code are copied to the GPU before each execution, KGPU

substantially decreases the latency of a GPU kernel launch

by keeping the kernel alive even after it has completed its

execution. KGPU incurs full latency only when a GPU kernel

that provides a different service needs to be loaded. In our

implementation, all RAID-6 array sizes are processed by a

single kernel, therefore KGPU never incurs the extra latency

of loading and unloading a kernel.

III. DESIGN

In this section, we present the design of our GPU-enabled

RAID system and its realization within the Lustre PFS [24].

We also describe the use of KGPU [33], a GPU management

framework, in our system.

A. System Overview

A high-level overview of the hardware and software compo-

nents used in our system is shown in Figure 3. The Data Nodes

serve as the main storage components; the Client provides the

user-side interface to the system; and the Manager directs and

facilitates the interactions between all components. All system

components are tightly integrated with the Lustre PFS. The

clients typically run on the GPU-enabled compute nodes of

the cluster. All or a subset of the Data nodes are equipped

with a GPU to perform parity computation during a RAID

array rebuild. This hardware addition is feasible on many de-

ployments, since modern motherboards typically have a built-

in PCI-Express (PCIe) slot. For the setups where installing

a GPU on Data nodes is not an option, the array rebuild

process can be offloaded to idle client machines. Each Data

node runs an Object Storage Server (OSS), which provides file

I/O services and network request handling for all the Object

Storage Targets (OSTs). The OSTs manage the disk drives that

store chunks of files called objects. A file in the Lustre PFS

can be striped over any number of equally sized objects.

In our design, the Manager is equipped with a hardware

or software RAID-1. The Lustre guidelines suggest using

RAID-1 or RAID-1+0 for the disks on the Manager, which

efficiently performs frequent updates on small metadata files.

The Manager runs a MDS that only stores metadata (such

as file names and layout, directories, and permissions), which

generally accounts for only 1% of the total storage capacity

of the system [35]. This ensures that only a small number

of disks are required to store the entire metadata in a typical

deployment. Hence, equipping the Manager with a low-end

RAID-1 controller with a small number of ports (or utilizing

a software RAID) fits with our overall goal of achieving fault

tolerance with minimal cost.

Each client node in our design is equipped with a pro-

grammable GPU that is used to accelerate the file encoding and

decoding process. Each client node runs a Metadata Client,

which communicates with the MDS at the Manager to serve

all directory and file operations, such as opening and closing,

on behalf of the client. Each client also runs an Object Storage

Client, which interacts with the OSS at the Data node to

read and write to the file objects in parallel. This enables the

client to bypass the Manager for all subsequent read and write

operations after opening a file and receiving its layout on the

Data nodes.

We use the fault tolerant Manager to “bootstrap” the per-file

RAID-6 arrays created by our system. If an OST device fails,

the Manager identifies all the surviving objects of a given file,

which are then used to reconstruct the lost objects.

B. RAID-enabled PFS Design

One of our key design objectives is to make our system

compatible with Lustre so that it can be easily integrated with

extant Lustre deployments. To this end, our first design choice

is to keep the Lustre backend software infrastructure (Manager,

OSS, etc.) intact and limit our software-level modifications to

the client nodes.



One design obstacle for integrating parity acceleration on

the client-side is that the NVIDIA CUDA toolkit is designed

to run in user-space, while the Lustre client is implemented as

a kernel module. One option is to augment liblustre [36],

a user-space implementation of the Lustre client, to handle

parity generation and storage. This approach decreases the

number of context switches that are otherwise required to

send data between the client module and the GPU. However,

liblustre is not widely used in practice as it does not

support many performance enhancing features of the kernel

implementation, including client-side caching and the support

for multi-threaded applications. Hence, we integrate all parity

generation inside the Lustre client module and use KGPU to

access the GPU directly from kernel space. We implement

parity encoding and decoding as a service provided by the

user-space component of KGPU.

Another challenge is to find the appropriate location to

transparently store the extra parity information. One option

is to create a separate “shadow” parity file for each file. This

is promising, especially in Lustre, where a file can be striped

over any collection of OSTs and by ensuring that the shadow

file is stored on different OSTs from the OSTs containing

the actual file contents, we can provide a complete RAID-

6 array. Moreover, the data file and its attributes remains

intact and can be accessed without modification. However,

this approach doubles the number of files in the storage

system and may introduce a bottleneck at the manager node.

Additionally, updating the parity would require write locks

on two different files simultaneously and would complicate

the locking procedure. An alternative approach that incurs

minimal bookkeeping overhead is to interleave data and parity

in the same file. However, utilizing this approach requires an

effective mechanism to hide the parity from the user. To this

end, we modify all file and inode operations that can expose

the parity information, such as write, read, seek, get and

set attribute. For operations such as seek, and get/set

attribute, we perform a translation between the size of the

actual file including the parity and size of the data. The bulk of

the parity generation modifications are contained in the write

call.

An important feature of our system that significantly de-

creases overheads when writing to small files is that as long

as a file is smaller than a single object it is configured as

a RAID-1. We achieve this by mirroring each write into the

first parity object, while keeping the second one empty. If a

write anywhere outside the first data object is submitted to the

system it automatically locks all stripes and converts the file to

a RAID-6 array. Note that while in the RAID-1 state no extra

space is wasted as the empty blocks inside the second parity

object are never written to disk. To maintain consistency we

lock the parity object instead of the data, which ensures that

a concurrent write to any portion of the stripe, would conflict

with the current write and thus will be properly serialized. In

this RAID-1 state the GPU is completely bypassed eliminating

the expensive read-modify-write step.

Fig. 4: Control flow in our GPU-enabled RAID system.

C. Control Flow

We now describe the interactions between the different

components of our system and how they come together to

realize the flexible RAID-6 solution.

Figure 4 illustrates the control flow between different com-

ponents of the system. The system is initialized by reading

a configuration file, which specifies different architectural

and RAID array specific parameters, such as available GPU

memory, maximum supported file object size, and maximum

number of disks a file can be striped over. These parameters

are used to initialize global defaults, such as the coding bit

matrix used in the default parity algorithm. Some of these

parameters are passed on to the KGPU framework, which

spawns a GPU management daemon, Tmanage, that we later

utilize to compute the parity. Tmanage initializes its request

containers and allocates their associated buffers. The daemon

then waits for the jobs to be submitted to the request queue.

The Manager initializes the appropriate storage pools before

the Lustre file system can be mounted. In Lustre, any OST

can be assigned to a number of storage pools, which we use

to define default RAID arrays in our system. Storage pools

can be modified at runtime to support addition or removal of

storage devices. Once Lustre is mounted on the client, the

root directory is assigned to the default storage pool. Files

and directories created under the root are recursively assigned

the default pool. On creation, each file receives a randomized

order in which to write to the OSTs in its pool, which ensures

that parity is spreads around the OSTs. In addition to the

given defaults, applications have full control to assign files

and directory trees to any other pool using standard Lustre

system calls.

The bulk of the operations are performed during a write.

Lustre caches data on the client side and as a consequence

most data writes are processed asynchronously. Synchronous



I/O is triggered when the Lustre cache fills up. Lustre breaks

down the write in a loop based on the object size. In each

iteration, the client asks for a lock on the object and proceeds

to update the object, releases the lock, and moves on to the

next object. In order to ensure consistency of the parity during

simultaneous writes to the same file stripe, we acquire a lock

that spans all of objects in a stripe. Thus, we increase the

granularity of Lustre’s locking from an object to a stripe

of objects. Note that we still allow multiple clients to be

simultaneously reading and writing to the same file, as long

as it is to a different stripe.

After acquiring the lock on a stripe, we copy the relevant

portion of the write buffer to CUDA page-locked buffer pre-

viously initialized by KGPU and send a request to the KGPU

module. The copy is required to maximize the PCIe bandwidth

utilization ensured by the CUDA page-locked buffer. The

request is then forwarded to our parity generation service

implemented in the KGPU user-space daemon that interacts

with the GPU to compute the parity for the buffer and return

it to the caller. KGPU’s call is asynchronous with the data

write to the Lustre cache and for a full stripe write completes

before it, thus hiding all the latencies associated with moving

data to and from the GPU and computing parity. The only

overhead exposed is due to the memcpy call and parity write.

We quantify these latencies in our evaluation.

A read operation also acquires the lock in a loop. In the

common case when only data is read, the read loop skips

over the parity objects in each stripe of the file. However, a

user can also read parity along with the data to ensure end-

to-end integrity. In that case, locking is again done at the

granularity of the stripe and data and parity is sent to the

GPU for validation. If data corruption is detected the read

call is restarted. However, if the call fails again an error is

returned, as it indicates a permanent error in one of the system

components.

D. Degraded Array Reconstruction

Unlike a conventional hardware RAID controller, our sys-

tem is capable of utilizing multiple GPUs to reconstruct a

degraded array. If a disk fails, it can be replaced manually

or via a hot spare. The disk is formatted if necessary and

assigned the same internal Lustre ID as the failed disk. When

the new disk is mounted, the Manager recreates all the missing

objects and relinks them to the file objects on the surviving

disks. Next, the system requests a list of files that have been

affected, and based on the location of the failed disks and the

availability of GPUs, mounts a Lustre client on the machines

to reconstruct the lost objects. The list of affected files is then

split accordingly and forwarded to the reconstructing clients

to rebuild the affected files in parallel.

IV. IMPLEMENTATION

We have implemented our system as described in Section III

using 1272 lines of C/C++ and CUDA code. The implemen-

tation runs on Linux (kernel version 2.6.32) and is portable to

CUDA-enabled GPUs. We based our parity generation imple-

mentation on the definition of Liberation Codes [26], which

is provided in a freely available library, called Jerasure [37].

Jerasure provides a single threaded implementation for both

Liberation and Blaum-Roth functionality.

Our analysis of Liberation and Blaum-Roth codes’ single

threaded implementation revealed that more than 95% of

the time is spent in the function that performs the XOR

operations. We also noted that the same function is used for

both encoding and decoding, with the only difference being

the schedule. Furthermore, the work done in this function has

the potential for both coarse and fine-grain parallelism, making

it a good candidate for offloading to the GPU. Therefore in

our implementation, we offload only XOR operations on the

data to the GPU to maximize SIMD parallelism. Note that

most of the other operations in the coding process, such as

creating the BDM and converting it to a schedule are computed

once and sent to the KGPU service at initialization. As these

operations are at most quadratic in the number of drives, which

are usually in the tens in a typical RAID array, the overhead

for these tasks is negligible.

A. Basic GPU Implementation

As described earlier, a schedule is derived from the original

BDM matrix while performing the XOR operations on the

given data or while copying it between different devices. The

schedule is a two dimensional array of integers of size 5 ×
N , where N is the number of operations that need to be

performed for encoding. The operations defined are XOR or

memcpy. The five integers in each tuple identify which words

will be operated upon. The first two integers identify the id of

the device and the word that will serve as source, while the

next two identify the destination. The last integer is either

1 for XOR or 0 for memcpy. For example, the operation

< 00700 > can be interpreted as the first word of device

0 is to be copied over the first word of device 7. In the case

of encoding, the schedule is used to compactly represent the

BDM. In the offloaded function, the schedule is also flattened

to a single dimensional array for easier copying of the data

from the host to the GPU memory. Furthermore, since this

data is relatively small and does not change during GPU kernel

execution, it is copied directly to the GPU’s constant memory

to enable faster access by the GPU threads. The kernel iterates

over all the operations in the given schedule and each thread

performs an XOR or memcpy operation on the corresponding

words (in 4 byte chunks) in parallel. Hence, the amount of

parallelism exposed depends directly on the word size, which

is determined by the size of each data object.

B. Optimizations

The main drawback of the basic GPU port is that it reveals

only the fine-grain parallelism that is present within a sched-

uled operation. We analyzed data dependencies and found that

entire operations can be done in parallel as well. Specifically,

the schedule produces the 2w words of the coding devices of

a RAID-6 array, where w is 8 and 16 for the Liberation and



__constant__ int d_schedule[8192];

__constant__ int d_num_reads[1024];

__constant__ long d_data[64];

__global__ void xor_gpu(int packetsize,

int blocksize, int k, int w) {

int dest, source, i, y = (k + 2)*2*blockIdx.y;

const unsigned int g_tid = blockIdx.x*blockDim.x +

threadIdx.x;

int *dptr = (int *)((char *)d_data[d_schedule[y]] +

d_schedule[y+1]*packetsize);

int *sptr = (int *)((char *)d_data[d_schedule[y+2]] +

d_schedule[y+3]*packetsize);

dest = sptr[g_tid];

#pragma unroll

for(i = 4; i < d_num_reads[blockIdx.y] * 2; i += 2) {

sptr = (int *)((char *)d_data[d_schedule[y+i]] +

d_schedule[y+i+1]*packetsize);

source = sptr[g_tid];

dest = dest ˆ source;

}

dptr[g_tid] = dest;

}

Fig. 5: GPU parity computation kernel.

Blaum-Roth coding, respectively. All the operations associated

with computing a single word in a coding device can be

performed in parallel with the ones that encode the rest of

the words. To exploit this, we modify the schedule and create

our optimized port shown in Figure 5.

We create a two dimensional grid of thread blocks and

assign each of the 2w rows of blocks to perform the oper-

ations associated with one of the encoding words. We use

an additional structure, num_reads, to store the number of

operations needed to compute each of the 2w coding words.

This enables the kernel to execute fewer iterations compared

to the basic port, thus simultaneously reducing the work of

each thread and exposing more parallelism.

V. EVALUATION

In this section, we present the evaluation of our GPU-

enabled RAID system. We first describe our testbed, and then

present the I/O measurements of our system. The goal is to

show the impact of different design parameters and features,

such as RAID stripe size and end-to-end integrity checking,

on the overall system performance. Next, we evaluate the per-

formance of RAID array reconstruction. Finally, we quantify

performance under a real workload.

A. Experimental Setup

We have set up a Lustre cluster, consisting of one Manager

node and three OSSs, each with six OSTs. The Lustre server

machines are identical with four Opteron quad-cores each, and

64 GB of main memory. Additionally, each OSS has a GeForce

9500 GT GPU with 1 GB of graphics memory connected to

an 8× PCIe slot. Our client machine has two Intel Xeon quad-

cores, 48 GB of RAM and a Tesla C2070 GPU with 6 GB

of GDDR memory. All the machines are connected using a

dedicated Gigabit switch. We use Lustre patched Linux 2.6.32

kernel, Lustre 1.8.5, and CUDA SDK 4.0.

B. I/O Throughput Measurement

1) Raw Throughput: We first measure the raw write

throughput that our client machine can achieve. Figure 6
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Fig. 6: Write throughput for a file striped over 16 OSTs + 2 parity
OSTs.

compares the throughput of writing a file striped over 16 OSTs

with a stripe/block size of 1 MB, denoted as data write. The

file size ranges between 16 MB and 2 GB. A Lustre client

maintains a 32 MB local cache per OST, which is flushed

periodically. If a write submitted by a client fits in the cache,

the Lustre module returns from the write immediately after the

write buffer is written to the cache. If there is no space left in

the cache, it is flushed to the corresponding OST and the write

returns after the write buffer has been written to the Lustre

back-end. Since we are writing to 16 OSTs, the combined

available cache is 512 MB, and consequently writes smaller

than 512 MB exhibit throughput higher than the theoretical

throughput of Gigabit Ethernet. The throughput of files larger

than the cache quickly levels out to an effective available

bandwidth of around 125 MB/s.

In the Figure, data + parity write curve shows the through-

put when our RAID encoding system is turned on. In this

case, the same data as in the base case is striped over 16

OSTs and concurrently the parity is generated and written to

the remaining 2 OSTs. As a point of reference we also include

a data + dummy write curve, which generates the same traffic

as the RAID encoding, without computing the parity.

Writes that fit into the Lustre cache exhibit a very high

throughput and as a result the overhead of memcpy-ing data

into KGPU buffers results in around 10% overhead (difference

between data + dummy write and parity data + parity write).

The rest is attributed to copying the extra parity (1/8th of

data in this case) to the Lustre cache. It is important to note

that in this experiment all the overhead associated with parity

generation remains completely hidden from the application.
2) Encoding Throughput: Next, we evaluate the parity

encoding throughput delivered by the GPU. We measured

throughput delivered by our high and low-end GPUs, which

includes moving the data to and from the GPU’s memory as

well as actual parity computation on the GPU (Figure 7). A

low-end GPU can deliver encoding throughput around 1 GB/s

for 512 KB files, which quickly increases to 1.7 GB/s for

files large than 8 MB. The Tesla GPU delivers encoding rates

of 1.6 GB/s for 512 KB files and in excess of 3 GB/s for

files larger than 8 MB. Therefore, our system using a low-

end GPU can generate parity faster than the speed at which

Lustre commits the data to its caches. As parity is encoded
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Fig. 7: GPU encoding throughput.

asynchronously with the commit to cache, the overhead of

generating it remains hidden.

We also include the encoding rates of the Tesla GPU,

while it is under heavy load from an N-body simulation. We

used the N-body simulation from the CUDA SDK and ran

multiple iterations in the benchmark mode using the default

number of objects based on the specifications of the Tesla

GPU. Even under heavy load, the Tesla GPU delivers sufficient

throughput for all but the smallest files, for which the encoding

overheads are exposed to the system as increased latencies

due to the heavy load. However, the performance of the

simulation is unaffected by the parity generation kernels and

remains constant at 484.650 single-precision GFLOP/s. This

is because Tesla GPU can perform efficient context switches

at the kernel boundary and asynchronous data transfer for

different contexts can run simultaneously. Therefore the parity

data can be transfered to the GPU, while the simulation kernel

is running and vice versa. Moreover, the parity generation

kernels complete 2-3× faster than the simulation kernels.

It is important to note that not all background loads on

the GPU have the same effect on the parity generation. An

iterative workload with kernel execution times in the order

of milliseconds, such as the N-body simulation that can be

rendered in real time, would not block the parity kernels and

cause an unacceptable slowdowns to our system. However, for

GPU kernels with execution times in seconds, alternative tech-

niques such as “context funneling”1 can be used to minimize

the overhead. The down side is that the GPU workloads need

to be modified, e.g., as a KGPU service. This enables even a

long running kernel to run parity generation concurrently.

3) Impact of Number of Disks on Throughput: Next, we

study the effect of number of OSTs that a file is striped over

on the write throughput of our system. Figure 8 shows the

baseline write throughput and the throughput of our system

for writing a 256 MB file. When the file is striped over 6

OSTs or less, it cannot fit in the client caches and as a result,

raw network bandwidth is exposed to the application. If the

256 MB file is striped over more than 6 drives, parity is

cached and flushed after the write returns. As the write fits

in the caches, throughput levels out. As the file size remains

1Context funneling uses advanced features of the Fermi architecture to exe-
cute concurrent kernels, which must be launched from the same context [38].
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Fig. 8: Effect of number of disks on throughput (file size = 256 MB).
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Fig. 9: Effect of number of disks on throughput (file size = 1024 MB).

constant splitting and committing it to more caches becomes

less efficient, which causes the slight dip in the throughput.

Striping does not have such an effect when writing a

1024 MB file as the file and its parity cannot be cached

(Figure 9). In the data write case, writing to more drives

achieves better throughput because of efficient bandwidth

utilization when the file is striped over all available OSTs.

For the data + parity write case, decreasing the number of

drives has the effect of decreasing the length of the RAID 6

array, e.g., striping data over four disks produces a (4,2) RAID

6 array where four objects in a stripe are data and the rest are

parity, having a parity overhead of 50%. Increasing the array

length decreases the relative size of the parity, e.g., in a (16,2)

RAID 6 array parity is 12.5%. Thus, for the data + parity

write case, there is a linear increase in throughput available

for data with the increase in the array length.

4) End-to-End Data Integrity: One of the important fea-

tures of our system is that it can provide end-to-end data

integrity checks for the I/O operations. Figure 10 shows the

achieved read throughput when the end-to-end integrity check

is enabled. To ensure that data is not corrupted on the disk or

on the network interconnects, one of the parity objects in each

stripe is read along with the data. Both data and parity needs

to be sent to the GPU for verification to successfully complete

the read call. For files with single stripes, the synchronous

call causes an overhead of 9%. However, when reading files

with more than one stripe, the parity check for each stripe is

performed in parallel with the read of the next stripe, resulting

in a negligible overhead of 2%.
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Fig. 10: Read throughput with end-to-end data integrity.

Data Size 1 Node 2 Nodes 3 Nodes
(GB) Time Time Speedup Time Speedup

(s) (s) (s)

5 46 30 1.53 25 1.84
25 237 151 1.57 125 1.90
50 493 345 1.43 258 1.91

TABLE I: RAID reconstruction time and normalized speedup with
respect to 1 Node.

C. RAID Reconstruction Cost

It is critical to minimize the degraded RAID reconstruction

time for maintaining the integrity of data, as the system is

exposed to unrecoverable read errors during the reconstruction

process. Table I shows the reconstruction time for rebuilding

20, 100, and 200 degraded files with a combined size of 5 GB,

25 GB, and 50 GB, respectively. Files are striped on all 18

OSTs (16 for data and 2 for parity). As the RAID arrays are

defined per file, their rebuilding can be distributed between the

available machines, resulting in a speedup of close to 2× when

reconstructing for the 200 files case. During this test, we use

all the machines in our setup, which results in the utilization of

all the available network bandwidth. It is important to note that

each of our low-end GPU achieves an effective reconstruction

rate of 1.5 GB/s, therefore even higher speedup is possible, if

network and disk throughput permit it.

These results show that our GPU-enabled RAID solution is

feasible, and provides a configurable and flexible solution.

D. Impact on Applications

Next, we examine the performance of our system under

load by a real-world application, the Data Cube (DC) NAS

OpenMP [39] benchmark. DC performs a data-intensive oper-

ation known in data mining as the Data Cube Operator (DCO),

which computes views of a dataset represented as a set of n

tuples and involves O(log n) memory accesses per tuple.

Figure 11 shows the performance of DC executing on our

client machine with varying number of threads. It is configured

to write out the views to disk as they are computed, thus

stressing both memory and the storage subsystem. At two

threads the benchmark is actually CPU-bound, thus generating

and writing out the extra parity for each view introduces a

small additional slowdown of 2%. Beyond four threads the

benchmark becomes I/O-bound and as a result, the overheads

due to parity produce a 5% and 10% slowdown for four and
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Fig. 11: Performance of NAS DC benchmark.

eight threads, respectively. We also measured performance of

our parity generation system under a heavy background GPU

load produced by an N-body simulation application running

on the GPU. When the DC benchmark is running with eight

threads, the background job does not affect performance at all,

because our system is able to schedule the workload for the

eight threads more effectively. With fewer threads requesting

parity, the system cannot obtain enough time on the GPU and

as a result exposes parity generation overheads to a portion of

the write operations, resulting in a slowdown of around 5%.

VI. RELATED WORK

There are a number of parallel file systems that were built

from the ground up to withstand failure, such as ZFS, Ceph,

and Panasas [27], [40], [41]. ZFS maintains data integrity by

using checksums for on-disk blocks, while Ceph relies on

replication at the granularity of an entire object storage device,

and thus both file systems cannot detect errors introduce

during network transmission to the client. Panasas [27] offers

a commercial solution with features similar to the system

presented in this paper. However, it relies on the CPU to

generate a per-file RAID-5 array. It does not support RAID-

6, since generating the required parity without a hardware

accelerator would result in high overheads.

Utilizing GPUs as commodity accelerators for general pur-

pose applications has been on the rise [42]. stdchk [43] uses

hashing to detect content similarity between two successive

checkpoint images. Several efforts [44]–[46] have attempted

to improve the performance of such hash computations by

offloading them to the GPU. Similarly, GPUs have also been

used to accelerate parity computation [47] and data encryp-

tion [48], [49] for storage systems.

The work most similar to ours is Gibraltar GPU based

RAID [50], which focuses on accelerating Reed-Solomon [30]

based parity codes to create a block based RAID in user-

space. Gibraltar has several limitation, including the need to

use the O DIRECT flag in order to bypass the Linux buffer

cache, which hurts performance. Additionally, Gibraltar cannot

perform end-to-end integrity checks, parallel array rebuild

of degraded arrays, or provide the same level of flexibility

delivered by our per-file arrays tightly integrated with a PFS.



VII. CONCLUSION

Fault tolerance on large-scale storage servers is largely

based on proprietary, expensive, hardware-based solutions with

limited flexibility and scalability. In this paper, we have

presented a cost-effective alternative that uses commodity

GPUs to implement RAID-6 in software, in conjunction with

the Lustre PFS. Our solution leverages low-cost GPUs on

the client and server nodes to accelerate minimum-density

RAID-6 coding schemes. We have shown, through a prototype

implementation, that our software-controlled parity compu-

tation scheme imposes acceptable overhead on application

performance, and constitutes, overall, a feasible, low-cost, and

efficient alternative to specialized hardware-based solutions.

As future work, we will extend our RAID solution to

other accelerators in a heterogeneous setting, to expedite the

encoding schemes. We will also explore the use of CPUs from

emerging many-core nodes, those that cannot be fully utilized

by a typical application, to compute the RAID encoding.
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