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Abstract—The Zipf distribution is widely used to model Web
site popularity, video popularity, and file referencing behavior.
In recent published work, we proposed and evaluated a Zipf-
based policy for probabilistic piece selection in Peer-to-Peer
(P2P) media streaming. In this current paper, we revisit this
Zipf model in more detail, and identify two fundamentally
different modeling approaches, namely regenerative versus
degenerative Zipf models. We illustrate the differences between
the two models, provide refined analytical models for each,
and validate the models with simulations in the context of P2P
media streaming. The results show that the regenerative model
is more appropriate for P2P streaming, because of its stronger
sequential progress.
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I. INTRODUCTION

On-demand streaming of stored media files has generated

significant interest in the networking research literature [2],

[12], [29], [32]. A wide range of delivery mechanisms have

been proposed, including centralized, distributed, and hybrid

architectures. Centralized approaches typically rely on the

classic client-server architecture, augmented with scalable

streaming protocols, IP multicast, or combinations thereof.

Decentralized approaches include the peer-to-peer (P2P)

paradigm [1], [7], [12], [15], [19], [29], [31], as well as peer-

assisted streaming [8], [9], [16]. Hybrid approaches using

Content Delivery Networks (CDN) or cloud-based streaming

have also emerged recently.

In this paper, we focus particularly on P2P approaches,

which offer a scalable approach for Internet-based media

streaming. The P2P paradigm has been used successfully

for live media streaming [19], [30], [31], as well as for on-

demand streaming [1], [7], [10], [12], [21], [29]. In either

of these scenarios, the sequential playback requirements

of media streaming applications are paramount. Unlike file

download applications, which can obtain pieces in any order,

on-demand video streaming applications ultimately require

pieces in sequential order in order to facilitate playback.

In prior work [23], [24], we argued that the analysis

of P2P media streaming is decomposable into download

progress and sequential progress, which can be analyzed

separately. Furthermore, improving one component can usu-

ally be done without compromising the other. We also

developed analytical models for four different piece selection

policies: In-Order, Random, Portion, and Zipf. These models

provide important insights into the efficiency of on-demand

media streaming in P2P networks [24].

In this current paper, we further explore the dynamics

of probabilistic piece selection policies, particularly for the

Zipf piece selection policy. Our work is motivated by the

limited accuracy of the Zipf modeling results in [24], and a

desire to improve the model. The main insight that emerges

in our work is that there are two fundamentally different

ways of modeling Zipf referencing behavior, which we call

regenerative and degenerative Zipf models. Both approaches

have been used in the networking literature (e.g., a version

of the regenerative approach in [7], [24], and degenerative

approaches in [5], [6], [27]), with few details provided about

the modeling assumptions or their performance impacts. We

explore the details of these two Zipf models in this paper,

as well as their implications.

The remainder of the paper is organized as follows.

Section II provides some background on the Zipf distribu-

tion, and reviews recent literature on P2P media streaming.

Section III presents our system model. Section IV presents

our modeling results, using both analysis and simulation.

Section V provides some additional simulation validation

and comparison of our models. Finally, Section VI concludes

the paper.

II. BACKGROUND AND RELATED WORK

This section provides background material on the Zipf

distribution, and summarizes prior work on piece selection

policies for P2P media streaming.

A. Zipf Distribution

The Zipf distribution exhibits a power-law structure that

is seen in many Internet traffic measurement studies [4].

The primary feature is a non-uniform pattern of referencing,

wherein a subset of the items garners most of the interest.

Furthermore, this non-uniform referencing pattern continues

to hold recursively, even when the most frequent items are

removed from consideration. Web site popularity, file system

usage, Web page referencing, and video object popularity are



Table I
EXAMPLES OF HARMONIC NUMBERS HM,θ

M 1 2 3 4 5

θ = 1 1.000 1.500 1.833 2.083 2.283
θ = 2 1.000 1.250 1.361 1.424 1.464

examples of domains in which Zipf or Zipf-like referencing

patterns are seen [3], [4], [6].

Mathematically, the Zipf distribution is expressed as

Prob(i) = c/iθ, where Prob(i) is the probability of refer-

encing the item with rank i, and c is a normalizing constant.

When θ = 0, c = 1
M

, and all pieces are equally likely, just

as in the Uniform distribution. When θ = 1, c is the M -

th Harmonic number, HM =
∑M

i=1
1
i
. When θ > 1, c is

the M -th Generalized Harmonic number, HM,θ =
∑M

i=1
1
iθ .

Table I shows the first few Harmonic numbers for θ = 1
and θ = 2.

Table II shows examples of the Zipf probability distribu-

tion for 1 ≤ M ≤ 5 items, when θ = 1. Table III shows the

corresponding values for θ = 2. In general, as θ increases,

the Zipf distribution becomes even more concentrated on the

most popular items. Figure 1 shows the rank-frequency plot

for θ = 1 and θ = 2 when M = 10. On a log-log scale, the

power-law structure of the Zipf distribution manifests itself

as a straight line, with (negative) slope θ.

Table II
ZIPF PROBABILITY DISTRIBUTION (θ = 1)

i M = 1 M = 2 M = 3 M = 4 M = 5

1 1.0 0.6667 0.5454 0.4800 0.4380
2 – 0.3333 0.2727 0.2400 0.2190
3 – – 0.1818 0.1600 0.1460
4 – – – 0.1200 0.1095
5 – – – – 0.0875

The Zipf distribution is widely used in synthetic workload

models for Web proxy workloads, media object popularity,

and file referencing behavior [3], [4], [5]. In this paper, we

restrict our focus to understanding Zipf models in the context

of P2P media streaming applications.

B. Media Streaming

Many P2P streaming approaches assume a BitTorrent-

like system as the underlying content delivery mechanism.

BitTorrent [11] is a popular peer-to-peer file sharing system

Table III
ZIPF PROBABILITY DISTRIBUTION (θ = 2)

i M = 1 M = 2 M = 3 M = 4 M = 5

1 1.0 0.8000 0.7347 0.7024 0.6833
2 – 0.2000 0.1837 0.1756 0.1708
3 – – 0.0816 0.0781 0.0759
4 – – – 0.0439 0.0427
5 – – – – 0.0273
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Figure 1. Example of Zipf probability distribution (M = 10)

designed for efficient file downloads. The set of peers

participating in the download of a particular file is known

as a swarm. BitTorrent splits files into pieces, which can

be downloaded concurrently from multiple peers in parallel.

Furthermore, the pieces can be downloaded in any order.

There are several analytical models characterizing BitTorrent

and the download efficiency of swarm-based systems [14],

[22], [25], [26], [28].

Piece diversity is one of the central considerations in

these systems. In BitTorrent, peers use a Rarest-First piece

selection policy when deciding which piece to obtain next

from a providing peer. This policy gives preference to under-

represented pieces in the system, at least within a neighbour-

hood of cooperating peers. This approach ensures adequate

piece diversity to maintain good download progress [17],

[18], [25].

Compared to download progress, sequential progress is

less well-studied [12], [23], [24]. Fan et al. [12] explicitly

address the tradeoffs between optimality, robustness, and

sequentiality in P2P streaming. One counter-intuitive result

is that simple In-Order piece selection, which is clearly

preferable for media streaming, has an adverse effect on

BitTorrent, halving the system efficiency [24]. One reason

for this is that In-Order selection breaks the “tit-for-tat”

reciprocity of BitTorrent. Another reason is the limited

piece diversity, which leads to non-uniform load in the

system [13]. Carlsson et al. [7] proposed several probabilis-

tic piece selection policies as a means to enhance piece

diversity, without compromising sequential progress. Yang

et al. [29] also study the effect of the request scheduling

discipline on streaming latency.

In this paper, we consider the efficiency of probabilistic

piece selection policies for on-demand stored media stream-

ing in P2P systems.



III. SYSTEM MODEL AND PRIOR RESULTS

A. Problem Statement and Assumptions

The focus in this paper is on probabilistic piece selection

policies in P2P media streaming systems. In particular, we

are interested in the sequential progress of these policies.

The notion of sequential progress is defined in [24]. The

idea is as follows: “After having retrieved k pieces, what

is the probability that a peer possesses pieces 1 through

j (inclusive) to enable streaming?” Figure 2 shows an

example, in which a peer has retrieved k = 5 of M pieces,

but has only obtained j = 3 of the initial pieces. Thus the

sequential progress is 3. Table IV summarizes the notation

used in our analysis.
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(M − j − 1) pieces

(M − j) pieces

j pieces
missing

Figure 2. Example of sequential progress concept (j = 3, k = 5) [24]

Table IV
MODEL NOTATION

Symbol Description

M Number of pieces in media object
k Number of pieces retrieved so far
j Number of consecutive initial pieces of object retrieved

E[j|k] Expected sequential progress j after obtaining k pieces
p Probability of In-Order selection in Portion policy
q Probability of selecting piece j + 1 on next retrieval
θ Exponent of Zipf distribution

HM M-th Harmonic number
HM,θ M-th Generalized Harmonic number with exponent θ

B. Sequential Progress Analysis

Figure 3 illustrates, for M = 10, the expected sequential

progress E[j|k] of the four piece selection policies (In-

Order, Random, Portion, and Zipf) that were analyzed

in [24].

By definition, the In-Order policy is ideal in terms of

sequential progress. Each peer simply retrieves the file pieces

in sequential order from 1 to M . This pattern is illustrated

by the straight diagonal line in the sequential progress plot.

The Random piece selection policy chooses pieces uni-

formly at random. As illustrated in Figure 3, this policy

provides poor sequential progress. Specifically,

E[j|k] =
k

M − k + 1
. (1)
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Figure 3. Sequential progress for piece selection policies (M = 10)

The sequential progress is slow initially, but increases

monotonically and accelerates throughout the download.

Additional analysis shows that:

V ar[j|k] =
k(M + 1)(M − k)

(M − k + 2)(M − k + 1)2
. (2)

The variance is a monotonically increasing function of k,

though it degenerates to 0 when all M pieces are retrieved.

C. Portion Piece Selection Policy

The Portion policy [7] is a hybrid between In-Order

and Random. It has a single configuration parameter p.

At each step, it chooses pieces according to the In-Order

policy with probability p, and according to the Rarest-First

(i.e., Random) policy with probability 1 − p. This section

summarizes the analysis of the Portion policy from [24].

Let P (j, k) be the probability that a peer has obtained

exactly the first j in-order pieces after retrieving k of the

M total pieces. By definition, the P (j, k) values must satisfy
∑k

j=0 P (j, k) = 1, for a given k. Furthermore, the expected

sequential progress E[j|k] can be calculated as:

E[j|k] =
k

∑

i=0

iP (i, k). (3)

Let qj,k be the probability that the first missing piece

(j+1) is selected for retrieval next. With the Random policy,

qj,k = 1
M−k

. With the Portion policy,

qj,k = p + (1 − p)
1

M − k
. (4)

The first term represents In-Order selection based on the

parameter p, while the second term represents the chance

of “accidentally” selecting the next needed piece at random.

This expression assumes that the missing pieces (excluding

the first missing piece) are uniformly distributed, and are

equally likely.
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Figure 4. Validation results for Portion piece selection policy [24]

With this notation, probability P (j, k) is expressed as:

P (j, k) = P (j, k − 1)(1 − qj,k−1) + (5)
∑j−1

i=0

[

P (i, k − 1)qi,k−1A
(j−i−1)
i,k−1

]

.

The first term in this expression represents the case when the

needed piece j +1 is not selected; as a result, the sequential

progress stays the same. The second term represents the case

in which piece j + 1 is successfully obtained. In this case,

the sequential progress advances by at least one piece, and

possibly more, as detailed next.

Let An
j,k be the probability of having exactly n consec-

utive in-order pieces starting at position j + 2 when the

missing piece j + 1 is selected. Assuming k − j uniformly

distributed pieces in the range [j + 2, M ], we have:

An
j,k =











(

1 − k−j−n
M−j−n−1

)

∏n−1
i=0

k−j−i
M−j−i−1 , if n < k − j

∏n−1
i=0

k−j−i
M−j−i−1 , if n = k − j

0, otherwise.
(6)

The factors in these expressions correspond to conditional

probabilities, expressing the likelihood that each piece to the

right of j + 1 is (or is not) selected.

The Portion model is highly accurate, and has been

validated by simulation, as illustrated in Figure 4. Two

special cases of this model deserve mention. When p → 0,

the results match Random piece selection. When p → 1, the

results match In-Order. These observations are evident from

Equation 4.

D. Zipf Piece Selection Policy

In the Zipf probabilistic piece selection policy, a Zipf

distribution is used to skew the probability bias towards se-

lecting lower-numbered pieces [7]. This section summarizes

the analysis of the Zipf policy from [24].

The Zipf analysis mirrors that for the Portion policy. For

simplicity, we again assume that the missing pieces (except
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Figure 5. Validation results for Zipf piece selection policy [24]

the first missing piece) are uniformly distributed. Under this

assumption, the corresponding expression for qj,k is:

qj,k ≈
1

1 + M−k−1
M−j−1

∑M−j

i=2
1
iθ

. (7)

The interpretation of Equation 7 is as follows. The sum-

mation term in the denominator represents the cumulative

weight for selecting pieces to the right of piece j + 1 in

Figure 2, while the preceding coefficient prorates the sum

based on the proportion1 of these pieces that have already

been retrieved. The numerator and the additional term in

the denominator represent the unit weight assigned to piece

j +1 in the Zipf model. The rest of the analysis is the same

as for the Portion policy.

While the Zipf model is reasonably accurate, as shown

in Figure 5, the simulation results show that the model

underestimates sequential progress. As with the Portion

policy, there are two special cases. When θ → 0, the model

matches Random piece selection. When θ → ∞, it matches

the In-Order policy. These observations follow directly from

Equation 7.

Nonetheless, there are several deficiencies with this

model. First, the model is complicated, and does not have

a closed form. Rather, the model must be evaluated numer-

ically using the foregoing equations. Second, the model is

not very accurate. There are perceptible gaps between the

simulation and analytical results in Figure 5. These modeling

issues are addressed in the remainder of the paper.

IV. NEW MODEL AND RESULTS

This section presents new analytical modeling results for

the Zipf probabilistic piece selection policy. We start with a

statement of our new closed-form model, and then provide

the details and insights behind the model development.

1Note that equal weights are assumed for these pieces, despite the
monotonically decreasing probabilities in a Zipf distribution.
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Figure 6. State Space Example for Probabilistic Piece Selection (M = 2)

A. Model Summary

Our primary result is for the Degnerative Zipf piece

selection policy: when θ = 1, the expected sequential

progress after retrieving k of M pieces is:

E[j|k] ≈ M
(HM − HM−k)

HM

. (8)

B. Modeling Details

The initial insights for our model came from studying very

small cases, such as the M = 2 case illustrated in Figure 6.

In this scenario, we refer to the pieces of the media object

as A and B. Two retrieval sequences are possible for this

object, namely AB and BA.

Both sequences are illustrated in Figure 6, using the

(j, k) state space notation indicated in the upper left of

the diagram. Piece selection, with increasing k values,

is indicated horizontally in the diagram, while sequential

progress, with increasing j values, is indicated vertically.

Clearly, sequential progress j can never exceed k, but it

can match k at intermediate points, and always reaches k
when the entire object is retrieved. Each of the states and

arrows in Figure 6 has an associated probability, though

these values are excluded from the diagram for simplicity.

These probabilities depend on the piece selection policy

in use (e.g., Random, Portion, Zipf), as will be explained

shortly.

The next useful case to consider is M = 3, as illustrated

in Figure 7. In this example, there are 6 possible retrieval

orders: ABC, ACB, BAC, BCA, CAB, and CBA. Each of

these sequences is represented in the diagram, with the latter

two using italic fonts to reduce ambiguities.

A recursive relationship is apparent when comparing Fig-

ure 7 and Figure 6. For example, if the first piece retrieved is

A, then the remaining states in the upper right of Figure 7

(for the remaining pieces B and C) match Figure 6 (for

pieces A and B). Similarly, if B is the first piece chosen,

then the remaining states represent the retrieval of A and

C (in either order), analogous to Figure 6. Finally, if C (in

italics) is chosen first, then the remaining states (for pieces

A (in italics) and B) correspond to those in Figure 6 (for A

and B).

The recursive relationship between Figure 7 and Figure 6

suggests a recurrence relation as a natural way to formulate

a Zipf analytical model. For θ = 1, the proposed recurrence

is:

E[j|k] =
M q

M − k + 1
+ E[j|k − 1]. (9)

Intuitively, the sequential progress after k piece selections

is at least as large as it was after k− 1 pieces, and possibly

larger if the needed piece j +1 is selected (with probability

q). Using Figure 7 as an example, a sequential progress of

j = 2 can be achieved either by choosing piece B after the

initial selection of A (increasing sequential progress by 1),

or selecting piece A while already having piece B in hand

(increasing sequential progress by 2). The likelihood of these

transitions depends on the state probabilities.

This formulation is very similar to the Portion policy

model in Equation 6, except that the recurrence relation

expresses sequential progress directly, rather than via the

state probabilities P (j, k) and the (recursive) sequential

progress An
j,k. Furthermore, our new expression is amenable

to a closed form solution, as indicated earlier.

C. Zipf Model Variants

An important issue in the Zipf model is how to determine

the probabilities for states and transitions. When exploring

our model, we identified two fundamentally different ap-

proaches, which we refer to as Regenerative and Degener-

ative Zipf models. Figure 8 illustrates the key differences

between these two models, using an example scenario with

M = 3 and θ = 1.
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Figure 7. State Space Example for Probabilistic Piece Selection (M = 3)



In the Regenerative Zipf model, the Zipf distribution is

re-instantiated after each piece selection, albeit with fewer

pieces remaining to be retrieved. This model is illustrated

in the upper row of Figure 8. The table on the left shows

the M = 3 pieces initially available for selection, and

the probability value associated with each piece. The three

tables on the right show the resulting Zipf configurations

for M = 2 pieces, based on the selection made from the

leftmost table. As can be observed, the probability values

are identical in each of the three tables. Specifically, the

topmost item is twice as likely as the second item, as defined

by the Zipf distribution for M = 2 and θ = 1. In this model,

only the number of pieces matters, and not what piece was

chosen at each step.

In the Degenerative Zipf model, the structure of the

Zipf distribution degrades after each piece selection, and

becomes less and less Zipf-like. In this model, it is not

only the number of pieces that matter, but also which piece

was selected at each step. This model is illustrated in the

lower row of Figure 8. Once again, the table on the left

shows the M = 3 pieces initially available for selection,

and the probability value associated with each piece. The

three tables on the right show the resulting configurations

for M = 2 pieces, based on the selection made from

the leftmost table. If item A is selected (with probability
6
11 ), then the remaining two items have their probabilities

renormalized (relative to 5
11 ), while preserving the relative

probabilities. For example, item B remains 50% more likely

than item C, just as it was in the leftmost table. Note that

this distribution is no longer Zipf. Similar normalization

principles apply for the other two tables shown, based on

the initial item selected from the leftmost table. If item C

is selected first (with probability 2
11 ), then the remaining

items A and B still have a Zipf distribution, as shown in

the rightmost table. This case is identical to that for the

Regenerative Zipf distribution above, but the other two cases

are distinctly different.

The foregoing discussion is relevant because it affects the

probabilities associated with the states and transitions in Fig-

ure 7. For example, if item A is selected first, then does item

B have a 66.7% chance of being selected next (Regenerative

model), or is it only a 60% chance (Degenerative model)?

Figure 9 shows a more elaborate example for M = 4,

where the differences in piece selection probabilities be-

tween the two models are even more apparent. Note that the

updated probability values in the Degenerative model could

be lower, higher, or the same as those in the Regenerative

model.

D. Model Implications

We conducted simulation experiments to better understand

the differences between these two models, and their perfor-

mance implications.

Figure 10 shows histogram plots illustrating the behavior

of these models. The plot in Figure 10(a) is for M = 3
pieces. In this scenario, there are 3! = 6 possible orderings

in which the pieces can be retrieved: ABC, ACB, BAC,

BCA, CAB, and CBA. We list these sequences in canonical

(lexicographic) order from left to right in the plot. The

upper part of the plot shows the relative frequencies of

these retrieval sequences observed over 1000 iterations of

the simulation, for the Degenerative Zipf model. The lower

part of the plot shows the corresponding results for the

Regenerative Zipf model. If the two models were identical,

the plots would mirror each other symmetrically along

the horizontal axis. However, several asymmetries can be

observed. For example, the sequence BAC is more prevalent

than ACB in the Regenerative Zipf model, while the opposite

is true in the Degenerative Zipf model. As another example,

the sequences BCA and CBA are almost equally prevalent

in the Degenerative Zipf model, while BCA is far more

prevalent in the Regenerative Zipf model.

The two other plots in Figure 10 show results for M = 4
and for M = 5 pieces, respectively. As the number of

possible retrieval orderings grows, more differences between

the models become apparent. In particular, the Regenerative

Zipf model has a greater propensity to generate In-Order

substrings. There are pronounced peaks in the histogram

for the Regenerative model, induced by restoring the Zipf

structure after each piece selection. These peaks are not

nearly as prominent in the Degenerative Zipf model.

The recursive structure of the Zipf models is apparent

when comparing the plots in Figure 10. For example, the

3-piece subsequence depicted in Figure 10(a) shows up four

times from left to right in Figure 10(b), depending on the

first piece retrieved. The relative magnitude and profile of

these histograms matches with the models described. For

example, the prominence of ABCDE in the Regenerative

model in Figure 10(c) is consistent with the product of the

first row of probability values (for i = 1) in Table II. One

would expect the pattern ABCDE to occur 7.6% of the time

in the Regenerative model, and BACDE would occur half

as often. In the Degenerative model, ABCDE would occur

about 4% of the time, with BACDE occurring only slightly

less frequently than this.

The impact of these models on sequential progress are

illustrated in Figure 11. Figure 11(a) shows the sequential

progress for both models when M = 4. At this number of

pieces, there is little difference between the two models. Fig-

ure 11(b) shows the sequential progress results for M = 8
pieces. For this setting, the two models are similar, although

the Regenerative one tends to be slightly above the Degener-

ative one in terms of sequential progress. For M = 16 pieces

in Figure 11(c), there is a noticable difference between the

two models (based on the 95% confidence intervals shown

from 100 simulation replications). This observation is even

more pronounced in Figure 11(d), for M = 32 pieces.



Regenerative Zipf Model

Item Prob Total
A 0.5454 0.5454
B 0.2727 0.8181
C 0.1818 1.0

if item A is chosen

Item Prob Total
B 0.6667 0.6667
C 0.3333 1.0

if item B is chosen

Item Prob Total
A 0.6667 0.6667
C 0.3333 1.0

if item C is chosen

Item Prob Total
A 0.6667 0.6667
B 0.3333 1.0

Degenerative Zipf Model

Item Prob Total
A 0.5454 0.5454
B 0.2727 0.8182
C 0.1818 1.0

if item A is chosen

Item Prob Total
B 0.6000 0.6000
C 0.4000 1.0

if item B is chosen

Item Prob Total
A 0.7500 0.7500
C 0.2500 1.0

if item C is chosen

Item Prob Total
A 0.6667 0.6667
B 0.3333 1.0

Figure 8. Example of Regenerative (upper row) and Degenerative (lower row) models for Zipf piece selection (M = 3, θ = 1)

Regenerative Zipf Model

Item Prob Total
A 0.48 0.48
B 0.24 0.72
C 0.16 0.88
D 0.12 1.0

if item A is chosen

Item Prob Total
B 0.5454 0.5454
C 0.2727 0.8182
D 0.1818 1.0

if item B is chosen

Item Prob Total
A 0.5454 0.5454
C 0.2727 0.8182
D 0.1818 1.0

if item C is chosen

Item Prob Total
A 0.5454 0.5454
B 0.2727 0.8182
D 0.1818 1.0

if item D is chosen

Item Prob Total
A 0.5454 0.5454
B 0.2727 0.8182
C 0.1818 1.0

Degenerative Zipf Model

Item Prob Total
A 0.48 0.48
B 0.24 0.72
C 0.16 0.88
D 0.12 1.0

if item A is chosen

Item Prob Total
B 0.4615 0.4615
C 0.3077 0.7692
D 0.2308 1.0

if item B is chosen

Item Prob Total
A 0.6316 0.6316
C 0.2105 0.8421
D 0.1579 1.0

if item C is chosen

Item Prob Total
A 0.5714 0.5714
B 0.2857 0.8571
D 0.1429 1.0

if item D is chosen

Item Prob Total
A 0.5454 0.5454
B 0.2727 0.8182
C 0.1818 1.0

Figure 9. Example of Regenerative (upper row) and Degenerative (lower row) models for Zipf piece selection (M = 4, θ = 1)

Figure 11 shows that the Zipf analytical model in [24]

does not match either of the two Zipf approaches very well.

The Regenerative Zipf model in the simulation provides

much stronger sequential progress than predicted by the

Zipf analytical model, while the Degenerative Zipf model

provides much weaker sequential progress. In the “end

game”, once all the higher probability pieces have been

chosen, the Degenerative model resembles Random piece

selection. Since the differences between piece probabilities

are small in the tail of the Zipf distribution, the results are

similar to uniform random piece selection.

E. Degenerative Zipf Model

Our initial efforts in refining the Zipf model focused on

the Degenerative model, for which deeper understanding was

sought. Formulating this model using a recurrence relation

was a critical step, with the recurrence based on k, rather

than M .

The intuition behind the particular recurrence relation

given in Equation 9 is the following. M is a normalizing

factor. q represents the probability of selecting a piece that

advances the sequential progress. The factor 1
M−k+1 reflects

the relative contribution made to the (recursively remaining)

sequential progress by each successful piece selection. For

the M = 3 example in Figure 7, these contributions would

be 1
3 , 1

2 , and 1, respectively, for the transitions along the

diagonal from bottom left to top right.

For θ = 1, we obtained the following closed-form result:

E[j|k] ≈ M
(HM − HM−k)

HM

. (10)

This is an approximate model, obtained via repeated expan-

sion of the recurrence relation in Equation 9, assuming a

fixed probability q = q0,0 throughout the entire download.

Equation 10 is compact, simple, and intuitively appealing.

It is also reasonably accurate, as will be demonstrated in Sec-

tion V. The boundary cases are easy to verify. Specifically,

E[j|k] = 0 when k = 0, E[j|k] = 1
HM

= q0,0 when k = 1,

and E[j|k] = M when k = M .

Based on the structural insights from the θ = 1 model,

we developed a corresponding expression for θ = 0:

E[j|k] ≈
M

M − k + 1

(HM,θ − HM−k,θ)

HM,θ

. (11)

Since Hi,θ = i when θ = 0, this expression reduces

to the Random model in Equation 1. This formula also

provides another way to interpret Equation 10, namely that

the probability q plays an important role in accelerating

sequential progress compared to Random.
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Figure 11. Sequential progress simulation results for Zipf piece selection policies

F. Regenerative Zipf Model

The Regenerative model is more complicated, since it

requires different q = qj,k values in each step of the

recurrence. We formulate this model generically as E[j|k] =
∑k

i=1 Aiqi, where qi is the probability of selecting the next

needed piece, and Ai is how much the sequential progress

advances when this piece is selected. In the Regenerative

model, qi = 1
HM−i+1,θ

, but Ai depends on θ.

For θ = 0, we exploit the fact that E[j|i] − E[j|i − 1] =
i

M−i+1 −
i−1

M−i+2 to obtain Ai = M+1
M−i+2 , which leads to an

exact sequential progress formula as follows:

E[j|k] =

k
∑

i=1

M + 1

M − i + 2

1

HM−i+1,θ

. (12)

Two boundary cases for the latter expression are easy to

verify. Specifically, E[j|k] = 0 when k = 0, and E[j|k] =
1

HM,θ
when k = 1.

For larger values of θ, the shape of the Ai function varies.

By definition, we know that A1 = 1. We have also calculated

an exact expression for A2 = 1+ 1
2θHM,θ

. The general form

appears to be:

Ak ≈ 1 +

k−1
∑

i=1

1

aθ
i HM,θ

+ o(
1

H2
M,θ

), (13)

where each ai is a small positive integer. We do not yet

have a compact closed form for this model, and thus must

evaluate the model results numerically. When θ = 1, Ai is

very close to linear. For θ < 1, the curve is convex (i.e.,

concave upwards), similar to the Random (θ = 0) case. For

θ > 1, the curve is concave (i.e., concave downwards), and

is (tightly) upper bounded by the Harmonic series Hk,θ .

V. SIMULATION RESULTS

Figure 12 shows results to validate our revised models,

and compare their properties.

Figure 12(a) shows results for the Regenerative model,

with M = 32. The value of θ is varied between 0 and 2.

When θ = 0, both the simulation results and the analytical

results match those for the Random policy, as expected. As

θ increases, the sequential progress curves move upward,

with the Regenerative policy behaving more and more

like In-Order. The 95% confidence intervals also become
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Figure 10. Canonical sequence histograms for Zipf piece selection policies

tighter, since there is less variability in the piece selections

generated.

Figure 12(b) shows the corresponding results for the

Degenerative model. For θ = 0, the simulation and ana-

lytical results match the Random policy, as expected. As θ
increases, the sequential progress curves move upward, but

more slowly than with the Regenerative model. The simula-

tion and analytical results for a given θ are reasonably close

together in the Degenerative model, though the analytical

model is still somewhat conservative. For the largest θ value

considered (θ = 2), the Degenerative Zipf behaves quite

differently from the In-Order policy. The slow “end game”

progress is a distinctive characteristic of the Degenerative

Zipf policy.

One key assumption in the derivation of the compact

formula for Degenerative sequential progress was a fixed

probability q for successful retrieval of piece j + 1 at each

step. This assumption is reasonable for the Degenerative

model, but not suitable for the Regenerative model, which

has monotonically increasing probability values for the

most-needed piece.

Figure 13(a) shows an example of how the Zipf selection

probabilities for piece j +1 evolve in the two models, when

M = 32. For the Regenerative model (upper line), this

probability increases monotonically, since it depends only

on the number of pieces remaining. For the Degenerative

model, Figure 13 shows the average probabilities (middle

line) for missing piece j + 1 from 1000 independent sim-

ulation runs of the Degenerative model. This probability

is non-monotonic. For most of the download, the average

probability for piece j+1 is about midway between those of

the Regenerative and Random models, and its overall mean

is very close to q0,0 = 0.246. This graph illustrates why a

single fixed value of q is a reasonable approximation for the

Degenerative model, at least for M = 32 and θ = 1. The

approximation is less accurate for other values of θ, since the

mean probability for piece j + 1 differs substantially from

q0,0 (e.g., 0.1918 versus 0.1006 for θ = 0.5, and 0.3313

versus 0.6195 for θ = 2).

Figure 13(b) shows the average sequential progress ad-

vance Ai in each of the models, again for M = 32. For the

Random policy, the simulation results match the analytical

model. For the Regenerative model, the advances are lower,

and are always upper bounded by the Harmonic number

sequence. The Degenerative model has advances that are in

between those of the other two models.

Figure 14 shows one final validation experiment for our

models, for M = 64 and θ = 1. For these parameter settings,

the mean relative error of the Degenerative model is 6.0%,

while that of the Regenerative model is 2.6%. These two

models provide more accurate results than the original model

from [24], which is shown as “Old Analysis” in Figure 14.

VI. CONCLUSIONS

In this paper, we evaluated two fundamentally different

approaches to modeling Zipf referencing patterns, namely

Regenerative and Degenerative Zipf models. Both models

have been used in the previous literature for synthetic

workload modeling, but without much discussion of their

behavioral properties. In our work, we use analysis and

simulation to highlight the differences between the two mod-

els. In particular, we provide revised analytical models for

each, and validate the models with simulations of P2P stored

media streaming. The results show that the Regenerative

model is more suitable for P2P streaming, because of its

stronger sequential progress.
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Figure 12. Modeling results for different piece selection policies (M = 32)
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