
Helping Hand or Hidden Hurdle: Proxy-assisted

HTTP-based Adaptive Streaming Performance

Vengatanathan Krishnamoorthi† Niklas Carlsson† Derek Eager§

Anirban Mahanti‡ Nahid Shahmehri†

† Linköping University, Sweden, firstname.lastname@liu.se
§ University of Saskatchewan, Canada, eager@cs.usask.ca

‡ NICTA, Australia, anirban.mahanti@nicta.com.au

Abstract—HTTP-based Adaptive Streaming (HAS) has be-
come a widely-used video delivery technology. Use of HTTP en-
ables relatively easy firewall/NAT traversal and content caching.
While caching is an important aspect of HAS, there is not much
public research on the performance impact proxies and their
policies have on HAS. In this paper we build an experimental
framework using open source Squid proxies and the most recent
Open Source Media Framework (OSMF). A range of content-
aware policies can be implemented in the proxies and tested,
while the player software can be instrumented to measure
performance as seen at the client. Using this framework, the paper
makes three main contributions. First, we present a scenario-
based performance evaluation of the latest version of the OSMF
player. Second, we quantify the benefits using different proxy-
assisted solutions, including basic best effort policies and more
advanced content quality aware prefetching policies. Finally,
we present and evaluate a cooperative framework in which
clients and proxies share information to improve performance.
In general, the bottleneck location and network conditions play
central roles in which policy choices are most advantageous,
as they significantly impact the relative performance differences
between policy classes. We conclude that careful design and policy
selection is important when trying to enhance HAS performance
using proxy assistance.

Keywords—Proxy-assisted; HTTP-based adaptive streaming;
Prefetching; OSMF; Experimental evaluation

I. INTRODUCTION

For the last two decades video streaming has been expected
to be the next killer application. Today, popular services such
as YouTube and Netflix are offering large catalogues of user
generated and professional videos, respectively. Video stream-
ing has finally become mainstream, playing an increasingly
important role in our everyday lives. It was recently reported
that streaming media is responsible for close to 40% of the
downstream traffic in production networks, and it is predicted
that streaming media will account for two-thirds of the traffic
in the coming years [1].

While much of the early video streaming work focused on
UDP-based solutions, today the majority of streaming traffic
is delivered using HTTP over TCP. Use of HTTP enables
both simple firewall traversal and effective content caching.
These two factors provide immense benefits, as HTTP can
reach almost any user, and content can easily be replicated at
locations closer to the client.

With basic HTTP-based streaming, the video encoding that
is delivered to a client is fixed at the time of the client request.

To increase the quality of service and to better utilize the
available network bandwidth, HTTP-based Adaptive Streaming
(HAS) is being increasingly adopted by content providers [5].
With HAS, the video is encoded into different qualities and
clients can at each point in time adaptively choose the most
suitable encoding based on the current conditions.

While content caching plays an important role in the
motivation for HTTP-based streaming, only very limited work
considers the impact of using proxy assistance for HAS.

In this paper we present a performance evaluation of proxy-
assisted HAS. Our experimental framework is designed using
a popular open source proxy and a popular open source media
player. Careful instrumentation allows us to measure the actual
performance seen at the client, while controlling the network
conditions and protocol parameters. We evaluate a range of
different policy classes that may be employed in proxy-assisted
systems and provide insights to the effectiveness of different
policies and their performance tradeoffs.

While the general proxy policy classes considered in this
paper are applicable for any chunk-based HAS protocol, in
our evaluation we use Adobe’s Open Source Media Framework
(OSMF), together with the accompanying (open source) Strobe
Media Playback (SMP) media player. In addition to capturing
the actual performance seen on the client, using an open source
player also allows us to easily consider the impact buffer sizing
at the client has on proxy solutions, and avoids other issues
that may come with using proprietary players (e.g., having
to decipher encrypted manifest files [3]). Our proxy-assisted
policies are all implemented using open source Squid proxies.

Leveraging our experimental framework and instrumen-
tation, the paper makes three major contributions. First, we
carry out an experimental evaluation of the latest version of
SMP. Our results illuminate several important aspects of SMP
performance, in particular relating to player buffer sizing.

Second, we analyze the player’s performance in a proxy-
assisted environment, considering a wide range of proxy poli-
cies including both basic baseline policies (such as a best-effort
proxy that only caches chunks that it has served other clients
in the past), and more advanced content-aware prefetching
policies in which the proxy prefetches and caches chunks likely
to be requested in the future (such as the chunk following that
last requested by a client, at the same quality level).

Performance with the alternative proxy policies is found to
be quite sensitive to the network conditions. If the bandwidth

nikca
Text Box
To appear in Proc. IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), San Francisco, Aug. 2013. The final/official version will appear in the conference proceedings and the IEEE Xplore Digital Library.

bottleneck is between the client and the proxy, we find that
a relatively simple proxy solution can provide most of the
potential benefits, but these benefits are modest. However, if
the bottleneck is between the proxy and the server, caching at
the proxy can yield a substantial benefit, but the limited band-
width between the proxy and server must be more carefully
utilized. There is traffic overhead associated with prefetching,
and aggressive prefetching can therefore result in performance
degradation. For example, a client that sees high hit rates at
the proxy can be lured into selecting a higher quality than the
proxy is able to serve if the future chunks requested by the
client are not available at the proxy.

Third, we present a novel collaborative client-proxy frame-
work in which clients and proxies share information with the
goal of improving both the cache hit rate at the proxy, and
the video quality at the client. Our performance evaluation
results indicate that this goal can be achieved, yielding sub-
stantial benefits in some cases. Our buffer-size experiments
also suggest that advanced policies are particularly attractive
when assisting wireless clients with smaller buffers, for which
unnecessary bandwidth usage may be more costly.

The remainder of this paper is organized as follows.
Section II presents background on HAS and SMP. Section III
describes our experimental methodology, performance metrics,
and instrumentation. Section IV presents a scenario-based
evaluation of SMP performance. Section V describes our
performance evaluation of proxy-assisted HAS. Section VI
discusses related work and Section VII concludes the paper.

II. BACKGROUND

A. HTTP-based Adaptive Streaming

With HTTP-based streaming, either the quality level is
statically chosen when the video is requested, or adaptively
varied during playback. We refer to the second approach as
HTTP-based Adaptive Streaming (HAS).

Typically HAS protocols use some variation of either
chunk requests or range requests. With a purely chunk-based
approach, used by OSMF and Apple’s HTTP Live Streaming
(HLS), for example, each encoding of each video is split into
many smaller chunks. Each chunk is given a unique URL,
which the clients can learn about from the video’s manifest
file. At the other end of the spectrum, e.g. used by Netflix,
each encoding of a video is stored in a single file and clients
use standard HTTP range requests to download ranges of bytes
from these files. Hybrid approaches are also possible. For
example, Microsoft Smooth Stream (MSS) uses a unique URL
in the manifest file to specify each unique chunk, but then
applies a server-side API to map chunk URLs into file ranges.

In this paper we consider chunk-based adaptive streaming,
as used by the Open Source Media Framework (OSMF).
OSMF is open source and allows us to modify and instrument
the player used in our experiments to directly measure the
performance seen at the player. OSMF is a widely used design
framework that includes a library of the necessary components
to create an online media player. It also comes with the Strobe
Media Playback (SMP), a fully pre-packaged media player for
deploying OSMF. Other open source players include a VLC
plugin [20] and GPAC [12]. For simplicty, here we use OSMF
and SMP interchangeably.

B. SMP overview

1) Buffer management: Similar to other HAS protocols,
including previous versions of OSMF, the most recent version
of the SMP media player (version 2.0) controls content re-
trieval based on (i) its buffer occupancy, and (ii) the estimated
available bandwidth. With OSMF’s HTTP Dynamic Streaming
(HDS) protocol, each encoding of a video is divided into
smaller fragments that typically have a 2-5 seconds playback
duration. The player issues requests for these fragments suc-
cessively and the server delivers the fragments statelessly to the
client. The protocol uses two buffer thresholds: the minimum

(T buf
min) and the maximum (T buf

max) buffer time threshold.

During normal operation, the player tries to maintain at

least T buf
min (in seconds) buffer occupancy at all times, and

begins playback only when there is at least T buf
min seconds

of data in the buffer. Generally, the player downloads until
T buf

max seconds of video is buffered, at which point it stops
download until the buffer occupancy is less than the lower

threshold T buf
min again, at which point download is resumed.

In this way, the player’s buffer occupancy oscillates between
these two threshold values.

2) Rate adaptation: Rate adaptation requires estimation of
the available bandwidth (i.e., achievable download rate). This
is accomplished using a weighted (rolling) average over the
two most recently downloaded fragments. After download of
a fragment, the player calculates the average download rate for
that fragment and updates its estimated current download rate.

When downloading the next fragment, the most recent
estimates of the available bandwidth are used to identify a
list of candidate encoding rates that are sustainable for that
bandwidth. For each candidate encoding, a reliability value
is calculated based on the number of switching decisions of
different types that have been made within a fragment-count-
based window and the number of stalls encountered at these
encodings. Among the encodings with a reliability value higher
than a minimum threshold, the player picks the encoding with
the highest reliability value. If there are no such encodings,
then the lowest quality is chosen.

In addition to the above core mechanism, there are addi-
tional emergency-based or threshold-based rules that impact
the player’s decisions. These high-priority rules are designed
to ensure that the player is not too aggressive/conservative,
and include rules that prevent choosing a lower quality when
the buffer is sufficiently full (threshold-based rule), and event-
triggered (emergency) rules that keep track of empty buffer
occurrences, dropped frames, and quality up-switches.

III. METHODOLOGY

This paper evaluates HAS performance as seen at the
client player, under different player and proxy policies, system
configurations, and/or architectures. In contrast to prior works,
which infer the player behavior based on network measure-
ments [3], [6], [24], we evaluate the actual performance seen
at the player. By instrumenting the player we can avoid any
potential misinterpretations due to TCP buffer management
and/or other hidden factors over which the player may have
limited control.

A. Experimental setup

We implement and run a server, proxy, and client on three
separate machines, all connected over the same 100Mbit/s
LAN. To emulate a wide range of network characteristics,
including wide-area content retrieval, we use dummynet [25]
to control the network conditions between the client and proxy,
as well as between the proxy and server.

The server machine is running a Flash Media Server and
is hosting a 10 minute video available at four encoding rates:
1300 Kbit/s, 850Kbit/s, 500Kbit/s and 250Kbit/s, with key
frames set four seconds apart. The key frame distance is vital
in terms of the player’s quality adaptation as rate switching
can take place only at key frames. We have chosen encoding
rates and key frame separation to keep the processing at the
client and server modest. This allows us to focus on the
network and proxy-related aspects. Levkov [17] provides a
detailed discussion on the tradeoffs in picking a good key
frame distance. Finally, we use open source Squid proxies to
evaluate a range of different proxy implementations/policies.

B. Player instrumentation and metrics

For the purpose of player evaluation, we instrument the
SMP media player to output important events and parameter
information to log files for later analysis. This allowed us
to capture the current state of the player at almost every
player event, including when a new fragment is requested,
when a decision is made to change the quality level, when
observing server responses to rate-switch decisions, as well as
at the times of other more subtle client-side events. For each
such measurement, perhaps the most important information
collected is the current buffer occupancy (defined as the
amount of video content that is in the player buffer, measured
in seconds) and video encoding rate.

In order to characterize the player performance we used
the log files from our instrumented client player to calculate
a set of metrics that capture both differences in performance
and general adaptation characteristics.

• Quality level: The fraction of time the player spends
at each quality level during playback.

• Quality switches: The number of quality level
changes that the player makes per minute.

• Stall time: The total time the player is stalled.

• Buffer interruptions: The number of times per
minute, regardless of how short, that the player is
interrupted during playback, due to lack of data in
its buffer.

Unless stated otherwise, throughout the paper we present
average values (with 95% confidence intervals) calculated over
at least 10 full experiments. We also consider proxy-specific
metrics, such as the hit rate, defined as the fraction of the
requested fragments that are found in the proxy cache, and the
corresponding bandwidth savings due to these fragments not
having to be obtained from the server. The caching decisions
made when serving one client can impact subsequent clients,
and for this reason, in some cases, we show performance
conditioned on the number of previous clients that has viewed

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240

A
v
a

ila
b

le
 b

a
n

d
w

id
th

 (
K

b
p

s
)

Time (s)

(a) Slow variations

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240

A
v
a

ila
b

le
 b

a
n

d
w

id
th

 (
K

b
p

s
)

Time (s)

(b) Fast variations

Fig. 1. Synthetic baseline traces for the available bandwidth.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100
 200

 300
 400

 500
 600

A
v
a

ila
b

le
 b

a
n

d
w

id
th

 (
K

b
p

s
)

Time (s)

(a) Bus

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200
 400

 600
 800

 1000

 1200

A
v
a

ila
b

le
 b

a
n

d
w

id
th

 (
K

b
p

s
)

Time (s)

(b) Ferry

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100
 200

 300
 400

 500
 600

 700
 800

 900
A

v
a

ila
b

le
 b

a
n

d
w

id
th

 (
K

b
p

s
)

Time (s)

(c) Metro

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200
 400

 600
 800

 1000

 1200

A
v
a

ila
b

le
 b

a
n

d
w

id
th

 (
K

b
p

s
)

Time (s)

(d) Tram

Fig. 2. Real-world traces of available bandwidth.

the same content as the current client. Finally, to provide
additional insights, we occasionally refer to the raw event logs.

C. Scenario-based evaluation

In our experiments we use both synthetic bandwidth traces
that capture artificial baseline bandwidth scenarios, as well
as real-world bandwidth traces that capture the bandwidth
dynamics in four example environments. In all scenarios, we
use dummynet to control (i) available bandwidth, (ii) loss rate,
and (iii) round-trip time (RTT). This control can be exercised
so as to emulate the characteristics of a network bottleneck
between the client and proxy, and between the proxy and
server. While this paper only shows a representative set of
example results, in which we typically change one factor at a
time, while controlling the others, we note that we typically
used full factorial experiments.

1) Synthetic traces: To study the impact of the available
bandwidth and how quickly it changes, we use artificial base-
line scenarios. Figure 1 illustrates two example scenarios, with
slowly and rapidly varying available bandwidth, respectively.
We also use a third scenario with static available bandwidth.
The average bandwidth (725 Kbit/s) is the same in all three
scenarios, and the total time spent at each bandwidth avail-
ability level is the same in the scenarios with slow and fast
bandwidth variations. In fact, for these scenarios we picked
the average time spent at each level to be the same for all
levels, such that in the ideal case (in which the player always
picks exactly the quality level that is the highest possible based
on the current available bandwidth) the player would spend
exactly the same amount of time at each quality level. Of
course, this is not expected to be achieved in practice.

2) Real-world traces: The real-world bandwidth traces
were collected and shared by Riiser et al. [24]. The traces
capture the available bandwidth seen in a 3G UMTS network
in different parts of Oslo. Each trace represents a different
mode of transport (bus, ferry, metro or tram) and allows us to
provide insights into how the player performance is influenced
by different geographical and physical factors. Figure 2 shows
the available bandwidth under the different scenarios.

Each of the four traces exposes the player to distinctly
different conditions and variations in the available bandwidth.
The high available bandwidth in the bus scenario often is well
above our highest encoding rate. The ferry route is interesting
in that it illustrates a scenario in which there are highly
different conditions, depending on the client location. When
the client initially is on land the available bandwidth is high,
the observed bandwidth is low while on the ferry, followed by
high availability when back on land. These changes are clearly
visible in the bandwidth plot. It is interesting to note here that
the available bandwidth on the ferry is lower than our lowest
available encoding rate while the bandwidth observed on land
is very good. The metro trace captures the available bandwidth
as the train initially is above ground and then enters a tunnel,
as reflected by the abrupt change from an available bandwidth
in the 500-1400 Kbit/s range, to a period with poor bandwidth
availability. Finally, the tram trace shows relatively constantly
time-varying bandwidth availability. It is important to note that
the limited bandwidth availability in both the metro and tram
traces may suggest that these clients should not be expected
to view the video at our highest encoding rates.

3) Loss rate and RTT: To capture the impact of loss rates
and round-trip times, for each of the above scenarios, we use
dummynet to analyze five sub-cases of each of the above
scenarios. In the basic case of a single client-server connection,
these can be summarized as follows: (i) no additional delay or
packet losses, (ii) no delay and 2.5% packet loss rate, (iii) no
delay and 7.5% packet losses, (iv) 50ms RTT and no packet
losses, and (v) 200ms RTT and no packet losses. Note that the
first case corresponds to the ideal loss/delay conditions, while
other cases may be more realistic. The use of 2.5% and 7.5%
packet loss rates are selected as they may be representative of
acceptable packet loss rates in wireless environments. The RTT
values are based on intra and cross-continental traffic. To put
the RTT in perspective we performed traceroute measurements
to the top million websites according to alexa.com on June
12, 2012. These measurements suggest that a client on the
Linköping University campus would see an average RTT for
these sites of 177.4ms (and an average hop count of 17.74).

IV. PLAYER CHARACTERIZATION

Before considering the impact proxies have on the player
performance, it is important to first build an understanding of
the player characteristics and baseline performance. As proxies
potentially may cause additional variability in download rates
(e.g., due to the difference in cache hits/misses) we pay
particular attention to the impact of buffer-size dynamics.

To provide insights into the default performance of the
SMP 2.0 player and further motivate its use in experimental
studies, we first present results using SMP 1.6 and SMP 2.0.
Figure 3 shows the player performance for the two players

 0

 20

 40

 60

 80

 100

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

%
)

Quality:
Slow Fast Static

SMP 1.6
SMP 2.0

(a) Quality level

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Slow Fast Static

B
u
ff
e
r

in
te

rr
u
p
ti
o
n
s
 (

1
/m

in
)

SMP 1.6

SMP 2.0

(b) Buffer interruptions

 0

 5

 10

 15

 20

 25

Slow Fast Static

S
ta

ll
ti
m

e
 (

s
)

SMP 1.6
SMP 2.0

(c) Stall times

 0

 1

 2

 3

 4

 5

 6

 7

Slow Fast Static

Q
u
a
lit

y
 s

w
it
c
h
e
s
 (

1
/m

)

SMP 1.6
SMP 2.0

(d) Quality switches

Fig. 3. Player performance comparison of SMP 1.6 and 2.0 under the three
synthetic baseline scenarios.

under each of the three synthetic workloads, each capturing a
different degree of bandwidth variation. We observe that SMP
2.0 shows substantial improvements over the old SMP 1.6. In
fact, it is noteworthy that for all three scenarios the new version
outperforms the old player according to all four metrics. For
example, in the static bandwidth case, SMP 2.0 quickly finds
the maximum sustainable video quality and maintains that
quality for the rest of the session. More than 95% of the time
is spent in this state (Figure 3(a)). While omitted due to space
constraints, similar results have been observed for our other
scenarios, loss rates, and end-to-end delays.

Relative to the proprietary Netflix and MSS players, the
SMP media player has a much smaller buffer, hinting that it is
designed for shorter video playback. While the small buffer
comfortably can accommodate for some fluctuations in the
available bandwidth, during long periods of high bandwidth
variability, the new player may still yield unsatisfactory per-
formance. In general, it appears that SMP is dimensioned based
on (relatively) static bandwidth scenarios, for which it is able to
quickly rise to the highest possible encoding and maintain that
quality. The smaller buffer footprint may also have advantages
for legacy devices.

To obtain a better understanding of the impact of buffer-
size dynamics, we modified the player so that it could be run
with different buffer size configurations.1 In addition to the

default buffer configuration T buf
min/T buf

max = 4/6, we also used:
8/16, 12/20, 12/24, 20/28.

Figure 4 shows the observed video quality and stall times
for the fast varying bandwidth scenario with a RTT of 50ms.
The figure clearly shows that increasing the buffer size has
positive effects on both the video quality being played and the
stall times. For example, we are able to play with zero stalls
for buffer sizes as small as 12/24. With larger buffer sizes
(e.g., at 20/28), aided by long-term buffering effects, we are
even able to play at the highest quality for more than 25%
of time, despite the available bandwidth only exceeding the
highest encoding rate for 25% of the time.

1To allow proper buffer management both buffer management and rate
adaptation mechanisms had to be modified to account for the new buffer
thresholds. In general, we tried to keep these modifications to a minimum.

 0

 20

 40

 60

 80

 100

Quality:0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

s
)

4/6
8/16

12/20
12/24
20/28

(a) Quality

 0

 5

 10

 15

 20

4/6 8/16 12/20 12/24 20/28

S
ta

ll
ti
m

e
 (

s
)

Buffer Size (s)

4/6
8/16

12/20
12/24
20/28

(b) Stall time

Fig. 4. Performance impact of buffer sizes using the fast varying synthetic
bandwith trace.

 0

 20

 40

 60

 80

 100

Quality:0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

%
)

4/6
8/16

12/20
12/24
20/28

(a) Bus

 0

 20

 40

 60

 80

 100

Quality:0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

%
)

4/6
8/16

12/20
12/24
20/28

(b) Ferry

 0

 20

 40

 60

 80

 100

Quality:0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

%
)

4/6
8/16

12/20
12/24
20/28

(c) Metro

 0

 20

 40

 60

 80

 100

Quality:0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

%
)

4/6
8/16

12/20
12/24
20/28

(d) Tram

Fig. 5. Video quality under real-world scenarios for different buffer sizes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

4/6 8/16 12/20 12/24 20/28

S
ta

ll
ti
m

e
 (

s
)

Buffer Size (s)

Bus
Ferry
Metro
Tram

(a) Stall times

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Bus Ferry Metro Tram

S
ta

rt
u
p
 t
im

e
 (

s
)

4/6
8/16

12/20
12/24
20/28

(b) Startup delays

Fig. 6. Stall times and startup delays under real-world scenarios for different
buffer sizes.

Figures 5 and 6(a) show the observed video quality and
stall times for different buffer sizes, when running experiments
using the real-world traces to emulate the available network
bandwidth. For three of the real-world scenarios, we observe
highly positive effects using larger buffer values. For example,
the 20/28 configuration is able to eliminate stall times and
allow high overall quality encodings for the bus, metro, and
tram traces. It should be noted that for the metro and tram
traces, this is achieved despite the available bandwidth not
being sufficient to achieve the highest quality level for much
of the trace duration. For these scenarios, Figures 4(a) and 6
suggest that there may be an inverse relationship between
the buffer size and stall times, with much of the improve-

ments related to T buf
min, which determines when the player

resumes/starts playback. In contrast, in the ferry scenario, the
larger buffer sizes provide little or no benefit. This is explained
by the extreme workloads conditions during this trace: either
very high bandwidth or very low bandwidth. For completeness,
Figure 6(b) shows the corresponding startup delays.

V. LONGITUDINAL PROXY PERFORMANCE

This section describes a performance evaluation aimed at
providing insights into the impact proxies and their policies
may have on HAS performance. While caches and middle
boxes already are widely deployed across the Internet, their
impact on chunk-based content delivery, as exemplified here by
HAS, can also give hints on the design of future content-centric
architectures [15]. For this reason, we consider a wide range
of policies, including both policies that can be implemented in
existing standard proxies, as well as more advanced policies
that take into account the structure of the content itself. For
our experiments we implemented and tested our policies in
Squid (version 2.7-stable9), a popular open source cache that
allows us to create our own caching and prefetching rules.

A. Baseline policies

Before designing advanced proxy-assisted policies, it is
important to understand the performance impact of proxies and
their policies under the most basic conditions. We first define
a set of baseline policies which captures the basic performance
tradeoffs seen in existing systems, and give some insights to
how much room for improvement there may be.

• Empty cache: To capture the performance penalty
associated with cache misses, we consider a policy in
which the cache is cleared for each new client. This
would correspond to the performance seen by the first
requesting client, including clients that are requesting
contents from the long tail of one-timers [13], [19]. In
this case, every fragment that the player requests will
be fetched from the server.

• Full cache (all versions): To capture the performance
under ideal proxy conditions we also include a policy
in which the cache has been preloaded with all ver-
sions of every fragment. In this case, there will be no
cache misses and the client can always be served from
the cache, resulting in minimum transfer times.

• Best effort: To capture the performance of a stan-
dard proxy cache, that has seen a limited number
of previous client requests, we use a simple policy
that has cached every fragment that previously has
been requested. In our experiments we start with an
empty cache, pick a large cache size such as to avoid
any cache replacement, and run the experiments for a
sequence of clients.

While the first two policies correspond to the case of
minimal and maximum cache hit rates, respectively, the third
best-effort policy, captures the more realistic case of inter-
mediate cache hit rates. On average, the cache hits will
typically increase as more clients will have requested the same
contents in the past, potentially reducing the transfer delays
and increasing the TCP throughput for these clients.

For the best-effort policy we initialize all our experiments
with an empty proxy cache, and allow one client to access
the content at a time. This captures the performance observed
by the nth client arriving to the system, assuming that there
have been (n − 1) previous clients accessing the content and
the cache does not remove any of the content that has been
accessed in the past. In practice, a cache replacement policy,

such as Least Recently Used (LRU), would typically be used.
To interpret the results in this context, we note with the LRU
policy there exists a time threshold (unique for each time
instance) such that all fragments that were requested after
this time are in the cache, and none of the other fragments
are in the cache. Based on this observation, we can interpret
the above abstraction as a cache operating under the LRU
policy for which the current time threshold (of what is in the
cache) is such that the content requested by the last (n − 1)
clients are in the cache, but no other fragments. Having said
this, it is important to note that this typically would result
in a conservative estimate, as the average cache hit rate that
a LRU system in steady state likely would require slightly
less storage. In practice, such a system would likely see more
frequent (and similar) accesses to low quality contents, which
may be frequently accessed during the transient time period
during which the cache is being filled.

B. Quality and content-aware prefetching

We next describe three basic content-aware prefetching
policies that take into account the content structure, as well
as the quality level that is currently being requested.

• 1-ahead: In the most basic prefetching policy, the
proxy fetches the next fragment with the same quality
as the fragment that is currently being downloaded.
When the client has fairly stable bandwidth this policy
should yield higher cache hit rates. The policy may
waste bandwidth whenever the client switches quality.

• n-ahead: A somewhat more aggressive policy is to
prefetch up to n fragments ahead of the currently re-
quested fragment, but still only prefetching fragments
of the same quality level as the currently requested
fragment. Under scenarios with many quality switches
this policy can result in much wasted bandwidth
between the proxy and server.

• Priority-based: To take advantage of the case when
the cache already has the content that may be the most
natural to prefetch next, we present a priority-based
policy that (i) only prefetches one fragment ahead,
but (ii) takes into account both the current cache
content and the status of the client (as seen from the
perspective of the proxy) when selecting what quality
this fragment should have. In the case that the client
last switched to a higher encoding and it is not the
first time that the client is requesting fragments of this
video quality (i.e., at some earlier time it has switched
down from this quality), we use the following priority:
(i) current quality, (ii) one quality level below, (iii)
one quality level above, and (iv) no prefetching. In all
other cases (i.e., the client last switched to a lower
quality or has never been at this quality level before),
we use the following priority: (i) current quality, (ii)
one quality level above, (iii) one quality level below,
and (iv) no prefetching.

When interpreting the priority-based policy, it is important
to note that the player always starts at the lowest level and
initially is trying to ramp up to as high a quality level as pos-
sible. After it has reached a sustainable quality level it would
typically oscillate between two neighboring quality levels. In

contrast to the two first policies, the priority-based policy
uses spare bandwidth capacity (due to previously downloaded
fragments) to guard against future quality switches.

C. Client-proxy cooperation

Perhaps one of the main problems with the basic cache
policies and content-aware prefetching policies is that the
quality selection choices made by the clients are independent
of the content on the proxy. For example, in a scenario in
which a client is quickly obtaining fragments cached by the
proxy, the client may be tempted to increase the quality it is
requesting, even in cases where the proxy does not have the
higher encoding and there may not be sufficient bandwidth
between the proxy and the server to quickly obtain this content.

In this section we present a cooperative policy class that
allows fragment selection and prefetching decisions to be made
based on information shared between the proxy and the client.
By cooperation, the goal is to improve both the hit rates at the
proxy cache and the viewer quality at the client.

Consider a system in which the client continually shares
its buffer occupancy with the proxy and the proxy shares the
map of fragments that it has access to with the client (for
the particular file that the client currently is downloading).
This information can (i) be shared at the beginning of the
download and then updated as the cache content changes, or
(ii) the proxy can continually update the client about the cache
content for all fragments belonging to some upcoming time
window from the current download point. In either case the
client can give preference to downloading fragments that the
proxy has. Among the fragment qualities stored on the proxy,
we assume that the client would select the fragment quality
with the most similar quality to that suggested by its rate-
adaptation scheme (giving strict preference to lower qualities,
if the intended quality is not available).2 Now, given the clients
request we consider two policy versions for the prefetching
actions taken by the proxy.

• Buffer oblivious: This policy does not consider the
client buffer state. Instead, it blindly uses the priority-
based prefetching policy from the previous section.

• Buffer aware: This policy consider the client’s current
buffer occupancy. If the buffer occupancy is below

a threshold T ≤ T buf
min we use the following pri-

oritization order: (i) current quality, (ii) one quality
level below, (iii) two quality levels below, and (iv) no
prefetching. On the other hand, if the client has higher
buffer occupancy, we use the standard priority-based
prefetching policy.

For the purpose of our performance evaluation, we devel-
oped a proof of concept implementation of the above policies.
For this we had two options. We could either modify the
player’s source code, or build a wrapper around the player
which intercepts and modifies the client requests. Due to a
number of constraints with the flexibility of the SMP software,
we selected the second approach, and make use of Tcpcatcher3,

2Policies that request the fragments stored at the proxy with a probability p,
and otherwise (with a probability (1− p)) pick whatever fragment is selected
by its rate-adaptation mechanism are of course also possible.

3TcpCatcher. http://www.tcpcatcher.fr/, Sept. 2012

a proxy based monitoring software which provides handles to
sniff and change packet contents on the fly.

At a high-level, the client connects to the Tcpcatcher port,
and this port connects to the child port of our modified Squid
proxy. This allows us to modify the client requests on the fly,
such as to take into account the proxy contents. The client
software is modified to send the buffer occupancy once a
second, and the proxy sends the required fragment information
to our Tcpcatcher module, which makes the decisions on
behalf of the client. While our solution is non-optimal, in that
SMP 2.0 is oblivious to any alterations to its requests, and a
production implementation that modifies the player code could
do additional enhancements to the rate adaption algorithm so
as to achieve finer grained control, we do not expect any major
performance differences with such implementations.

D. Performance evaluation

We now present the results of the experiments with dif-
ferent proxy cache configurations and policies. Similar to for
the non-proxy case, we have found that our conclusions do not
appear to depend on the loss rate and round-trip times. Instead,
the major factor is the bandwidth variations and which link is
the bottleneck. Due to these reasons and to save space, in the
following, we present results only for the case in which the
proxy-server RTT is 50ms, the client-proxy RTT is 6ms, and

client uses the default buffer configuration T buf
min/T buf

max = 4/6.

1) Client-proxy bottleneck: Consider first the case when
the bottleneck is between the client and proxy. For this case,
we show results for when the proxy-server connection is not
constrained, but the available client-proxy bandwidth follows
the synthetic scenario with fast bandwidth variations.

To allow a fair comparison between policies, we replay
the synthetic traces such that each of the policies sees exactly
the same overall bandwidth conditions and clients arrive at the
same time instances in each experiment. At the same time we
make sure that each of the ten clients accessing the video, see
different bandwidth conditions at each time instance of their
individual download sessions. This way, the nth client in each
experiment sees exactly the same bandwidth conditions, but

different than the mth client, where m 6= n.

Figure 7 shows the averaged viewer quality and stall
times over an experiment with ten clients for each of the six
policies defined in Sections V-A and V-B. Note that despite
improvements, the performance differences between the full
cache policy (best case) and empty cache policy (worst case)
are relatively small.4 This suggests that proxies, regardless of
policy, can provide only very limited performance advantages
in the case the client-proxy link is the bottleneck.

Having said this, it should be noted that the simple 1-ahead
prefetching policy is able to achieve most of these advantages.
In contrast, the basic best effort policy performs very similar to

4To make sure that the small performance improvements were not due to
optimizations made at the server we took a closer look at the service times
of individual fragments, when served by the server or the (full) proxy cache
respectively. In fact, for the case with the same RTT to both the server and the
proxy, we observed a smaller time to first byte (x̄ = 8.30ms; σ = 15.03ms)
for the full cache than for the server (x̄ = 16.10ms; σ = 7.85ms). For the
time to last byte, the differences were negligible: full cache (x̄ = 2.71s; σ =

1.92s) and server (x̄ = 2.81s; σ = 1.97s).

 0

 20

 40

 60

 80

 100

Quality: 0123 0123 0123 0123 0123 0123

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

s
)

Empty cache
Best effort

1-ahead
4-ahead

Priority based
Full cache

(a) Quality level

 0

 10

 20

 30

 40

 50

T
im

e
 (

s
)

Empty cache
Best effort

1-ahead
4-ahead

Priority based
Full cache

(b) Stall time

Fig. 7. Comparison between baseline and content-aware proxy policies, and
the bottleneck is between the clients and proxy.

 0

 20

 40

 60

 80

 100

0123 0123 0123 0123 0123 0123 0123 0123 0123 0123

P
e
rc

e
n
ta

g
e
 T

im
e

Quality:
Client # 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Fig. 8. Observed quality levels over n subsequent client downloads when
using 1-ahead prefetching with client-proxy bottleneck.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

n
th

 client

Full cache
4-ahead
1-ahead

Priority based
Best effort

Empty cache

(a) Client-proxy

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

n
th

 client

Full cache
4-ahead
1-ahead

Priority based
Best effort

Empty cache

(b) Proxy-server

Fig. 9. Hit rate as a function of the number of previous downloads, when
either client-proxy or proxy-server bottleneck.

the empty cache case. Our results also suggest that while there
are performance improvements to prefetching, there is little
gain to excessive prefetching. In fact, some clients experienced
performance drops due to excessive prefetching clogging up
the TCP pipeline.

To illustrate the longitudinal quality benefits of cache
assistance for this scenario, Figure 8 shows the observed
quality as a function of the number of previous clients that has
downloaded the content when using the 1-ahead prefetching
policy. The results here are the average statistics over five runs,
each with ten clients. While the high variability in quality that
different clients observe makes it more difficult to compare and
distinguish the absolute quality levels observed by each client,
it is clear that there is a longitudinal quality improvement
benefiting clients arriving later.

We next consider the cache hit rate of the different policies.
Figure 9(a) shows the cache hit rate as a function of the number
of previous clients that have downloaded the video. Note that
after two-three clients most policies have a hit rate of 80-90%.
For the best effort policy it takes roughly five clients before
the hit rate surpass 90%.

When interpreting the somewhat higher overall hit rates
observed by the prefetching policies, it should be noted that
there may be some bandwidth wasted when fragments are
prefetched. The first six rows of the left-hand column of
Table I summarize the bandwidth usage (measured as the total
transferred bytes) between the proxy and the server for these
experiments. We see that both the best effort (59.5 Mb) and
1-ahead (64.9 Mb) achieve similar bandwidth usage savings

TABLE I. BANDWIDTH USAGE BETWEEN PROXY AND SERVER FOR

THE POLICIES DEFINED IN SECTIONS V-A AND V-B.

Bandwidth bottleneck location

Policy Client-proxy Proxy-server

Empty cache 169.2 Mb 184.9 Mb

Best effort 59.5 Mb 94.7 Mb

1-ahead 64.9 Mb 65.9 Mb

4-ahead 77.09 Mb 77.85 Mb

Priority 81.3 Mb 72.2 Mb

Full cache – –

Cooperation/oblivious 89.97 Mb 97.2 Mb

Cooperation/aware 103.7 Mb 105.77 Mb

 0

 20

 40

 60

 80

 100

Quality: 0123 0123 0123 0123 0123 0123

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

s
)

Empty cache
Best effort

1-ahead
4-ahead

Priority based
Full cache

(a) Quality level

 0

 10

 20

 30

 40

 50

T
im

e
 (

s
)

Empty cache
Best effort

1-ahead
4-ahead

Priority based
Full cache

(b) Stall time

Fig. 10. Comparison between baseline and content-aware policies; proxy-
server bottleneck.

compared to the empty cache policy (169.2 Mb), while in
both cases delivering the clients higher quality encoding. This
suggests that the extra fragments obtained through prefetching
often may be useful for later requests (as seen by the higher
hit rates).

2) Proxy-server bottleneck: We next consider the case
when the bottleneck is between the proxy and the server.
We show results for when the client-proxy connection is not
constrained, but the available bandwidth of the proxy-server
link follows that of the synthetic scenario with fast bandwidth
variations.

Figure 10 shows the averaged viewer quality and stall times
for each of the six policies defined in Sections V-A and V-B.
Comparing the full cache policy and empty cache policy, we
note that there is very large performance potential for proxy
caching in this scenario. Overall, the full cache policy has
significantly superior performance compared to all the other
policies. It has no stall times and is able to serve the clients
almost entirely at the highest quality.

It is encouraging that a significant performance improve-
ment is achieved with the best effort policy alone. This policy
is easy to implement and does not require content awareness.
Yet, it is able to reduce the stall times and allow the video to
be played at a much higher quality than with the empty cache
policy (or no cache, for that matter).

It may, however, be discouraging that none of the three
basic prefetching policies are able to improve on this. In
fact, rather the opposite, these policies all achieve worse
performance than the best effort policy. The problem with these
policies is that the prefetching itself clogs up the bottleneck
between the proxy and server. This illustrate that more careful
policies, such as our cooperative policy, are required to take
better advantage of the cache and its bandwidth.

The limited success of the prefetching policies can be fur-
ther observed when considering the cache hit rates. Figure 9(b)
shows the hit rate as a function of the number of previous
clients. Comparing with Figure 9(a), we note that the hit rate
in this scenario is significantly lower than the hit rate seen
when the bottleneck is between the client and proxy.

TABLE II. AVERAGE PLAYBACK QUAILITY (MEASURED IN KBPS) OF

EXAMPLE POLICIES UNDER DIFFERENT SCENARIOS.

Policy

Scenario E
m

p
ty

B
es

t
ef

fo
rt

1
-a

h
ea

d

4
-a

h
ea

d

P
ri

o
ri

ty

F
u
ll

C
li

en
t-

p
ro

x
y

Bus 649 766 742 771 773 790

Ferry 618 822 808 882 800 833

Metro 344 428 429 395 433 441

Tram 414 428 420 453 415 465

Loss (2.5%) 474 509 553 521 480 508

Loss (7.5%) 308 306 296 311 311 324

Default 494 508 533 521 539 577

P
ro

x
y
-s

er
v
er

Bus 852 1050 794 673 1172 1249

Ferry 803 997 811 670 1174 1249

Metro 446 685 393 389 663 1249

Tram 464 680 436 416 692 1249

Loss (2.5%) 502 730 510 495 413 1253

Loss (7.5%) 305 597 403 407 341 1253

Default 550 790 541 505 503 1249

Due to space constraints we can only include a limited
number of representative results for our default scenario.
Table II summarizes the average playback quality for the
corresponding experiments for the real world scenarios and
experiments with larger loss rates and RTTs. In general, we
have found that our conclusions hold true also for these
scenarios.

3) Client-proxy cooperation: Motivated by the large perfor-
mance gap between the full cache and best effort policy, we
consider the performance under the client-proxy cooperative
policies. Ideally, these policies should help improve perfor-
mance by adjusting the requested quality level based on the
content in the cache.

Figures 11(a) and 11(b) show the quality levels for these
policies for the cases when the client-proxy link is the bottle-
neck and when the bottleneck is between the proxy and the
server, respectively. The stall times are similar to those of the
1-ahead policy. Comparing these results with those in Figures 7
and 10, note that the cooperative policies can significantly
improve the viewed video quality. Not surprisingly, the largest
improvements are achieved when the bottleneck is between
the proxy and server. In this case the policies are able to
effectively leverage the spare proxy-server bandwidth enabled
by the boosted hit rates, to prefetch fragments that are likely
to help the current or future clients.

The high playback quality achieved by the buffer oblivious
cooperative policy is particularly impressive for the case the
bottleneck is located between the proxy and server. For this
case, as shown in Table I, the buffer oblivious policy uses
almost the same bandwidth (97.2 Mb) between the proxy and
server as the best effort policy (94.7 Mb), but delivers much
higher quality to the client.

To illustrate the performance improvements observed by
later clients, Figure 12 shows the observed quality as a function
of the number of previous clients. While this data is noisy due
to the difference in bandwidth observed by each client, it is
clear that the cooperative policy is able to load the cache with
content that future clients can benefit from, without hurting
the performance of the early clients.

4) Buffer size: For our final experiments, we revisit the
question about how the player buffer size may impact our con-
clusions regarding which policies are the most advantageous

 20

 40

 60

 80

 100

Quality: 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

s
)

Cooperative/oblivious
Cooperative/aware

(a) Client-proxy

 20

 40

 60

 80

 100

Quality: 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

s
)

Cooperative/oblivious
Cooperative/aware

(b) Proxy-server

Fig. 11. Client-proxy cooperation experiments, when client-proxy and proxy-
server bottleneck.

 0

 20

 40

 60

 80

 100

0123 0123 0123 0123 0123 0123 0123 0123 0123 0123

P
e
rc

e
n
ta

g
e
 T

im
e

Quality:
Client # 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Fig. 12. Observed quality levels over n subsequent client downloads when
the copperative buffer oblivious policy is used, and the bottleneck is between
the proxy and server.

in each scenario. In general, and as shown in Section IV, we
have found that a larger buffer size reduces the amount of
buffer interruptions, increases the average video quality, and
helps improve the overall video playback experience.

Figures 13 and 14 summarize the video quality and stall

times, respectively, when T buf
min/T buf

max = 12/20 (rather than the
default buffer size of 4/6) for the cases when the bandwidth
bottleneck is between the client-server and proxy-server. In
addition to overall better performance, it is interesting to note
that the simpler best effort policy benefits the most from the
larger buffers. The best effort policy is able to achieve very
small stall times and relatively high video quality. In fact, in
many cases it outperforms the more complex prefetching poli-
cies. These results suggest that a larger client buffer reduces
the importance of advanced proxy policies. With larger client
buffers resulting in unnecessary data transfers when users
terminate their viewing early, advanced policies may therefore
be most attractive in wireless environments, with relatively
expensive links with battery-powered mobile devices.

The much shorter overall stall times for the best effort
policy are due to two compounding factors. First, the best
effort policy sees a much bigger reduction in the number of
stalls per minute (by a factor of 8.4 compared to 2.6 for the
1-ahead policy, for example) and in the average stall time per
playback interruption (by a factor 2.0 while the 1-ahead policy
increases by 1.3). These two factors have a multiplicative
effect, resulting in much smaller overall stall times.

VI. RELATED WORKS

Motivated by client heterogeneity and variations in the
available bandwidth, video streaming solutions have often been
required to offer multiple encodings. For example, layered
encodings have been used with adaptive adjustment of the
number of layers each client is served (using UDP) so as to
be TCP-friendly [7], [22]. Such quality adaptation schemes
have also been extended to incorporate cache replacement and
prefetching [23], including techniques that use segment-based
prefetching [9] or fill gaps in the cached video content [27].

 0

 20

 40

 60

 80

 100

Quality: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

s
)

Empty cache
Best effort

1-ahead
4-ahead

Priority based
Full cache

Cooperative/oblivious
Cooperative/aware

(a) Client-proxy

 0

 20

 40

 60

 80

 100

Quality: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

F
ra

c
ti
o
n
 o

f
ti
m

e
 (

s
)

Empty cache
Best effort

1-ahead
4-ahead

Priority based
Full cache

Cooperative/oblivious
Cooperative/aware

(b) Proxy-server

Fig. 13. Summary of quality level statsitics under different policies when
using larger client buffer.

 0

 10

 20

 30

 40

 50

T
im

e
 (

s
)

Empty cache
Best effort

1-ahead
4-ahead

Priority based
Full cache

Cooperative/oblivious
Cooperative/aware

(a) Client-proxy

 0

 10

 20

 30

 40

 50

T
im

e
 (

s
)

Empty cache
Best effort

1-ahead
4-ahead

Priority based
Full cache

Cooperative/oblivious
Cooperative/aware

(b) Proxy-server

Fig. 14. Summary of stall times under different policies when using larger
client buffer.

Segment-based proxy policies have also been considered for
non-adaptive video streaming [8], [16]. None of these works
consider HAS.

Although HAS is widely used [1], [10] there are few perfor-
mance studies. Akhshabi et al. [3] compare the performance
of three players: MSS, Netflix, and an older version of the
SMP media player used here. As the first two players are
proprietary, they are limited to using traffic measurements
to infer the performance at the players. Riiser et al. [24]
performed a similar study in which they used real-world traces
to model the bottleneck link conditions and then evaluated
performance through observation of the packets delivered to
the client network interface.

While the results by Akhshabi et al. [3] clearly show that
the performance of the two commercial players is much better
than that of SMP, our results suggest that the much larger
buffer size may have played a big role in their conclusions.
For example, MSS uses a buffer size of 20-30 seconds [3],
[6], while Netflix can buffer much more than that [3]. We
have also found that SMP 2.0 significantly improves on the
previous versions of the SMP player.

Perhaps the work by Benno et al. [6] is most closely related
to ours. Benno et al. [6] present results on how proxy caches
interfere with the MSS rate detection algorithm, as well as
how cross-traffic can influence the player performance. Similar
to the above studies they were limited to using trace-based
estimates of the player performance, and only considered very
basic proxy scenarios.

Other works have taken a closer look at the rate adaptation
algorithms [18], quality selection policy when using scalable
video codes [4], the performance at the servers under HAS

workloads [26], the traffic patterns they generate [21], or
the impact of competing players and/or TCP flows [2], [11].
Finally, Guota et al. [14] characterize the caching opportunities
of HAS content in a national mobile network.

VII. CONCLUSION

With HAS responsible for large traffic volumes, network
and service providers may consider integrating customized
HAS-aware proxy policies. In this paper we consider the
potential performance impact of such optimizations.

We present an experimental framework using open source
Squid proxies and the most recent Open Source Media Frame-
work (OSMF). The open source software allows us to im-
plement and test content-aware policies, while measuring the
performance as seen at the client.

Using this framework, we first present a scenario-based
performance evaluation of the latest version of the OSMF
player, and show that this player has substantially improved
performance in comparison to the versions employed in previ-
ous work. We then present a thorough longitudinal evaluation
in which we evaluate a range of different policy classes
that may be employed in proxy-assisted systems and provide
insights to the effectiveness of different policies and their
performance tradeoffs. We quantify the benefits using different
proxy-assisted solutions, including basic best effort policies
and more advanced content quality aware pre-fetching policies.
Finally, we present and evaluate a cooperative framework
in which clients and proxies share information to improve
performance. Our results show that the bottleneck location
and network conditions play central roles in which policy
choices are most advantageous, and that careful proxy design
and policy selection is important when trying to enhance HAS
performance in edge networks.

Future work includes the development and testing of
adaptive proxy policies that make prefetching decisions based
on estimates of the available bandwidth for both the client-
proxy and proxy-server connections. Such policies could, for
example, perform more aggressive prefetching during times
when there is spare bandwidth between the proxy and server.

VIII. ACKNOWLEDGEMENTS

This work was supported by funding from Center for
Industrial Information Technology (CENIIT) and the Swedish
National Graduate School in Computer Science (CUGS) at
Linköping University, the Natural Sciences and Engineering
Research Council (NSERC) of Canada, and National ICT
Australia (NICTA).

REFERENCES

[1] Sandvine global Internet phenomena Report - 1h2012. Technical report,
Sandvine Incorporated ULC, April 2012.

[2] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. What
happens when HTTP adaptive streaming players compete for band-
width? In Proc. NOSSDAV, Toronto, ON, Canada, June 2012.

[3] S. Akhshabi, A. C. Begen, and C. Dovrolis. An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP. In Proc.

ACM MMSys, San Jose, CA, Feb. 2011.

[4] T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and D. Zappala.
Quality selection for dynamic adaptive streaming over HTTP with
scalable video coding. In Proc. ACM MMSys, Chapel Hill, NC, Feb.
2012.

[5] A. C. Begen, T. Akgul, and M. Baugher. Watching video over the
Web: Part 1: Streaming protocols. IEEE Internet Computing, (15):54–
63, 2011.

[6] S. Benno, J. O. Esteban, and I. Rimac. Adaptive streaming: The network
HAS to help. Bell Lab. Tech. J., 16(2):101–114, Sept. 2011.

[7] J. Byers, G. Horn, M. Luby, M. Mitzenmacher, and W. Shaver. Flid-
dl: congestion control for layered multicast. IEEE Journal on Selected

Areas in Communications, 20:1558–1570, Oct. 2002.

[8] S. Chen, B. Shen, S. Wee, and X. Zhang. Segment-based streaming
media proxy: Modeling and optimization. IEEE Transactions on

Multimedia, 8(2), Apr. 2006.

[9] S. Chen, H. Wang, B. Shen, S. Wee, and X. Zhang. Segment-based
proxy caching for Internet streaming media delivery. IEEE Multimedia,
12(3):59–67, 2005.

[10] J. Erman, A. Gerber, S. Sen, O. Spatscheck, and K. Ramakrishnan.
Over the top video: The gorilla in cellular networks. In Proc. ACM

IMC, Germany, Nov. 2011.

[11] J. Esteban, S. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac.
Interactions between HTTP adaptive streaming and TCP. In Proc.

NOSSDAV, Toronto, ON, Canada, June 2012.

[12] J. L. Feuvre, C. Concolato, and J. C. Moissinac. Gpac, open source
multimedia framework. In Proc. ACM MM, Germany, Sept. 2007.

[13] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic characteriza-
tion: A view from the edge. In Proc. ACM IMC, San Diego, CA, Oct.
2007.

[14] A. Gouta, D. Hong, A.-M. Kermarrec, and Y. Lelouedec. HTTP
adaptive streaming in mobile networks: Characteristics and caching
opportunities. In Proc. IEEE MASCOTS, San Francisco, CA, Aug. 2013.

[15] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking named content. In Proc. ACM

CoNEXT, Rome, Italy, Dec. 2009.

[16] S. Khemmarat, R. Zhou, D. Krishnappa, and M. Z. L. Gao. Watching
user generated videos with prefetching. In Proc. ACM MMSys, San
Jose, CA, Feb. 2011.

[17] M. Levkov. Video encoding and transcoding recommendations for
HTTP dynamic streaming on the Adobe R© Flash R© platform. Technical
report, Oct. 2010.

[18] C. Liu, I. Bouazizi, and M. Gabbouj. Rate adaptation for adaptive HTTP
streaming. In Proc. ACM MMSys, San Jose, CA, Feb. 2011.

[19] A. Mahanti, N. Carlsson, A. Mahanti, M. Arlitt, and C. Williamson. A
tale of the tails: Power-laws in Internet measurements. IEEE Network,
27(1):59–64, Jan/Feb. 2013.

[20] C. Müller and C. Timmerer. A vlc media player plugin enabling
dynamic adaptive streaming over HTTP. In Proc. ACM MM, Scottsdale,
AZ, 2011.

[21] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous.
Network characteristics of video streaming traffic. In Proc. ACM

CoNEXT, Tokyo, Japan, Dec. 2011.

[22] R. Rejaie, M. Handley, and D. Estrin. Layered quality adaptation
for Internet video streaming. IEEE Journal on Selected Areas in

Communications, (18):2530–2543, Dec. 2000.

[23] R. Rejaie and J. Kangasharju. Mocha: A quality adaptive multimedia
proxy cache for Internet streaming. In Proc. NOSSDAV, Port Jefferson,
NY, June 2001.

[24] H. Riiser, H. S. Bergsaker, P. Vigmostad, P. Halvorsen, and C. Griwodz.
A comparison of quality scheduling in commercial adaptive HTTP
streaming solutions on a 3G network. In Proc. Workshop on Mobile

Video (MoVid), Chapel Hill, NC, Feb. 2012.

[25] L. Rizzo. Dummynet: A simple approach to the evaluation of network
protocols. ACM Computer Communication Review, 27:31–41, 1997.

[26] J. Summers, T. Brecht, D. L. Eager, and B. Wong. To chunk or not to
chunk: Implications for HTTP streaming video server performance. In
Proc. NOSSDAV, Toronto, ON, Canada, June 2012.

[27] M. Zink, J. Schmitt, and R. Steinmetz. Layer-encoded video in scalable
adaptive streaming. IEEE Trans. on Multimedia, 7(1):75–84, Feb. 2005.

