
A Product-form Model for the Analysis of Systems
with Aging Objects

Filippo Cavallin
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Abstract—In this paper we propose a new model for the
analysis of systems with aging objects such as Time-To-Live
cache. We consider a model with an underlying Continuous
Time Markov Chain in which objects can be completely or
partially rejuvenated. In the former case the object becomes
fresh, while in the latter all the objects are simultaneously
rejuvenated so that the youngest becomes fresh. We show that
under the so-called Independent Reference Model assumption
our model is numerically tractable and has a product-form
equilibrium distribution. Furthermore, we consider the case in
which the object aging stops after a certain threshold and hence
the partial rejuvenation introduces a probabilistic behaviour.
Also in this case, we can derive a product-form equilibrium
distribution under some mild conditions. The models presented
in this paper may be interpreted as a new class of G-networks
with catastrophes and partial flushing.

I. INTRODUCTION

Stochastic models are powerful tools for assessing the
non functional quantitative properties of computer networks,
communication systems, and software architectures. In many
practical applications, Markov processes are the stochastic
processes underlying the considered models and their per-
formance evaluation is carried out by using the well-known
methods for the analysis of transient or stationary behaviour
of Markov processes. In this paper we focus on the analysis
of models whose underlying process is a Continuous Time
Markov Chain (CTMC).

Since its introduction [8], the theory of product-form so-
lutions has been playing an important role for the practical
analysis of models with underlying CTMCs as it allows for
an efficient derivation of the stationary performance indices
even when the process’s state space is huge and the analysis
methods based on the solution of the system of global balance
equations become computationally prohibitive. Even more
interestingly, for a class of product-form models, including
the ones studied in this paper, the performance indices can
be derived without even generating the joint state space.
Successful applications of product-form theory include the
BCMP theorem [4], the modelling of neural networks [28],
the analysis of systems with fork and join constructs [31], the
loss networks [29] and the performance evaluation of wireless
networks [7], just to mention a not exhaustive list.

In this paper we focus on modelling and analysing systems
with aging objects by means of product-form models. These

systems consist of a set of objects which are associated with
an age, e.g., the timestamp of their creation or latest access.
As time passes, the objects become older. Two types of events
can rejuvenate the objects:
• total rejuvenation, i.e., the object timestamp is set to the

current time. This event affects only one object.
• partial rejuvenation. In this case the event affects the

whole system since the objects are all rejuvenated for
the same time interval so that the youngest is associated
with the current timestamp.

An example of such a system is a TTL cache in which the
total rejuvenation occurs when an object is accessed and the
partial rejuvenation can be seen as a method to prevent an
under utilisation of the cache memory in case of periods of
inactivity. The networking research community has renewed
its interest in the performance of caching systems due to the
new delivery methods for distributing contents in the networks.
The huge number of proxy servers has led to the design of
Content Delivery Networks (CDN) which are used by the
content providers to deliver information in a large and spread
population of users. Caching contents that have the greatest
demand closer to the users’ locations allows one to improve
the client-perceived experience, to reduce the server load and
optimize the bandwidth requirements. In this perspective, the
caching system plays a fundamental role in the gradual shift
from the traditional paradigm of host-to-host communication
to the new host-to-content model. Other applications of aging
systems are shown in [20], [37] where the failure of nodes in
distributed systems are handled by means of checkpoints.

Technical contributions and related work

The main contributions of this work with respect to the
literature are the following.
a) We present two models in product-form for the performance
evaluation of systems with aging objects. The main difference
between the two models is that one allows the object age to
grow indefinitely, while the other introduces a maximum age
threshold. We discuss the implications on practical applica-
tions with some examples. The product-form analysis that we
demonstrate is interesting for at least two aspects. The first
is that neither the joint CTMC nor the CTMC underlying a
single model are reversible as it happens, e.g., in Jackson’s
queues [27] and G-queues [18]. The second interesting aspect



is that the synchronisations among the objects are not pairwise,
i.e., at a given epoch more than two objects can simultaneously
change their states. There are few results in this direction in the
literature of product-forms. In [19], [16] the authors consider
queueing networks in which the departure of a customer from
a queue causes a movement of one job from a second queue
to a third one, hence causing the simultaneous state change
of three components. However, the extension of the result to
more than three components is not trivial mainly because the
proof technique adopted in those papers is based on solving the
system of global balance equations (GBEs). The first model
we propose is in the style of G-networks as proposed in [14],
while the one with maximum aging is, to the best of our
knowledge, very peculiar since very few product-forms are
known for finite state space models [1], [2]. The contribution
of the unbounded model with respect to [14] is twofold.
First, the proof is not based on the solution of the system
of global balance equations of the joint model. Secondly, we
consider individual jumps of the objects to the zero state.
Our proof method is based on the quasi-reversibility property
[29] and the Reversed Compound Agent Theorem (RCAT)
[22], [3]. Both these results provide a way to elegantly prove
the product-form of a CTMC but they consider only pairwise
synchronisations and hence they cannot be straightforwardly
applied to study our models. We show that they can still be
used by introducing a passage to the limit for a transition
rate in a similar fashion of what has been done in [9], [23],
[31]. Proofs of product-forms based on quasi-reversibility are
simple to handle and compositional in the sense that they
allow the combination of the models that we study here
with others which are known to be quasi-reversible while
maintaining the product-form of the equilibrium distribution.
As a consequence, heterogeneous networks may be studied
without constructing the joint Markov chain.
b) We show how to numerically derive the models’ perfor-
mance indices without constructing the joint CTMCs. This is
important because the structures of these chains can be com-
plex since the transitions corresponding to partial rejuvenations
depend on the global state of the models. The derivation of
the performance indices requires to solve a non-linear system
of equations. We propose a fixed point algorithm to tackle this
problem and show its efficiency and convergence properties on
numerous examples. The system of equations admits a unique
positive solution. With respect to [14], [15], we do not require
any modification of the network of objects in order to obtain
the convergence of the algorithm.
c) As an example we apply our model for the analysis of
TTL cache with partial rejuvenation. First we propose an ideal
model, whose implementation is very expensive, in which a
timer is associated with each object despite the fact that it is
inside or outside the cache. We study the performance indices
under the Independent Reference Model (IRM) assumptions
[17], [30], [38]. Then, we consider a model in which we main-
tain the timers only for the objects inside the cache. The partial
rejuvenation of objects outside the cache has a probabilistic
effect, i.e., the object may remain outside or can be copied

inside the cache according to a Bernoulli trial. We prove that
it is possible to obtain exactly the same expected performance
indices of the ideal model while maintaining the product-form
property. We discuss how it is possible to dynamically set the
model’s parameters to achieve some performance goals. The
analyses of TTL caches, often connected to form networks,
have been widely addressed in the latest years (see, e.g.,
[5], [6], [12], [13] and the references therein). In our case
study we consider a simpler situation of a single cache as in
[35]. Clearly, the analysis becomes challenging because of the
partial rejuvenation signals which aim at avoiding the under
utilisation of the cache.

Structure of the paper

The paper is structured as follows. Section II gives some
theoretical background and introduces the notation. In Sec-
tion III we present the model with unbounded aging and
prove the product-form. The application to the analysis of a
TTL cache with partial rejuvenation is shown in Section IV.
Section V presents the result about the model with bounded
aging and its application is shown in Section VI. Final remarks
are given in Section VII.

II. PRELIMINARIES

In this section we review some basic notions about the
analysis of CTMCs. Let X(t) be a stationary CTMC on the
state space S. Its reversed process, denoted XR(t), is still a
stationary CTMC [22], [29] whose transition rates are defined
as follows:

qR(s1, s2) =
π(s2)

π(s1)
q(s2, s1) , (1)

where q(s2, s1) is the transition rate from state s2 to s1 in
X(t) and qR(s1, s2) its inverse in XR(t). X(t) is reversible if
it is stochastically indistinguishable from XR(t). Henceforth
we assume that X(t) is ergodic, since the models we are
presenting in the following sections are all unconditionally
ergodic. The equilibrium distributions π of X(t) and XR(t)
are identical. Moreover, given the forward and the reversed
chain, the following generalised Kolmogorov’s criteria hold.

Proposition 1 (Kolmogorov’s generalised criteria [22]):
Let X(t) be an ergodic CTMC with state space S and
infinitesimal generator Q, then Y (t) with the same state
space and infinitesimal generator Q′ is the reversed process
XR(t) if and only if:
• For every state s1 ∈ S we have∑

s2∈S
s2 6=s1

q(s1, s2) =
∑
s2∈S
s2 6=s1

q′(s1, s2) ,

i.e., the residence times in a state in the forward and in
the reversed processes have the same distribution.

• For every finite sequence of states s1, s2, . . . , sn ∈ S, it
holds that:

q(s1, s2)q(s2, s3) · · · q(sn, s1)
= q′(s1, sn)q

′(sn, sn−1) · · · q′(s2, s1) .



In the analysis of the model presented in Section III we will
use Proposition 1 to derive the rates of the reversed chain of
the CTMC underling the model.

We should stress that one can derive the reversed process
XR(t) for any stationary chain X(t) even if this is not
reversible. Indeed, we will widely base the product-form
analysis presented in Sections III and V on the derivation of
the reversed processes of the CTMCs underlying the proposed
models even if these chains are not reversible.

If one knows the infinitesimal generator of both the forward
and the reversed chain, Q and QR, respectively, then we can
compute the expression of the equilibrium distribution in a
very efficient way. Indeed, it suffices to choose an arbitrary
reference state s0 ∈ S and then to compute the equilibrium
probability of any state s ∈ S with respect to s0 by finding a
path from s0 to s, e.g.,

s0 → s1 → s2 → · · · → sn = s .

Then, we have (see, e.g., [32], [33])

π(s) = π(s0)

∏n
i=1 q

R(si, si−1)∏n
i=1 q(si−1, si)

. (2)

Finally, we recall that quasi-reversibility [9], [29] is a
sufficient condition to ensure that the synchronisation of
a set of models whose underlying stochastic process is an
ergodic CTMC has product-form solution. Informally, we
can think that the transition in one of the components can
trigger a transition in another by sending a signal. In the
terminology used in [29] we say that there is a departure
from the component sending the signal and an arrival at
the one receiving the signal, while in the process algebraic
terminology [25], we say that the component which sends
the signal is active and the one receiving it is passive. In
the analysis of quasi-reversible models, the receiver cannot
prevent the transitions in the sender (but it may ignore them).
Fore the sake of simplicity, we assume that a component sends
a synchronising signal only to another component (that will
be the case for the models we study in the following sections).

Proposition 2 (Quasi-reversibility): Given a cooperating
component let T ⊂ S × S be the set of transitions that
synchronise with another model. Then, the model is quasi-
reversible if there exists x ∈ R+ such that for all the states
s ∈ S, we have:

x =

∑
s′:(s′,s)∈T π(s

′)q(s′, s)

π(s)
.

It is well-known that quasi-reversibility is a sufficient
condition for the existence of a product-form equilibrium
distribution of the joint model [22], [29], [34].

III. A MODEL FOR AGING OBJECTS

A. The stochastic process underlying the collection of aging
objects.

We consider a set of K objects whose age at time t
is modelled by a stochastic process Yk(t), 1 ≤ k ≤ K,

which takes values in N. Let Y(t) = (Y1(t), . . . , YK(t))
be the stochastic process associated with all the objects and
let u = (u1, . . . , uK) be its state at time t, and umin =
min(ui, 1 ≤ i ≤ K). We characterise the stochastic process
Y(t), for h→ 0+, as:

Pr{Y(t+ h) = u− 1umin|Y(t) = u} = ηh+ o(h)

Pr{Y(t+ h) = u[uk ← 0]|Y(t) = u} = λkh+ o(h)

Pr{Y(t+ h) = u[uk ← uk + 1]|Y(t) = u}
= γkh+ o(h)

Pr{Y(t+ h) = u|Y(t) = u}

= 1−

(
η +

K∑
k=1

λk + γk

)
h+ o(h)

where u[uk ← val] denotes vector u in which component
k takes value val, and 1 is a vector of 1s with size K. We
say that λk is the refresh rate for object k, η is the partial
rejuvenation rate and γk is the aging rate. Clearly, Y(t) is a
CTMC.

We are interested in computing the equilibrium distribu-
tion of Y(t). Notice that the partial rejuvenation events are
such that processes Yk(t) are not stochastically independent.
Moreover, Y(t) is neither reversible nor in product-form, and
hence the computation of the equilibrium distribution can be
prohibitive for a large number of objects even if truncation is
applied.

B. A product-form approximation for Y(t)

In this section we approximate the CTMC Y(t) introduced
in Section III-A by a CTMC X(t). We introduce a different
semantics for the partial rejuvenation signals that allows us to
prove that X(t) has a product-form equilibrium distribution.
Let us introduce the following notation:

k+ =

{
k + 1 if k < K

1 if k = K
k− =

{
k − 1 if k > 1

K if k = 1
.

In X(t), a partial rejuvenation signal iteratively decreases
the age of the objects according to their orders until we find
a fresh object, i.e., whose age is 0. Formally, the destination
state reached by X(t) immediately after a partial rejuvenation
signal is given by Algorithm 1. The aging rate and the refresh
rate have the same effects of those described for Y(t).

Notice that the model does not exactly implement the
behaviour described for Y(t) as shown by the following
counterexample. Consider a model with K = 4 objects, and
suppose their ages are (2, 1, 3, 4) when the reset signal arrives
at the first timer. Then, at t+0 the state of Y(t) is (1, 0, 2, 3),
however Algorithm 1 performs a first iteration on all the
objects and a second one that stops when it reaches the second
object leading to a state in t+0 which is (0, 0, 2, 3). Notice that
the difference between the correct age of an object and the
one which is computed by Algorithm 1 can be of at most one
unity, therefore we consider the approximation acceptable.



Algorithm 1: Reset of timers upon arrival at time t0 of a
reset signal to the oκ timer.

Data: κ, Xi(t0)
Result: Xi(t

+
0 )

for k ∈ [1,K] do
Xk(t

+
0 ) = Xk(t0);

end
k ← κ;
while Xk(t

+
0 ) > 0 do

Xk(t
+
0 )← Xk(t

+
0 )− 1;

k ← k+;
end

C. Stationary analysis of X(t)

In this section we derive the stationary distribution of the
model and prove that it is in product-form and unconditionally
stable.

Theorem 1: The stochastic process X(t) has the product-
form equilibrium distribution:

πX(u) =

K∏
k=1

πXk (uk) =

K∏
k=1

(1− ρk)ρuk

k , (3)

where ρk is the solution of the following non linear system of
rate equations:

ρk =
1

2(xk + η/K)
·

(
λk +

η

K
+ xk + γk (4)

−
√(

λk +
η

K
+ xk + γk

)2
− 4γk

(
xk +

η

K

))
xk+ = ρk

(
xk +

η

K

)
(5)

for all k = 1, . . . ,K, and uk is the age of object k. Moreover,
the model is unconditionally stable for strictly positive rates
λk and γk.

In principle, one could prove Theorem 1 by substituting
Expression (3) in the system of the global balance equations
for X(t) in a similar fashion to what has been done in [14],
[15]. Nevertheless, the complexity in the structure of X(t),
which depends on Algorithm 1, makes this way of proving
the equilibrium distribution long and prone to errors.

Proof: Let us consider the model for the single object
aging depicted in Figure 1-(A). In this model the arrivals of
partial rejuvenation signal occur with rate ξk. At the arrival of
such a signal at object k, this moves from state u > 0 to state
u′ and then propagates the signal to object k+ while moving
to state u− 1. The signal propagation becomes instantaneous
as required by the definition of X(t) when β → ∞. We
prove the product-form by resorting to the quasi-reversibility
property, i.e., we prove that the occurrences of the transitions
from state i′ to state (i− 1)′, i > 0, at t0 are independent of
the occurrences of the same transitions subsequent t0. These
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Fig. 1. Quasi reversible model for the single object aging. (A)-Forward
process and (B)-Reversed process.

are the transitions that forward the partial rejuvenation signal
from object k to k+.

Claim 1: The reversed CTMC of the process shown in
Figure 1-(A) is the process shown in Figure 1-(B) where

ρk =
1

2ξk
(λk + γk + ξk − ((λ+ γk + ξk)

2 − 4ξkγk)
1/2

and xk+ = ρkξk.
The claim can be readily verified by applying the generalised
Kolmogorov’s criteria given in Proposition 1. First, we check
that the total rate out of every state in the forward and the
reversed process are the same. For states u′k it is trivial. For
state uk > 0 we have:

γk + λk + ξk =
γk
ρk

+ xk+ , (6)

which is satisfied for the definition of ρk given in Claim 1. For
state 0 we have to prove that γk =

∑∞
uk=1 ρ

uk

k λk + xk+ =
λkρk/(1 − ρk) + xk+ which is equivalent to Equation (6).
Finally, we can easily see that the product of the rates in the
forward and reversed processes are the same for every minimal
cycle. This is sufficient to prove Claim 1. The model is quasi-
reversible (and satisfies RCAT conditions) because every state
in the reversed process has an outgoing rate of xk+ associated
with the propagation of the partial rejuvenation signal. By the
definition of the rates in the reversed process, we can derive
the equilibrium distribution of state uk > 0 by using the path
from uk to 0 according to Equation (2). We have πXk (uk) =
πXk (0)ρuk

k and we easily see that πXk (u′k) = πXk (uk)ξk/β.
Notice that neither xk+ nor πXk (uk) depends on β. Indeed,
for β → ∞ we have the instantaneous propagation of the
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Fig. 2. Simplified version of the model of Figure 1 for proving the quasi-
reversibility property.

partial rejuvenation signal as required and the model is quasi-
reversible and πXk (u′k)→ 0.

Hence, the theorem is proved by noticing that ηk is the sum
of the rates of the partial rejuvenation signal arriving from k−

and from outside, i.e., ξk = xk + η/K.

The proof method based on the passage to the limit for
modelling instantaneous propagation of transitions is inspired
by the approach used in [9], [23], [31] for different networks
and is alternative to the process algebraic one recently pro-
posed in [24]. Notice that, thanks to the passage to the limit
β →∞, proving the product-form of a component as the one
shown in Figure 1 can be readily done by considering the
simplified model shown in Figure 2, in the sense that if the
latter is quasi-reversible also the former is quasi-reversible. In
the model depicted in Figure 2, one has just to prove that the
reversed rates of the dotted transitions (those propagating the
rejuvenation) are constant [22].

D. Solving the system of rate equations

The system of rate equations (4)-(5) does not generally have
a symbolic solution and its degree grows very quickly with the
number of timers. For this reason we introduce a fixed-point
iteration with the aim of solving equations (4)-(5) numerically.

In Algorithm 2 we show the fixed-point iterations. The
algorithm initialises the values for xk randomly according to
independent uniform random variables with support (0, γk).
Recall that the xk may be interpreted as the reversed rates
associated with the death transition in the model of Figure 2
and hence cannot exceed γk. Then, we iteratively compute
ρk and xk according to Equations (4) and (5), respectively,
until we reach the desired accuracy, i.e., the L1-norm of the
difference between two successive iterations on ρk is lower
than ε.

Although we do not have a formal proof of the convergence
for Algorithm 2, we carried out several tests with random
generated models and always observed the computation of a
good approximation for ρk.

The convergence of Algorithm 2 has been verified on
100, 000 random models with a population ranging from 1, 000
to 100, 000 objects. We have also tested the scalability of the
fixed point algorithm with different numbers of objects. Using
an Intel Core(TM)2 Duo CPU processor, we have analysed a
model with 1000 objects and obtained the solution of the non-
linear system in 0.5s. We have noticed that the convergence
time depends on the variance of the set of λks. Indeed, for

Algorithm 2: Fixed-point algorithm for the solution of the
system of rate equations (5).

Data: λk, γk, η, ε
Result: ρk
Initialise randomly xk for k = 1, . . .K with uniform
distribution in (0, γk);
Compute ρk using Equation (4);
repeat

ρ′k ← ρk for all k = 1, . . . ,K;
Update xk using ρ′k by Equation(5);
Compute ρk using Equation (4);

until |ρ′k − ρk| < ε;

100, 000 objects, the computation time varies between 30 and
160 seconds, where the lowest time corresponds to the lowest
variance.

IV. APPLICATION: ANALYSIS OF AN IDEAL TTL CACHE
WITH REJUVENATION

In this section we use the results derived in Section III
to analyse a class of TTL caches with rejuvenation. TTL
caches are attracting the attention of the research community
especially in the context of the analysis of Information-Centric
Networks [21]. Analyses of TTL cache networks are shown,
e.g., in [5], [6], [12], [13]. In TTL caches, each object is
associated with a timer. At each object access, the timer is
reset and when it expires the corresponding object is evicted
from the cache. Here, we propose a rejuvenation mechanism
for the timers that reduces their ages in such a way that the last
recently used is set to 0. This aims at reducing the problem
of under-utilisation of the TTL cache in case of long periods
of inactivity. The model we propose here represents an ideal
case in the sense that we require to maintain a timer for all the
objects, including those which are not present in the cache.
With the model proposed in Section V we will propose a
workaround to this implementation issue.

A. System description

We study the cache model under the Independent Reference
Model (IRM) assumptions in continuous time. IRM requires
the object requests to be generated according to independent
Poisson processes. Although this scenario may be unrealistic
for some practical performance analyses, still it is widely
used as a benchmark to compare different caching policies
as, e.g., in [30], [17], [10], [11], [38]. With reference to the
model presented in Section III, we have that K is number of
timers associated with the objects, Xk(t) is the state of timer
t. Requests of object k occur according to an independent
Poisson process with rate λk and the partial rejuvenation signal
occur with rate η and starts from an object chosen randomly
with uniform distribution. At the k-th object request epoch we
observe a cache hit if the timer associated with object k is not
greater than threshold T = Tk, a cache miss otherwise.



B. Stationary performance indices

In this section we derive some performance indices of the
model in equilibrium. We will give an expression for the cache
hit/miss rates and probabilities and for the expected size of
the cache as functions of ρk, with k = 1, . . .K. Suppose that
object k requires αk bytes to be stored in the cache. Let us
define the following stochastic process that corresponds to the
cache size:

S(t) =

K∑
k=1

αk1Xk(t)≤T ,

where 1Xk(t)≤T is 1 if Xk(t) ≤ T , 0 otherwise. We are
interested in the evaluation of the expected cache size in
equilibrium, i.e.,

S = E
[
lim
t→∞

S(t)
]
.

Notice that the limit exists since limt→∞Xk(t) is the
marginal distribution associated with the states of timer k of
the ergodic CTMC underlying the model.

Proposition 3 (Expected cache size): In equilibrium, the
expected cache size S is:

S =

K∑
k=1

αk(1− ρT+1
k ) (7)

Proof: The proof follows from the observation that in
equilibrium the timer models behave as if they were indepen-
dent (product-form). Therefore, the probability that the timer
k is not over T is:

lim
t→∞

Pr{Xk(t) ≤ T} = 1− ρT+1
k . (8)

The result is readily derived by weighting the stationary
probability of finding an object in cache by its size.

The expression for the standard deviation of the cache size
can be used combined with Chebyshev’s inequality to derive
bounds on the probability that the cache size exceeds a given
threshold.

Proposition 4 (Standard deviation of the cache size): The
standard deviation of the cache size in equilibrium is:

σS =

√√√√ K∑
k=1

α2
kρ
T+1
k

(
1− ρT+1

k

)
.

Proof: The proof follows after simple algebraic simplifi-
cations of the expression:

σ2
S =

K∑
k=1

α2
k(1− ρT+1

k )−
K∑
k=1

α2
k(1− ρT+1

k )2 .

Proposition 5 (Hit and miss probability): In equilibrium,
the probability of observing a cache hit (hk) or a cache miss
(mk) event for a request of object k is:

hk = 1− ρT+1
k , mk = ρT+1

k .

Proof: According to the PASTA property (see, e.g.,
[36]), in equilibrium, an event that occurs according to an
independent Poisson process sees the stationary distribution.
Then, the proof follows the lines of that of Proposition 3.

The following proposition gives an expression for the rate
at which we observe a cache hit or a cache miss event when
the model is in equilibrium.

Proposition 6 (Total hit/miss rate): In equilibrium, the
total cache hit rate is H =

∑K
k=1 hkλk and the miss rate is

M =
∑K
k=1mkλk.

Finally, we give an expression for the probability of a
request to generate a cache hit or a cache miss:

Proposition 7 (Total hit/miss probability): In equilibrium,
the probability that an object request causes a cache hit event
(PH ) or a cache miss event (PM ) is given by the following
expressions:

PH =

∑K
k=1 λk(1− ρ

T+1
k )∑K

k=1 λk
,

PM = 1− PH =

∑K
k=1 λkρ

T+1
k∑K

k=1 λk
.

We observe that in a perfectly symmetric system, i.e., when
all the objects are requested with the same rate and occupy
the same space, the cache hit probability and rate are directly
proportional to the expected space dedicated to the cache.
This should be not surprising since the choice of evicting one
particular object at a given time is arbitrary under the IRM
assumption given that all the object requests occur with the
same rate (recall that IRM inherits the memoryless property
of the exponential distribution).

C. Experiments

In this section we present some experiments in order to
evaluate the performances of the TTL cache with reset signals.
Considering 1000 objects (and so 1000 timers) with dimension
1, T = 20, γ = γk = 30 and homogeneous λk = 0.5 for
1 ≤ k ≤ K, we tested the effect of η on the hit probability.
In this experiment, η varies from 0.001 to 5.0 with a step of
0.1. In Figure 3 we can see how η affects the probability of
finding an object in the cache.

We study the influence of the variance of λk on the hit
probability and the average space occupation of the cache.
In Figure 4 we use sets of λk with growing variance and
we notice that the fraction of objects in the cache is lower
than the hit probability for higher variance. Intuitively, this
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Fig. 3. Cache hit probability vs. η with homogeneous λk .

happens because in the TTL cache, the highly frequently
required objects are present with very high probability and
this causes a good cache hit probability even with small
cache sizes. As a consequence, the benefits on the cache hit
probability with higher values of η are lower.

Finally, we study the differences between the TTL model
with resets and the model with the FIFO policy studied in [30].
In this case, we took γ = γk = 80, the λk = (1, . . . , 1, 10, 10)
and η = 0.005. We varied T to get the same space occupation
for the two models (for TTL model we consider the average
space occupation). With low space occupation, the FIFO
model works slightly better but, between 10% and 80% of
cached objects, the TTL model with resets shows a higher
cache hit probability (up to 10% of improvement) due to the
fact that the reset signals avoid the removal of some objects
from the cache.
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Fig. 5. Hit probability of TTL cache with reset and FIFO cache.

V. A MODEL FOR AGING OBJECTS WITH MAXIMUM
THRESHOLD

In this section we consider a model which is similar to
that described in Section III but in which the aging of objects
has a maximum threshold. Once this threshold is reached, the

0 1 Tk Tk + 1

ξk

ξkξk

γkγkγk

λk
λkλk

ξk − yk

yk

Fig. 6. Simplified model for an aging object with maximum age.

object stops its aging. The motivation to study this type of
aging objects is that when aging is handled by timers and the
proportion of young objects is small with respect to the object
population, it is too computationally expensive to handle all
the timers. So according to this idea we use one state to denote
that an object is very old and hence we do not handle its
timer any more. Clearly, we need to specify how the partial
rejuvenation signal affects the objects in their terminal state.
Intuitively, in order to get around the problem of the lack
of knowledge of the true age of the objects in their terminal
state we introduce a probabilistic behaviour, i.e., object k in its
terminal state is partially rejuvenated with a certain probability
pk or it is left in its terminal state with probability 1 − pk.
In both cases, the partial rejuvenation signal is transmitted
immediately to object k+.

In this case the analogue of the simplified model of Figure 2
is shown in Figure 6. We use Tk + 1 to denote the terminal
state of aging object k. When the model is in state Tk + 1
and a partial rejuvenation signal arrives it may either jump
to state Tk (rate yk) or stay in state Tk + 1 (rate ξk − yk),
where yk < ξk. We now study the conditions on yk that gives
the product-form. In order for the model of Figure 6 to be
quasi-reversible, we must prove that all the dotted transitions
have the same reversed rate [22]. A necessary condition to
satisfy this constraint is that πHk (u)/πHk (u− 1) = ρk, for all
u = 1, . . . Tk. Let us start by writing down the global balance
equation associated with state u, with 0 < u < Tk:

πHk (u)(λk + ξk + γk) = πHk (u+ 1)ξk + πHk (u− 1)γk ,

which can be rewritten as:

λk + ξk + γk = ρkξk +
γk
ρk
. (9)

Moreover, we have to satisfy the GBEs of states Tk and Tk+1:{
πHk (Tk)(λk + ξk + γk) = πHk (Tk + 1)yk + πHk (Tk − 1)γk

πHk (Tk + 1)(yk + λk) = πHk (Tk)γk
(10)

The last condition we need to satisfy is that the reversed rate
of the transitions with rates yk and ξk − yk must be equal to
the reversed rate of the transitions with rate ξk, i.e.:

πHk (Tk + 1)

πHk (Tk)
yk = ξk − yk = ρkξk . (11)

Notice that we have only one free variable, yk, to satisfy
Equations (9), (10), (11).

Lemma 1: The model depicted in Figure 6 is quasi re-
versible if:

yk =
1

2

(
ξk − γk +

√
(λk + γk + ξk)2 − 4ξkγk

)
. (12)
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In this case we have the following equilibrium distribution:

πHk (u) =

{
πHk (0)ρuk if u ≤ Tk
πHk (0)ρTk

j
γk

λk+yk
if u = Tk + 1

(13)

with

ρk =
λk + γk + ξk −

√
(λk + γk + ξk)2 − 4ξkλk
2ξk

(14)

and:
πHk (0) = (1− ρk) .

Proof: First we derive ρk from Equation (9) which gives:

ρk =
λk + γk + ξk ±

√
(λk + γk + ξk)2 − 4ξkλk
2ξk

.

We choose the solution given by Equation (14) because it is
the only one that admits a positive solution for yk.

From the second equation of System (10) we derive
πHk (Tk + 1)/πHk (Tk) = γk/(λk + yk). If we divide both
hand sides of the first equation for πH(Tk) and substitute the
expression of πHk (Tk+1)/πHk (Tk) = γk/(λk+yk), we obtain:

λk + ξk + γk =
γkyk
λk + yk

+
γk
ρk
, (15)

that can be reduced to a linear equation in yk whose solution
is given by Expression (12). We can prove that yk is positive
when all the other rates are also positive. At this point we
have proved that for this choice of yk we have:
• πHk (u)/πHk (u− 1) = ρk for all 0 < u ≤ Tk
• πHk (Tk + 1)/πHk (Tk) = γk/(λk + yk)

and hence the equilibrium distribution of Equation (13) can be
readily derived. However, in order to prove that the model is
quasi-reversible we still have to check the reversed rates of the
dotted transitions of Figure 6. Notice that the reversed rates
of the transitions with forward rate ξk from state u to u − 1
is ρkξk. This is equal to the reversed rate of the transition
with forward rate yk which is γkyk/(yk + λk) as can be seen
by comparing Equation (15) and the GBE (9). It remains to

prove that ξk − yk is positive and that its reversed rate, which
is equal to its forward rate, is ρkξk. The verification of this
equality is purely algebraic. Finally, we derive the expression
of πHk (0) by normalising the stationary probabilities, i.e.:

Tk∑
u=0

πHk (0)ρuk + πHk (0)ρTk

k

γk
λk + yk

= 1 .

After some algebraic reductions one obtains:

πHk (0) =

[
1− ρTk+1

k

1− ρk
+

ρTk

k γk
λk + yk

]−1
= (1− ρk) ,

as required. This concludes the proof.

Theorem 2 gives the product-form equilibrium distribution
for this model. Let H(t) be the CTMC underlying a set of
aging objects with maximum age and partial rejuvenation.

Theorem 2: The stochastic process H(t) in which the rates
satisfy the condition of Lemma 1 has the product-form equi-
librium distribution:

πH(u) =

K∏
k=1

πHk (uk) (16)

where ρk is the solution of the non linear system of
equations (4)-(5) and πHk is given by Equation (13) where
ξk = xk + η/K.

Proof: The proof follows the same steps of that of
Theorem 1 given Lemma 1 stating the quasi-reversibility of
the model in Figure 6.

Corollary 1 (Partial rejuvenation probability): The model
has a product-form if at the arrival of a partial rejuvenation
signal at an object in state Tk+1, the probability of changing
its state to Tk is:

pk =
ξk − γk − λk +

√
(γk + λk + ξk)2 + 4γkξk
2ξk

, (17)

where ξk = xk + η/K.



Proof: The expression is obtained by simply computing
yk/ξk, since ξk is the rate at which the partial rejuvenation
signal arrives at the object.

The following result is important for understanding the
connections between the model studied in Section III with
unbounded aging and the one considered here. The result is
in some sense surprising since it basically states that with
the definition of rate yk as specified by Equation (12) we
have two enjoyable properties: the first is that the equilibrium
distribution is in product-form and hence analytically
tractable, and the second is that the stationary probability of
observing a state u, with 1 ≤ u ≤ Tk is the same in the
model with unbounded aging and that with bounded aging.
Therefore, in a practical situation in which the object agings
are handled by timers, one can replace the ideal model with
unbounded aging with the one proposed in this section while
maintaining the same performance indices, provided that the
probability of rejuvenating an object k in state Tk + 1 upon
the arrival of a partial rejuvenation signal is set according to
Equation (17).

Corollary 2 (Equivalence corollary): Given the CTMCs
X(t) and H(t) and let πX and πH be their equilibrium
distribution functions. Then

πH(u) =

K∏
i=1

gk(uk) ,

where u = (u1, . . . , uK) and

gk(uk) =

{
πXk (uk) if 0 ≤ uk ≤ Tk∑∞
u′=Tk+1 π

X
k (u′) if uk = Tk + 1

Therefore, we can see H(t) as an aggregation of X(t) that
preserves the equilibrium distribution and the product-form.

It is worth of notice that H(t) is not a lumping (neither
strong nor exact [26], [33]) of X(t). Moreover, we observe that
the choice of yk can be interpreted as the conditional transition
rate from state Tk + 1 to state Tk of object k considered in
isolation:

yk =
πXk (Tk + 1)∑∞
u′=Tk+1 π

X
k (u′)

ξk .

VI. APPLICATION: REVISITING THE TTL CACHE WITH
PARTIAL REJUVENATION

In Section IV we have shown an application of our the-
oretical findings in the analysis of a single TTL cache with
partial rejuvenation. We called the model ideal since its actual
implementation would be prohibitive because it would require
to associate a timer with each object, including those which
are not in cache. However, we overcome this problem by using
the model presented in this section. For each object k we have
a timer that is handled only when the object is in cache, i.e.,
its state uk is 0 ≤ uk ≤ Tk. When the object is evicted from
the cache, its state is Tk + 1. The partial rejuvenation signal

has a probabilistic effect on the objects outside the cache,
i.e., they are rejuvenated with probability pk as specified by
Equation (17) or they stay in state Tk + 1 with probability
1 − pk. In both cases the object instantaneously propagates
the signal to the following object k+. By Corollary 2 the
performance measures are the same as derived in Section IV.

We now address the inverse problem, i.e., finding γk and
Tk such that the probability of copying in the cache an object
which is outside, i.e., in state Tk + 1, is qk and the expected
eviction time is Rk. From a theoretical point of view, the
problem has a simple solution:

γk =
(1− qk)(λ+ qkξk)

qk
, (18)

then we may choose Tk in such a way that the expected
eviction time is Rk, i.e., dTk = γkRke. Nevertheless, the
evaluation of Equation (18) requires the solution of the non-
linear system (4)-(6) which may be computationally expensive
to be performed dynamically. A dynamic adjustment of γk in
order to obtain the desired probability qk can be formulated
by observing that pk in monotonic on γk in Equation (17).
Indeed, we have:

dpk
dγk

=
1

2ξ

(
−1 + γk + λk − ξk√

(γk + λk + ξk)2 − 4γkξk

)
which is always negative for positive transition rates. In other
words, the dynamical control of pk in order to reach the
desired value qk can be performed by simply augmenting γk
(and reducing Tk) if the current value of pk is higher than qk,
and by reducing it when it is lower.

VII. CONCLUSION

In this paper we propose two novel product-form models
that can be applied for the analysis of systems with aging
objects. These two models differ because in one the objects
have an unbounded age while in the other there is a maximum
threshold for the age. The approach that we propose can be
applied also for the analysis of heterogeneous systems, i.e.,
systems in which some objects have a maximum threshold for
the age and some others have not.

Informally, we can say that the peculiarity of these models
is that the transitions are not ”local” -as in most of product-
form models- i.e., they may change the states of all the objects
instantaneously and the effect of a partial rejuvenation event
depends on the global state of the model.

We show that the CTMC underlying the model of objects
with limited aging can be seen as an aggregation of the chain
of the model with unbounded aging. This allowed us to prove
some equivalence results on the expected performance indices.
The consequences of these equivalences are important for
practical applications especially if the system must maintain
a timer for the objects. Indeed, by introducing a maximum
age, we avoid to maintain the timers of all the objects that
reach this age thus reducing the computational effort required
for monitoring the object agings. We used as case-study the



analysis of a cache with TTL policy and partial rejuvenation
of the objects.

The results can be extended in order to include the partial
rejuvenation of clusters of objects (instead of all) and more
sophisticated interactions among the them in a similar fashion
of what is considered in [14]. Indeed, our model may be
seen as a queueing network with external independent Poisson
arrival streams. The queues can only be partially flushed (i.e.,
the customers in the network are reduced as computed by
Algorithm 1) or totally flushes, i.e., the number of customers
in a single queue is set to 0. The exponential distribution
of the equilibrium distributions stated by Theorem 1 allows
the introduction of state-independent probabilistic customer
routing.

The proposed model could also be further developed with
the possibility of a probabilistic insertion of an object in
the cache, i.e. when an object is not in the cache and it is
requested, it can enter the cache with a probability q or remain
outside with probability 1−q. Moreover, we aim at overcoming
the limitations of the IRM by allowing state-dependent request
rates so that the last requested objects will be associated with
an higher rate thus incorporating in the analysis the time-
locality property of the network traffic.
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