1606.08884v1 [cs.DB] 28 Jun 2016

arxXiv

Efficient Routing for Cost Effective Scale-out
Data Architectures

Vuk Markovié
University of Novi Sad

mvukmarko@gmail.com

Ashwin Narayan
Williams College

ashwin.narayan @williams.edu

Alejandro Morales

University of California, Los Angeles
ahmorales @math.ucla.edu

Abstract—Efficient retrieval of information is of key impor-
tance when using Big Data systems. In large scale-out data
architectures, data are distributed and replicated across several
machines. Queries/tasks to such data architectures, are sent to a
router which determines the machines containing the requested
data. Ideally, to reduce the overall cost of analytics, the smallest
set of machines required to satisfy the query should be returned
by the router. Mathematically, this can be modeled as the set cover
problem, which is NP-hard, thus making the routing process a
balance between optimality and performance. Even though an
efficient greedy approximation algorithm for routing a single
query exists, there is currently no better method for processing
multiple queries than running the greedy set cover algorithm
repeatedly for each query. This method is impractical for Big Data
systems and the state-of-the-art techniques route a query to all
machines and choose as a cover the machines that respond fastest.
In this paper, we propose an efficient technique to speedup the
routing of a large number of real-time queries while minimizing
the number of machines that each query touches (query span).
We demonstrate that by analyzing the correlation between known
queries and performing query clustering, we can reduce the set
cover computation time, thereby significantly speeding up routing
of unknown queries. Experiments show that our incremental set
cover-based routing is 2.5 times faster and can return on average
50% fewer machines per query when compared to repeated
greedy set cover and baseline routing techniques.

I. INTRODUCTION

Large-scale data management and analysis is rapidly gain-
ing importance because of an exponential increase in the
data volumes being generated in a wide range of application
domains. The deluge of data (popularly called “Big Data”)
creates many challenges in storage, processing, and querying
of such data. These challenges are intensified further by the
overwhelming variety in the types of applications and services
looking to make use of Big Data. There is growing consensus
that a single system cannot cater to the variety of workloads,
and different solutions are being researched and developed for
different application needs. For example, column-stores are op-
timized specifically for data warehousing applications, whereas
row-stores are better suited for transactional workloads. There
are also hybrid systems for applications that require support for
both transactional workloads and data analytics. Other systems
are being developed to store different types of data, such as
document data stores for storing XML or JSON documents,
and graph databases for graph-structured or RDF data.

One of the most popular approaches employed in order to
handle the increasing volume of data is to use a cluster of

Adam Mickiewicz University in Poznafi

K. Ashwin Kumar

Veritas Labs
ashwin.kayyoor @veritas.com

Natalia Postawa Anna King
University College Cork
np96924 @st.amu.edu.pl 111396801 @umail.ucc.ie

Petros Efstathopoulos

Symantec Research Labs
petros_efstathopoulos @symantec.com

commodity machines to parallelize the compute tasks (scale-
out approach). Scale-out is typically achieved by partitioning
the data across multiple machines. Node failures present an
important problem for scale-out architectures resulting in data
unavailability. In order to tolerate machine failures and to im-
prove data availability, data replication is typically employed.
Although large-scale systems deployed over scale-out archi-
tectures enable us to efficiently address the challenges related
to the volume of data, processing speed and and data variety,
we note that these architectures are prone to resource ineffi-
ciencies. Also, the issue of minimizing resource consumption
in executing large-scale data analysis tasks is not a focus of
many data systems that are developed to date. In fact, it is easy
to see that many of the design decisions made, especially in
scale-out architectures, can typically reduce overall execution
times, but can lead to inefficient use of resources [1[][2][3]. As
the field matures and the demands on computing infrastructure
grow, many design decisions need to be re-visited with the goal
of minimizing resource consumption. Furthermore, another
impetus is provided by the increasing awareness that the energy
needs of the computing infrastructure, typically proportional
to the resource consumption, are growing rapidly and are
responsible for a large fraction of the total cost of providing
the computing services.

To minimize the scale-out overhead, it is often useful to
control the unnecessary spreading out of compute tasks across
multiple machines. Recent works [L][2[S][3][4] have demon-
strated that minimizing the number of machines that a query
or a compute task touches (query span) can achieve multiple
benefits, such as: minimization of communication overheads,
lessening total resource consumption, reducing overall energy
footprint and minimization of distributed transactions costs.

A. The Problem

In a scaled-out data model, when a query arrives to the
query router, it is forwarded to a subset of machines that
contain the data items required to satisfy the query. In such a
data setup, a query is represented as the subset of data needed
for its execution. As the data are distributed, this implies
that queries need to be routed to multiple machines hosting
the necessary data. To avoid unnecessary scale-out overheads,
the size of the set of machines needed to cover the query
should be minimal [[1][2][S]. Determining such a minimal set
is mathematically stated as the set cover problem, which is
an NP-hard problem. The most popular approximate solution
of the set cover problem is a greedy algorithm. However,

running this algorithm on each query can be very expensive
or unfeasible when several million queries arrive all at once or
in real-time (one at a time) at machines with load constraints.
Therefore, in order to speed up the routing of queries, we
want to reuse previous set cover computations across queries
without sacrificing optimality. In this work, we consider a
generic model where a query can be either a database query,
web query, map-reduce job or any other task that touches set
of machines to access multiple data items.

There is a large amount of literature available on single
query set cover problems (discussed in Section [[I). However,
little work has been done on sharing set cover computation
across multiple queries. As such, our main objective is to
design and analyze different algorithms that efficiently perform
set cover computations on multiple queries. We catalogue any
assumptions used and provide guarantees relating to them
where possible, with optimality discussions and proofs pro-
vided where necessary to support our work. We conducted an
extensive literature review looking to understand algorithms,
data structures and precomputing possibilities. This included
algorithms such as linear programming [6], data structures
such as hash tables, and precomputing possibilities such
as clustering. We built appropriate models for analysis that
included a model with nested queries, and a model with two
intersecting queries. These models afforded us a better under-
standing of the core of the problem, while also allowing us to
test the effectiveness of our methods and tools. We developed
an algorithm that will solve set cover for multiple queries
more efficiently than repeating the greedy set cover algorithm
for each query, and with better optimality than the current
algorithm in use (see Section [VII-AZ). We propose algorithm
frameworks that solve the problem and experimentally show
that they are both fast and acceptably optimal. Our framework
essentially analyzes the history of queries to cluster them and
use that information to process the new incoming queries
in real-time. Our evaluation of the clustering and processing
algorithms for both frameworks show that both sets are fast
and have good optimality.

The key contributions of our work are as follows:

e To the best of our knowledge, our work is the first to
enable sharing of set cover computations across the input
sets (queries) in real-time and amortize the routing costs for
queries while minimizing the average query span.

e We systematically divide the problem into three phases:
clustering the known queries, finding their covers, and, with
the information from the second phase, covering the rest of
the queries as they arrive in real time. Using this approach,
each of the three phases can then be improved separately,
therefore making the problem easier to tackle.

e We propose a novel entropy based real-time clustering
algorithm to cluster the queries arriving in real-time to
solve the problem at hand. Additionally, we introduce a new
variant of greedy set cover algorithm that can cover a query
(); with respect to another correlated query Q.

e Extensive experimentation on real-world and synthetic
datasets shows that our incremental set cover-based routing
is 2.5x faster and can return on an average 50% fewer
machines per query when compared to repeated greedy set
cover and baseline routing techniques.

The remainder of the paper is structured as follows. Sec-
tions [II] and |III| present related work and problem background.

In Section we describe our query clustering algorithm.
Section |V| explains how we deal with the clusters once they
are created and processing of real-time queries in Section
Finally, Section discusses the experimental evaluation
of our techniques on both real-world and synthetic datasets,
followed by conclusion.

II. RELATED WORK

SCHISM by Curino et al., [3]] is one of the early stud-
ies in this area that primarily focuses on minimizing the
number of machines a database transaction touches, thereby
improving the overall system throughput. In the context of
distributed information retrieval Kulkarni et al., [4] show that
minimizing the number of document shards per query can
reduce the overall query cost. The above related work does
not focus on speeding up query routing. Later, Quamar et
al., [2][L] presented SWORD, showing that in a scale-out
data replicated system minimizing the number of machines
accessed per query/job (query span) can minimize the overall
energy consumption and reduce communication overhead for
distributed analytical workloads. In addition, in the context
of transactional workloads, they show that minimizing query
span can reduce the number of distributed transactions, thereby
significantly increasing throughput. In their work, however,
the router executes the greedy set cover algorithm for each
query in order to minimize the query span, which can become
increasingly inefficient as the number of queries increases. Our
work essentially complements all the above discussed efforts,
with our primary goal being to improve the query routing
performance while retaining the optimality by sharing the set
cover computations among the queries.

There are numerous variants of the set cover problem,
such as an online set cover problem [7] where algorithms
get the input in streaming fashion. Another variant is, k-set
cover problem [8]] where the size of each selected set does not
exceed k. Most of the variants deal with a single universe as
input [9][10][6], whereas in our work, we deal with multiple
inputs (queries in our case). Our work is the first to enable
sharing of set cover computations across the inputs/queries
thereby improving the routing performance significantly.

In this work, in order to maximize the sharing of set
cover computations across the queries, we take advantage of
correlations existing between the queries. Our key approach is
to cluster the queries so that queries that are highly similar
belong in the same cluster. Queries are considered highly
similar if they share many of their data points. By processing
each cluster (instead of each query) we are able to reduce the
routing computation time. There is rich literature on clustering
queries to achieve various objectives. Baeza-Yates et al., [11]
perform clustering of search engine queries to recommend
topically similar queries for a given future query. In order to
analyze user interests and domain-specific vocabulary, Chuang
et al., [12] performed hierarchical Web query clustering. There
is very little work in using query clustering to speed up query
routing, while minimizing the average number of machines per
query for scale-out architectures. Our work provides one of the
very first solutions in this space.

Another study [13] describes the search engine query
clustering by analyzing the user logs where any two queries
is said to be similar if they touch similar documents. Our
approach follows this model, where a query is represented as a
set of data items that it touches, and similarity between queries

is determined by the similar data items they access.

III. PROBLEM BACKGROUND

Mathematically, the set cover problem can be described
as follows: given the finite universe (), and a collection of
sets .# = {S1,52,...,5m}, find a sub-collection we call
cover of), € C .#, of minimal size, such that Q C | J¥.
This problem is proven to be NP-hard [10]. Note that a
brute force search for a minimal cover requires looking at 2
possible covers. Thus instead of finding the optimal solution,
approximation algorithms are used which trade optimality
for efficiency [14][6]. The most popular one uses a greedy
approach where at every stage of the algorithm, choose the set
that covers most of the so far uncovered part of @), which is
a Inn approximation that runs in O(n) time.

The main focus of this work is the incremental set cover
problem. Mathematically, the only difference from the above
is that instead of covering only one universe (), set covering is
performed on each universe (); from a collection of universes
2 = {Q1,Q2,...,Qn}. Using the greedy approach sepa-
rately on each ; from 2 is the naive approach, but when
N is large, running the greedy algorithm repeatedly becomes
unfeasible. We take advantage of information about previous
computations, storing information and using it later to compute
remaining covers faster.

In this paper, elements in the universe are called data, sets
from .# are machines and sets from 2 are queries. Realisti-
cally, it can be assumed that data are distributed randomly on
the machines with replication factor of r. In this work, we take
advantage of the fact that, in real world, queries are strongly
correlated [15)][16] and enable sharing set cover computations
across the queries. Essentially, this amortizes the routing costs
across the queries improving the overall performance while
reducing the overall cost of analytics by minimizing the
average query span for the given query workload [IL][2].

IV. QUERY CLUSTERING

In order to speedup the set cover based routing, our key
idea is to reduce the number of queries needed to process.
More specifically, Given N queries, we want to cluster the
them into m groups (m << N) so that we can calculate
set cover for each cluster instead of calculating set cover for
each query. Once we calculate set cover for each cluster, next
step would be to classify each incoming real-time query to
one of the clusters and re-use the pre-computed set cover
solutions to speedup overall routing performance. To do so,
we employ clustering as the key technique for precomputation
of the queries. An ideal clustering algorithm would cluster
queries that had large common intersections with each other; it
would also be scalable since we are dealing with large numbers
of queries. In order to serve real-time queries we need an
incoming query to be quickly put into the correct cluster.

Most of the clustering algorithms in the literature require
the number of clusters to be given by the user. However, we do
not necessarily know the number of clusters beforehand. We
also want to be able to theoretically determine bounds for the
size of clusters, so our final algorithm can have bounds as well.
To that effect, we developed entropy-based real-time clustering
algorithm. Using entropy for clustering has precedent in the
literature (see [17]). Assume that we have our universe U of
size n, let K be a cluster containing queries @1, . . ., @p,. Then
we can define the probability p; of data item j being in the

cluster K:
|K|

1
p;i(K) = mZXj(Qi))]
i=1
where the characteristic function x; is defined by:
1, je
w@={§ 158 @
Then we can define the entropy of the cluster, S(K) as

S(K) == p;(K)log, p;(K)+(1—p;(K))log,(1—p; (K))
=1
(3)

This entropy function is useful because it peaks at p = 0.5
and is 0 at p = 0 and p = 1. Assume we are considering a
query @ and seeing if it should join cluster K. For any data
element j € @, if most of the elements in K do not contain j,
then adding) to K would increase the entropy; conversely if
most of the elements contain 7, then adding would decrease
the entropy. Thus, minimizing entropy forces a high degree of
similarity between clusters.

A. The simpleEntropy Clustering Algorithm:

We developed a simple entropy-based algorithm (pseu-
docode shown in Algorithm [I). As each query @) comes in,
we compute the entropy of placing the query in each of the
current clusters and keep track of the cluster which minimizes
the expected entropy: given clusters K1, ... K,, in a clustering
, the expected entropy is given by:

m

B(#) = - YOI S(K;) @

If this entropy is above the threshold described below, the
query starts its own cluster. Otherwise, the query is placed
into the cluster that minimizes entropy.

Suppose we are trying to decide if query Q = {x1,...,z,}
should be put into cluster K. Let p; be the frequency with
which z; is in the clusters of K. Then define the set

T(Q K)={z;€Q : pi > 01}

for some threshold ;. We say that @ is eligible for placement
in C if |T(Q,C)| > 02|Q| for some other threshold 5.
Essentially, we say that () is eligible for placement in K
only if “most of the elements in () are common in K,” where
“most” and “common” correspond to ¢, and 6> and are user-
defined. Of course, we should have 0 < 6,0, < 1. Then,
given a clustering " with clusters K7y, ..., K,,, we create a
new cluster for a query) only when @ is not eligible for
placement into any of the K;. This forces most of the values
in the query to ‘agree’ with the general structure of the cluster.

The goal is an algorithm that generates clusters with low
entropy. Let us say that a low-entropy cluster, a cluster for
which more than half the data elements contained in it have
probability at least 0.9, is a tight cluster. The opposite is a
loose cluster, i.e. many elements have probability close to 0.5.

B. Analysis of the simpleEntropy Clusters:

We take a more in-depth look at the type of clusters
that form with an entropy clustering algorithm. The first
question considered was whether the algorithm is more likely
to generate one large cluster or many smaller clusters. To do

Algorithm 1 A simple entropy based real-time clustering
algorithm. Here 2 is the list of queries, and 6; are 05 are
the threshold parameters defined in Section

function SIMPLEENTROPY(Z2, 01, 65)
C +— o > % is the set of clusters
S+ 0 > S holds the current expected entropy
M+ 0 > M is the number of clustered elements
for Q € 2 do
Sq + 0o > ¢ is the min expected entropy due to

Q
CQ — g
for C € ¥ do
if NOT ELIGIBLE(Q, C) then
Continue.
end if
if EXPECTEDENTROPY(Q,C) < S then
Sq + EXPECTEDENTROPY(Q,C)
OQ «~— C
end if
end for
if Sg < oo then
ADDTOCLUSTER(Q,Cq)
else
NEWCLUSTER(Q)
end if
end for
return ¢
end function

this, we considered how the size of a cluster affects whether
a new query is added to it. We are also interested in how the
algorithm weights good and bad fits: If a query () contains data
elements {y,x1,...x,}, we want to determine how many of
the z; need to be common in a cluster K to outweigh y being
uncommon in K.

The setup is as follows. Assume that we have already sorted
m queries into a clustering .#, and assume the expected en-
tropy of this clustering is Q. Given m clusters {K, ..., K},
where each cluster K; has entropy E(Kj), the expected
entropy is given in Equation [4]

Now, we want to calculate the change in expected entropy
when a new query, @, is added to a cluster, as a function of
the cluster’s size and composition. As a simple start, we only
consider the change due to a single data entry. Since the total
entropy is additive, understanding the behavior due to one data
entry helps understand where the query is allocated.

Let AE; be the change in expected entropy due to the
presence or absence of data element 7. Let p; be the probability
value for element ¢ in a given cluster, and let p} be the new
probability if the query is added to the cluster. We have:

i+ 1
npi , ieqQ
. n+1
p; = Q)
np; .
n+1’ 1¢Q

Let us also define S(p;) as the entropy of a single data element,
ie.

S(pi) = —piloga pi — (1 — pi) loga (1 — pi) (©)
Proposition 1. With the above pre-requisites, we can derive
that the difference in expected entropy due to data element ¢ by

0 0 30 0 T 0 0 0 0 m
k k

(@ieqQ b i¢Q

Fig. 1. Here we plot Equation m setting the expected entropy {2 = 1 and the
total number of queries processed M = 100, but the general shapes remain
true for a wide variety of parameters. The x-axis is the number of queries in
the cluster under consideration and the y-axis is the probability of element
4 in that cluster. We see that the entropy difference is independent of cluster
size for large enough clusters.

adding a query to a cluster of size n which had a probability
p; for element 4, is:

o 1
T M+1

Proof: The derivation is as follows: To get the new
expected entropy, we need to remove the old weighted entropy
of the cluster, which is given by n.S(p;) and add back the new
weighted entropy of that cluster, given by (n + 1)S(p}). And
now there are M 41 total elements so we divide by M +1 to
obtain the new expected entropy. Then to get the difference,
we simply subtract the old expected entropy, €.]

Figure [T] shows some results of this analysis. As clusters
become large enough, AE (the change in expected entropy),
becomes constant with respect to the size of the cluster, and
change steadily with respect to p. This is desirable because it
means that the change in expected entropy caused by adding
@ is dependent only on p; and not on the size of the cluster.

As will be shown in Section it is important to our
cluster processing scheme that all the queries in a cluster
share a large common intersection. That is, there should be
data elements that are contained in all queries; and when a
new query arrives, that query should contain all those shared
elements. This property can be given a practical rationale: the
data elements present in the large common intersection are
probably highly correlated with each other (i.e. companies that
ask for one of the elements probably ask for them all), so it
makes sense that an incoming query would also contain all of
those data elements if it contained any of them.

From a theoretical perspective, we can see that there is a

high entropy penalty when an incoming query does not contain
the high probability elements of a cluster.
Proposition 2. Assume we have a cluster K of m data
elements, all of which have probability p. A query @ is being
tested for fit in K. Let us say that () contains all but km
elements of the cluster K. Then, the entropy of adding @ to
cluster K is:

AE;(X)

(MQ = nS(pi) + (n+DSEI) -2 ()

AE(X) = M1+ T (MQ — nmB(p) + (n+ LkmE (np—fl)
+(n+ D)1= k)mE (p:Ll)) —Q
®

where, as in , J is the clustering, M is the number of
data elements processed, 2 is the previous expected entropy

08

0.8

0.6

04

0.0 0.0

00 02 0.1 06 08 Lo 00 02 0.4 06 [10
» P

(a) (8] for the full range of probabil-
ties and disjointedness.

(b) (B) concentrating on high proba-
bilities and small k&

Fig. 2. A summary of the theoretical basis for the effectiveness of
simpleEntropy. In[(a)] we see that all contours become steeper as we reach
probability extremes. The central area is a zone of mediocre clustering. In

we zoom in on the high probability region. Here we see that most high
probability data items must be contained in an incoming query.

of the cluster, and n is the number of queries in the cluster.
Proof: The derivation of the above is also analogous to
that of (7). The total entropy of the old clustering is given by
MSQ, from which we subtract out the old weighted entropy
of cluster K, given by n - mE(p), since FE(p) is the entropy
contributed by each of the m data elements of K, and we
weight this by n, the size of the cluster. Then we add the new
weighted entropy of K after () is added to it: There are now
km data elements which have probability pn/(n+1) (since Q
does not contain these); and there are (1 — k)m data elements
which have probability (pn+1)/(n+1) (since @) does contain
these). Finally, since we are looking for the change in expected
entropy, we subtract out €, the old expected entropy.]

In Figure 2} we plot Equation [8] holding n and m at 20 (a

typical value for clusters with our parameters according to our
experiments.) Figure 2(a)] actually provides a general overview
of the clustering landscape for an incoming query. We can
divide the graph into three regions of interest: (1) the bottom-
right and top-left (k = 1 — p), or the high-quality region; (2)
the central region (k = p = 0.5), or the mediocre region and
(3) the top-right and bottom-left (k ~ p ~ 1 or 0), the low-
quality region. We discuss the implication of each region in
turn:
High-quality Region: These are the points of lowest entropy
in the plot. In the bottom-right of Figure[2(a)] the implication is
that the cluster is a tight cluster to begin with (most elements in
it have high probability), and the incoming query also contains
most of these elements. The heavy penalty for not containing
these high probability elements reinforces the tightness of the
cluster. We zoom in on this scenario in Figure 2(b)] as it is the
most important scenario for tight clusters. Specifically, imagine
a cluster has many elements of probability p, where p is close
to 1. Call this set of elements X. Now, when a new query ()
comes in, if X ¢ (@ there is a high entropy cost to putting Q
in the cluster. This means that the high probability regions of
a cluster K are likely conserved as new queries come in. As
will be seen, this scenario is highly desirable for the real-time
case.

The scenario at the top-left of Figure [2(a)|is this: the set of
data elements that are under consideration are not contained
in a given cluster K, and the incoming query also does not
contain most of these elements. This case is also important
for describing clustering dynamics. A cluster that has been

built already may contain some queries that have a few data
elements with low probability. Let X be such a set of data
elements with p close to 0. Then a new query coming in is
penalized for containing any of those elements. Those elements
will remain with low probability in the cluster. The implication
is that once a cluster has some low probability elements, these
elements will remain with low probability.
Mediocre Region: This is potentially the most problematic
region of the entire clustering. Consider a cluster where most
of elements have probability p close to 0.5. Then when a new
query comes in, the entropy change is similar regardless of how
many elements of the cluster the query contains. And if the
query is put into this cluster, then on average the probabilities
should remain close to 0.5, so the cluster type is perpetuated.
Such a cluster is not very tight.
Low-quality Region: This region describes when an ill-fitting
query is put into a tight cluster. For example, if we have a
cluster for which all the elements have probability p close to 1
and a query comes in which contains none of these elements,
we would be in the top-right region of Figure 2(a)l This is
clearly the worst possible situation in terms of a clustering.
Therefore it is a desirable feature of our clustering algorithm
that the entropy cost for this scenario is relatively high.
From analyzing these regions, we see that our algorithm
will generate high-quality and mediocre clusters (from the
high-quality and mediocre regions respectively), but the en-
tropy cost of the low-quality region is too high for many low-
quality clusters to form.

V. CLUSTER PROCESSING
Once our queries are clustered, the goal is to effectively
process the clusters as a whole instead of processing each
query individually. To that end, we first introduce our so-called
BetterGreedy algorithm, which is a modified version of the
standard greedy algorithm more suited to this problem.

A. The BetterGreedy algorithm

Recall that the standard greedy algorithm covers a query
@ with a small number of machines. The BetterGreedy
algorithm is performed on a query)y with respect to another
query @». The pseudocode is given in Algorithm 2] At stage
k, let Qr C @1 be the still uncovered elements of ();. We
choose the machine M™* that contains the most elements of
Q. In the standard greedy algorithm, if there is a tie, an M*
is chosen arbitrarily. In BetterGreedy, if there is a tie, we
choose M™ so that it also maximizes the elements covered in
Q2. See Figure 3(a)| for a visual example.

Algorithm 2 The BetterGreedy algorithm. We cover query
Q1 with respect to Q2. 2 is a dictionary, where 2[i] returns
the list of machines whose intersection with the uncovered
portion of () is size i, and the list is sorted by intersection

size with Q3 \ Q1.

function BETTERGREEDY(Q1, Q2, 2)
M — D
Q<+
while |Q| > 0 do

M < 2.MAX > The machine with the most uncovered elements
M .ADD(M)
Q+Q\M
2.UPDATE(Q)
end while
return ./Z
end function

> . is the list of machines
> @ is the uncovered portion of Q1.

> Update the intersection sizes with @

Algorithm Type Q1 Q2 Uncovered Part

Cover just Q2 1.06+ G1 Go
Cover Q1 with greedy G1 Go + 41 1.80
Cover (1 with BetterGreedy G Go + .05 131

TABLE 1. A COMPARISON OF THE THREE METHODS FOR PROCESSING
THE CLUSTER @1 C Q2. G1 GIVES THE SIZE OF THE GREEDY COVER OF
@1, AND G2 GIVES THE SIZE OF THE GREEDY COVER OF Q2. NOTE THAT
USING BetterGreedy TO PROCESS (1 GIVES US A SOLUTION FOR Q2
THAT IS NEARLY ALWAYS AS GOOD AS THE GREEDY SOLUTION.

B. Analysis of the BetterGreedy Algorithm

To make the algorithm as fast as possible, we have a
dictionary of lists called sets_of_size. Each key in this
dictionary is the size of the intersection of each machine with
the current uncovered set (and this dictionary is updated at each
stage). Corresponding value is a set of all machines of that size.
If there are multiple machines under the same key (i.e. they
have the same size with respect to the uncovered elements of
(1), greedy set cover algorithm breaks tie by choosing random
machine within a particular size key. However, in the case
of our BetterGreedy algorithm, they are sorted according
to the size of their intersection with Qs \ Q. While this
additional sorting makes the algorithm worse than standard
greedy approach in the worst case (since all the machines could
be the same size in (1), in practice, our clustering strives to
make Q2 \ @1 small, and so the algorithm is fast enough.
Proposition 3. The above described algorithm runs in
O(X_1t, |My]) = O(r - |Q|), where r is the replication factor
when data is distributed evenly on the machines.

Proof: There are two main branches of our algorithm:
either under the selected key in sets_of_size is an empty or
nonempty set. In the first case, we move our counter to one
key below. There are at most |@Q| keys in this dictionary, so
this branch, which we call a blank step, will be performed at
most O(]Q)|) times, and since it takes O(1), the total time for
this branch is O(|Q)|). In the other branch, when the set under
selected key is not an empty set, we see in the description
of the algorithm that in the innermost loop a data unit from
a machine is removed (and some other things that all take
O(1) are performed). Since there are) ;" ; |M}| data units in
all machines combined, this part runs in O(>";", |My]). To
conclude, the whole algorithm runs in O(>",_, |My|+|Q|) =
O, |My). "

C. Processing Simple Clusters

In this section we describe the most basic clusters and our
ways to process them.
Nested Queries: Consider the most simple query cluster: just
two queries, (J; and (2, such that (J; C (2. One might
suggest to simply find a cover only for ()2, using the greedy
algorithm, and use it as a cover for both J; and @s. In
practice, this approach does not perform well. This algorithm
is unacceptable in terms of optimality of the cover when
comparing the size of the cover for (; given by this approach
to the size of the cover produced by the greed algorithm (see
Table [I). Figure [3(a)] with caption explains how our approach
solves the problem judiciously.
Intersecting Queries: Here we consider a simple cluster with
two queries, @1 and Q2 such that Q1 N Q2 # (. We will do
the following: 1) Cover Q1 N ()2 using BetterGreedy with
respect to Q1 U Q2 2) Cover the uncovered part of ()1 and
Q2 separately, using the standard greedy algorithm 3) For the

cover of (1 return the union of the cover for intersection and
uncovered part of ()1, and for the cover of Q2 we will give
the union of the cover for the intersection and the uncovered
part of Q2. By doing so, we run the BetterGreedy once
and greedy algorithm twice instead of just running the greedy
algorithm twice. However, in the first case, those two greedy
algorithms and the BetterGreedy algorithm are performed on
a smaller total size than two greedy algorithms in the second
case. Our algorithm never processes the same data point twice,
while the obvious greedy algorithm on)7 and ()2 does. In
terms of optimality of the covers obtained in this way, they
are on average (.15 machines (each) larger than the covers
we would get using the greedy algorithm. Figure gives a
visual representation of the algorithm.

D. The General Cluster Processing Algorithm (GCPA)

Using ideas from the previous sections, we developed an
algorithm for processing any cluster. We call it the General
Cluster Processing Algorithm (GCPA). The algorithm, in the
simplest terms, goes as follows: 1) Assign a value we call
depth to each data unit appearing in queries in our cluster. The
depth of a data element is the number of queries that data unit
is in. For example, consider a visual representation of a cluster
on Figure [f{a). On the same figure under Figure f[b) shows
depths of different parts of the cluster. 2) Divide all data units
into sets we call data parts according to the following rule:
two data items are in the same data part if and only if they are
contained in exactly the same queries. This will partition the
union of the cluster. Also, we keep track of which parts make
up each query (which we store in a hash table). 3) We cover the
data parts with our desired algorithm (greedy, BetterGreedy,
...) 4) For each query we return the union of covers of data
parts that make up that query as its cover.

This algorithm can process any shape of a given cluster and
allows for a choice of the algorithm used to cover separate data
parts. The big advantage of this algorithm is that each data unit
(or data part) will be processed only once, instead of multiple
times as it would be if we were to use the greedy algorithm
on each query separately. While dividing the cluster up into
its constituent data parts is intensive, this is all pre-computing,
and can be done at anytime once the queries are known. Again,
it is important to note that our algorithms rely on being able
to perform pre-computing for them to be effective.

Since BetterGreedy chooses machines that cover as many
elements in the cluster as a whole as possible, the covers of
the data parts overlap, and makes their union smaller. One
thing that can also be used in our favor is that when covering
a certain part, we might actually cover some pieces of parts
of smaller depths, as illustrated in Figure E[c). Then, instead
of covering the whole of those parts, we can cover just the
uncovered elements. Figure 4| shows how this work s step
by step. This version of GCPA, in which we use the gre edy
algorithm, we call GCPA_G.

Another option would be to use BetterGreedy for pro-
cessing the parts. The BetterGreedy algorithms is done on
the data parts with respect to the union of all queries containing
that data part and is called GCPA_BG. As we will see in the
next section, this algorithm gives a major improvement in the
optimality of the covers compared to GCPA_G.

VI. QUERY PROCESSING IN REAL-TIME
In our handling of real-time processing, we assume that
we know everything about a certain fraction of the incoming

(a) Ilustration of BetterGreedy

(b) Visual representation of the query intersec-
tion algorithm

Fig. 3. In @ we see an example of BetterGreedy. Assume region a has already been covered, and we have two machines M7 and M> that cover regions b
and ¢ of @ respectively, and let these regions be the same size. While the standard greedy algorithm would pick from M; and Mz randomly, BetterGreedy
chooses M7 because the size of region d is bigger than the size of region e. The representation of BetterGreedy in @demonstrates that we run the algorithm
on the intersection (region a) and the striped sections (regions b and ¢), thus covering Q1 and Q2. Then we simply run the greedy algorithm on the remaining
uncovered sections (regions d and e) to get the full covering. So, for example, the covering of Q1 is given by the coverings of regions a, b, and d. With standard
parameters, we find that covers are on average 0.15 machines larger than the greedy cover.

4
& & @

\

¢\

NS

(@

Fig. 4. Example of our algorithm for general cluster processing. In (a) we
see the initial state of our cluster of 4 queries. In (b) we see the calculated
depths. From (c)-(f) we see in color the part we are processing, and in falling
color pattern the cover we end up actually getting. This example shows that
instead of doing the greedy algorithm 4 times, we end up doing it 11 times.
However, the total size of the data that we are performing our algorithm on is
much smaller than doing greedy 4 times because of the overlap in the queries
(our algorithm never processes the same part more than once)

queries beforehand (call this the pre-real-time set), and we
get information about the remaining queries only when these
queries arrive (the real-time set). In other words, we have no
information about future queries. To process query in real time
the algorithm uses clusters formed in pre-processing.

A. The Real-time Algorithm

Our strategy in approaching this problem is to take ad-
vantage of the real-time applicability of the simpleEntropy
clustering algorithm. From Section [VII-B2] we know from
experiments, that we only need to process a small fraction
of incoming queries to generate most of our clusters. Thus,
we cluster the pre-real-time set of queries, and run one of the
GCPA algorithms on the resulting clusters, storing some extra
information which will be explained below. Then, we use this
stored information to process the incoming queries quickly
with a degree of optimality, as we explain below.

We start by recalling the definition of a data part (from
Section [V-D) and defining the related G-part. Given a cluster
K and subset of queries in that cluster P, a data part is the
set of all elements in the intersection of the queries in P but

e D e

Fig. 5. In the first picture the red area (A) is a part. In the second picture
(A) and (B) areas are different parts, because, although they have the same
depth, they are made from the intersection of different queries. In the third
picture (A) and (B) areas are different parts, as they have different depth.

not contained in any of the queries in K \ P. This implies that
all the elements in the same data part have the same depth in
the cluster. Figure [5] helps explain the concept.

After running one of the GCPA algorithms, the cluster is
processed from largest to smallest depth. The G-part p! is the
set of elements in the cover produced when GCPA covers all
elements in part p; that are not in any previous G-part. Note
that G-parts also partition our cluster.

To manage processing queries in real time, the algorithm
makes use of queries previously covered in clustering process.
An array T is created such that for each data item it stores the
G-part containing this data item. In other words, element T[]
is the G-part containing element . For each G-part, we also
store the machines that cover that G-part (this information is
calculated and stored when GCPA is run on the non-real-time
queries). The last data structure used in this algorithm is a
hash table H, which stores, for each data element, a list of
machines covering this data item. In each step the algorithm
checks which G-part contains each data item and then for each
G-part it checks which machines cover this G-part. Then those
machines are added to the set of solutions (if they are not yet
in this set). Then for each data item, which was not taken into
consideration in any G-part, the algorithm checks in a hash
table if any of the machines in the set of solutions covers
the chosen data element. In the last step, we cover any still
uncovered elements with the greedy algorithm. Data elements
on which the greedy algorithm is run form a new G-part.

When a query @ of a length k comes in, the goal is
to quickly put @ into its appropriate cluster, so the above
algorithm can be run. Since the greedy algorithm is linear in
the length of the query, if it takes more than linear time to
put a query into a cluster, our algorithm would be slower than

just running the greedy algorithm on the query. Thus, we need
to develop a faster method of putting a query into a cluster.
We implemented a straightforward solution. Instead of looking
at all O(k) potential clusters a query could go into, we just
choose one of the elements of the query at random, and choose
one of the potential clusters it is in at random. We call this the
fast clustering method, as opposed to the full method (which
is O(k?)).

VII. EXPERIMENTAL EVALUATION
A. Setup

1) Datasets: We run our experiments on both synthetic and

real-world datasets. The sizes considered in this work are the
following: each data unit is replicated 3 times and we consider
cluster of 50 homogenous machines.
Synthetic Dataset: The total number of data items that we
consider is 100K. We generate about 50K queries with certain
correlation between them, and each query accesses between 6
and 15 data items. We note that all experiments in this section
are done by averaging the results from 1M runs. Following is
an explanation of the correlated query generation:

Correlated Query Workload Generation: A sample set of
queries is needed to test the effectiveness of a set cover
algorithm. As mentioned in Section [lII| the data is distributed
randomly on the machines and the queries are correlated. To
generate these queries we use random graphs. In this context,
vertices counted by n represent data and edges represent
relations of the data.

A random graph is a graph with n vertices such that each of
the () possible edges has a probab1l1ty p of being present. We
choose n and p such that np < 1, since, in the Erd6s-Rényi
model [18], this gives a graph with many small connected
components. The np < 1 case is helpful in this setting because
the graph is naturally partitioned into several components as
expected. The random graph could, for example, represent a
database that contains data from many organizations, so each
organization’s data is a connected component and is separate
from the others. We use a modified DFS algorithm on the
random graph to generate nearly highly correlated random
queries.

According to the Erdés-Rényi Model for a random graph
[L8], depending on the value of n and p, there are three main
regimes as shown in Figure [6}

e if np < 1 then a graph will almost surely have no connected
components with more than than O(logn) vertices,

e if np = 1 then a graph will almost surely have a largest
component whose number of vertices is of order n3

e if mp > 1 then a graph will almost surely have a large

connected component and no other component will contain
more then O(logn) vertices.

e[T

Fig. 6. The first regime models a graph when np < 1, middle when np = 1
and the last one when np > 1

The first regime was used because generating queries from
smaller connected components theoretically makes intersec-
tions between them more probable. As it is expected that

the queries have some underlying structure, the random graph
model is an appropriate method of generating queries. The
np < 1 case is helpful in this setting because the graph is
naturally partitioned into several components as expected. The
random graph could, for example, represent a database that
contains data from many organizations, so each organization’s
data is a connected component and is separate from the others.
QueryGeneration algorithm (Algorithm [3)) is as follows.

Algorithm 3 Query Generation Algorithm
Require: Ng, Q =0

1: for |Q| # Ng do

2: =0, K=10

3 l +— rand(minQueryLen, maxQueryLen)

4 x=rand(v eV)

5: g<—qUx
6: K+ KU{v]| vz)eEveV,zeV}
7
8
9

while |¢| # [do
z =rand(v € K)

if = ¢ ¢ then
10: g<—qUzx
11: end if
12: end while
13: Q<+ QUgq
14: end for

First, build a random graph G with np < 1. Key idea here is
to generate random subgraph with number of nodes equal to
I where [is the query length, such that (minQueryLen <
I < maxQueryLen). Repeat this till we generate desired
number of queries. To assess the quality of our synthetic query
workload generator, every query is compared with every other
query to determine the size of intersections. Then the same
number of queries were generated uniformly randomly and
pairwise intersections were calculated. As expected, queries
generated using QueryGeneration algorithm have much
more intersections then queries generated randomly.
Real-world Dataset: We consider TREC Category B Section
1 dataset which consists of 50 million English pages. For
queries we consider 40 million AOL search queries. In order
to process these 50 million documents to document shards,
we perform K-means clustering using Apache Mahout where
K=10000. We consider each document shard as a data item
in this paper. These document shards are distributed across
50 homogenous machines and are 3-way replicated. Each
AOL web query is run through Apache Lucene to get top 20
document shards. Then we run our incremental set cover based
routing to route queries to appropriate machines containing
relevant document shards.

Overall, we evaluate our algorithms on a set of 50K
synthetically generated queries generated from a graph with
np = .993 and on real-world dataset. 20K queries from syn-
thetic dataset and 8M queries from real-world dataset among
them are used to create clusters and our routing approach is
tested on remaining 30K queries from synthetic dataset and
32M queries from real-world dataset.

2) Baseline: When a query () is received a request is sent
to all machines that contains an element of (). The machines
are added to the set cover by the order in which they respond,
until the query is covered. The first machine to respond is
automatically added to the cover. The next machine to respond
is added if it contains any element from the query that is not

yet in the cover. This process is continued until all elements
of the query @) are covered. We call this method baseline set
covering. While the method is fast, there is no discrimination
in the machines taken, which means that the solution returned
is far from optimal, as the next example illustrates:

Consider a query, @ = {1,...n}, and a set of machines,
My, ..., My11, where M; = {i} for i < n and M,; =
{1,...n}. If machines M, ..., M, respond first then this
algorithm will cover) with n machines where the optimal
cover contains only one machine, M,,_;. Given N queries, our
algorithm should improve upon the average optimality offered
by this baseline covering method and be faster than running
the greedy set cover N times.

3) Machine: The experiments were run on a Intel Core i7
quad core with hyperthreading CPU 2.93GHz, 16GB RAM,
Linux Mint 13. We create multiple logical partitions within
this setup and treat each logical partition as a separate ma-
chine. This particular experimental setup does not undermine
the generality of our approach in anyway. Our results and
observations stand valid even when run on distributed setup
with real machines.

B. Experimental Analysis of Clusterings

We ran the the clustering algorithm on several sets of
queries. All of these query sets are of size 50,000 and are
generated via the Erdés-Rényi graph regime with 0.9 < np <
1.0 according to the query generation algorithm described in
Section We specifically tested the resulting clusters
for quality of clustering and for its applicability towards real-
time processing. The ideas behind real-time processing are
more thoroughly discussed in Section but the essential
idea is this: given a small sample of queries beforehand for
pre-computing, we need to be able to process new queries as
they arrive, with no prior information about them.

1) Clustering Quality: In a high-quality cluster most of
the data elements have probability close to 1.0. Intuitively,
this indicates that the queries in the cluster are all extremely
similar to each other (i.e. they all contain nearly the same data
elements). Then one measure of clustering quality would be
to look at the probability of data elements across clusters.

As a first measure, we recorded the probability of each data
element in each cluster, and Figure [8(a)| depicts the results in a
histogram for a typical clustering. The high frequency of data
elements with probability over 0.9 indicates that a significant
number of data elements have high probability within their
cluster. (Note that in this analysis, if a data element is contained
in many clusters, its probability is counted separately for each
cluster.) However, interestingly, the distribution then becomes
relatively uniform for all the other ranges of probabilities.
This potentially illustrates the difference between mediocre and
high-quality clusters described in Section A more ideal
clustering algorithm would increase the number of data ele-
ments in the higher probability bins and decrease the number
of those in lower quality bins. Still, the prevalence of elements
with probability greater than 0.9 is heartening because this
indicates a fairly large common intersection among all the
clusters. By processing this common intersection alone, we
potentially cover a significant fraction of each query in the
cluster with just a single greedy algorithm.

To paint a broad picture, the above measure of cluster
quality ignores the clusters themselves. There may be vari-
ables inherent to the cluster which affect its quality and are

11

1.0
0.9
0.8

! ean: o2

0.7

Frequency

0.6

Ml

0.0 0.2 0.4 0.6 0.8 1.0 -10 0 10 20 30 40 50
pe for given x in a cluster

Average p, for Cluster

Cluster Size

(a) Overall averages (b) Weighted by cluster

Fig. 8. These graphs are generated by clustering 50K synthetically generated
queries for which np = 0.973. In Figure we look at each data element in
each cluster and record its probability in that cluster. A high-quality algorithm
would have tall bars on the right and very short bars elsewhere. In Figure |3(b)
we take a weighted average of the probability of each element. Note the
downward trend as clusters get large. This may mean we should restrict cluster
size.

overlooked. For example, perhaps clusters begin to deteriorate
once they reach a certain size.
Let us define the average probability of cluster K as:

(&)= ZQEK EPIPRE @)

QEK z€Q

sl

Essentially, p(K) is a weighted average of the probabilities of
each element in the cluster (so data elements that are in many
queries are weighted heavily). In Figure [8(b)] we see that there
is some deterioration of average probability as the clusters
get larger, but for most of the size range, the quality is well
scattered. While most of the clusters have average probability
greater than 0.6, a stronger clustering algorithm would collapse
this distribution upwards.

2) Real-time Applicability: For simpleEntropy to be suc-
cessful in dealing with real-time queries we have additional
requirements. First of all, the incoming queries need to be pro-
cessed quickly. If, for example, the query needed to be checked
against every single cluster before it was put in one, simply
running the greedy algorithm on it would probably be faster,
since there are on the order of thousands of clusters. The fast
version of the algorithm, which only samples one element from
each of the real-time queries, meets this requirement. Second,
we want most of the cluster to be generated when only a small
fraction of the queries are already processed. This way, most of
the information about incoming queries is already computed,
which allows us to improve running time. In Figure [9] and
Table we see that more than 75% of the total clusters
are generated with only 20% of the data processed, which
means our clustering algorithm is working as we want it to.
Finally, we want incoming queries to contain most of the high
probability elements of the cluster. Specifically, let Q1, ..., Qx,
be the queries in a cluster K, where X = @1 N---NQ,, and
let @* be the incoming query. We want X C Q*, since this
means that the deepest G-part can cover a lot of) with little
waste. While this seems to be true for the high-quality clusters
described above, we could seek to improve our algorithm to
generate fewer mediocre clusters.

C. Experimental Comparison of Cluster Processing Algo-
rithms

For comparing our cluster processing algorithms we had
implemented two reference algorithms and two that we devel-
oped ourselves. We show in this section that our algorithms
are successful, in that they are both fast and optimal.

5
%s)

Average Time per Query (10
Average Time per Query (10

Average Machines Used

Average Machines Used

11

Baseline N-Greedy = GCPA-G GCPA-BG Baseline N-Greedy GCPA-BG

(a) Run-time for synthetic dataset (b) Run-time for real-world dataset

Fig. 7.

4000
3500
3000
2500
2000
1500
1000

500

5

Clusters

10000 20000 30000 40000 50000
Number of Queries

0
0

Fig. 9. We plot the number of clusters as each of 50k queries comes in,
after being generated from an Erd6s-Rényi graph with np = .999.

Baseline N-Greedy = GCPA-G GCPA-BG Baseline N-Greedy GCPA-BG

(c) Optimality for synthetic dataset (d) Optimality for real-world dataset

Comparison of run-time and optimality (average query span) of our algorithms on synthetic dataset and real-world dataset.

faster when compared to repeated greedy technique N_Greedy
and selects 50% fewer machines when compared to baseline
routing technique. On the other hand, we evaluate on GCPA-
BG for the real-world dataset because it has better optimality,
and in the real-time case, the time penalty for using GCPA-
BG over GCPA-G is only relevant in the pre-computing stage.
For real-world dataset case, as shown in Figures and [7(d)|
our technique is about 2x faster when compared to repeated
greedy technique N_Greedy and selects 32% fewer machines
when compared to baseline routing technique. The error bars
shown are one standard deviation long. Even though the
figures show the results for only one set of queries, we have
run dozens of samples, and the overall picture is the same.
The results of our experiments provide strong indication that
our algorithm is indeed an effective method for incremental
set cover, in that it is faster than N_Greedy and more optimal

% Queries Processed][6.0 [10.0[13.8]25.0]33.7[40.0]50.0[53.7[75.0[88.2]90.0

99.5

than the baseline.

% Clusters Formed [[50.0[66.1]75.0[86.6]90.0[91.9]94.3[95.0]97.9]99.0[99.2

99.9

In terms of optimality, it is also important to do a pairwise

TABLE II. THESE RESULTS CAN HELP SELECT THE THRESHOLD WE
NEED FOR PRE-PROCESSING QUERIES TO FORM MOST OF OUR CLUSTERS.
THE DATA ARE TAKEN FROM PROCESSING 50,000 QUERIES FROM A
RANDOM GRAPH WITH np = .999. POTENTIAL THRESHOLDS INCLUDE
13.8%, 33%, 40%.

The first reference algorithm is the one primarily evaluated
in the papers by Kumar and Quamar et al., [1][2][5], we call
it N_Greedy. This is simply running the greedy algorithm
on each query independently. This algorithm has the opposite
properties of the baseline algorithms. While its covers are as
close to optimal as possible, it has a longer run-time than
the baseline. Thus, we want our algorithm to run faster than
N_Greedy.

The two algorithms that we have developed and imple-
mented are the GCPA with the greedy algorithm (GCPA_G) and
GCPA with BetterGreedy (GCPA_BG). The major difference
between the reference algorithms and our algorithms is that
we are using clustering to exploit the correlations and similar-
ities of the incoming queries. Our algorithms are faster than
N_Greedy and more optimal than the baseline algorithms.

We compare the run-time and optimality (average number
of machines that a query touches) of our algorithms and
the two reference algorithms on both synthetic and real-
world datasets. Our algorithms perform considerably faster
than N_Greedy and are also faster than the smarter baseline
algorithm. In terms of optimality, both our algorithms consid-
erably outperform the standard baseline algorithm as shown in
Figure [/} In summary, when evaluating with synthetic dataset,
as shown in Figures and our technique is about 2.5x

comparison of cover lengths (i.e. does our algorithm perform
better for queries of any size). Taking the average as we have
done in Figure masks potentially important variation. We
want to ensure that our algorithm effectively handles queries
of all sizes. In Figures and we compare the query-
by-query performance (in terms of optimality) of our two
algorithms against N_Greedy for the synthetic dataset. The
z-axis is the number of sets required to cover a query using
N_Greedy. The y-axis, “A Cover Length”, is the length of the
cover given by our algorithm minus the length of the greedy
cover. The number next to the y-axis at y = k shows the
normalized proportion of queries for which the GCPA cover
is at most £ machines larger than the N_Greedy. The size of
the circle indicates the number of queries at that coordinate.
With GCPA_BG, we see that more than 90% of all queries are
covered with at most one more machine than the greedy cover,
and for the majority of queries, the covers are the same size.
The GCPA_G algorithm does not perform quite as well. Even in
this case, the majority of queries are covered using only one
more machine than the greedy cover. Since GCPA_BG is slower
than GCPA_G, users can choose their algorithm based on their
preference for speed or optimality.

On the other hand, in Figure we evaluate the perfor-
mance of our real-time algorithm on the real-world dataset on a
query-by-query basis. For each query, we record the number of
machines used to cover it using our algorithm and the number
of machines required to cover it using the baseline algorithm
and record the difference, i.e. the “A Cover Length” on the y-
axis is the size of the baseline cover minus the size of our
algorithm’s cover. The area of the circle at point (z,y) is
proportional the number of queries for which our algorithm

GCPA—DL Optimality v. N—Greedy

GCPA—G Optimality v. N—Greed;

5 1.000

®

1.000

4f 1.000
1.000

3}0.999

o

0.999

0.993

A Cover Size
A Cover Size

A Cover Size

0

-30

-3 2 6 8 10 12 2 2
Greedy Cover Size

(a) GCPA_DL vs. N_Greedy for synthetic dataset

Fig. 10. Pairwise comparisons of optimality for our algorithms.

used = machines to cover and for which the difference in
cover length is y. Thus, the total area of the points above
the y = 0 line represents where our algorithm outperforms the
baseline algorithm. We see in the figure that the vast majority
(96.5%) of the queries are covered more efficiently by our
algorithm than by the baseline algorithm. This is actually a bit
of an understatement because most of the queries for which
the baseline algorithm performed with better optimality (i.e.
points below y = 0) were queries of length one (or at least
very small), which can easily be handled as special cases.
In this case, only one machine is required to cover, but our
algorithm takes the entire cover from the cluster that the length
one query was put into. This situation is easily remedied. For
small enough queries, especially queries of length one, instead
of running our algorithm we should just cover them directly. In
conclusion, we have delivered an algorithm that is significantly
faster than N_Greedy and also more optimal than the baseline
algorithm.

VIII. CONCLUSION

In this paper, we presented an efficient routing technique
using the concept of incremental set cover computation. The
key idea is to reuse the parts of set cover computations
for previously processed queries to efficiently route real-time
queries such that each query possibly touches a minimum
number of machines for its execution. To enable the sharing of
set cover computations across the queries, we take advantage
of correlations between the queries by clustering the known
queries and keeping track of computed query set covers. We
then reuse the parts of already computed set covers to cover the
remaining queries as they arrive in real-time. We evaluate our
techniques using both real-world TREC with AOL datasets,
and simulated workloads. Our experiments demonstrate that
our approach can speedup the routing of queries significantly
when compared to repeated greedy set cover approach without
giving up on optimality. We believe that our work is extremely
generic and can benefit variety of scale-out data architectures
such as distributed databases, distributed IR, map-reduce, and
routing of VMs on scale-out clusters.

REFERENCES

[11 K. A. Kumar, A. Quamar, A. Deshpande, and S. Khuller, “Sword:
Workload-aware data placement and replica selection for cloud data
management systems,” The VLDB Journal, vol. 23, no. 6, pp. 845-870,
Dec. 2014.

[2] A. Quamar, K. A. Kumar, and A. Deshpande, “Sword: Scalable
workload-aware data placement for transactional workloads,” in Pro-

6
Greedy Cover Size

(b) GCPA_G vs. N_Greedy for synthetic dataset

(4]

(5]

(6]
(7]
(8]

(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

10 12 -5 0 5 10 15 20 25 30 35 4
GCPA Cover Size

(c) GCPA vs. Baseline for real-world dataset

ceedings of the 16th International Conference on Extending Database
Technology, ser. EDBT 13, 2013, pp. 430—441.

C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: A workload-
driven approach to database replication and partitioning,” VLDB, vol. 3,
no. 1-2, pp. 48-57, Sep. 2010.

A. Kulkarni and J. Callan, “Selective search: Efficient and effective
search of large textual collections,” ACM Trans. Inf. Syst., vol. 33, no. 4,
pp. 17:1-17:33, 2015.

A. K. Kayyoor, “Minimization of resource consumption through work-
load consolidation in large-scale distributed data platforms,” Digital
Repository at the University of Maryland, 2014.
V. V. Vazirani, Approximation Algorithms.
Business Media, 2013.

N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor, “The online
set cover problem,” SIAM J. Comput., vol. 39, no. 2, pp. 361-370, 2009.
A. Levin, “Approximating the unweighted k-set cover problem: Greedy
meets local search,” in Approximation and Online Algorithms, 2007,
vol. 4368, pp. 290-301.

C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and
Applications. CRC Press, 2013.

J. Kleinberg and E. Tardos, Algorithm Design.
Longman Publishing Co., Inc., 2005.

R. Baeza-Yates, C. Hurtado, and M. Mendoza, “Query recommendation
using query logs in search engines,” in Current Trends in Database
Technology - EDBT 2004 Workshops, 2005, vol. 3268, pp. 588-596.
S.-L. Chuang and L.-F. Chien, “Towards automatic generation of query
taxonomy: a hierarchical query clustering approach,” in Data Mining,
2002. ICDM 2003. Proceedings. 2002 IEEE International Conference
on, 2002, pp. 75-82.

“Query clustering using user logs,” ACM Trans. Inf. Syst., vol. 20, no. 1,
pp. 59-81, 2002.

V. T. Paschos, “A survey of approximately optimal solutions to some
covering and packing problems,” ACM Computing Surveys (CSUR),
vol. 29, no. 2, pp. 171-209, 1997.

Z. Zhao, R. Song, X. Xie, X. He, and Y. Zhuang, “Mobile query
recommendation via tensor function learning,” in Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, 2015, pp. 4084—
4090.

N. Gupta, L. Kot, S. Roy, G. Bender, J. Gehrke, and C. Koch,
“Entangled queries: enabling declarative data-driven coordination,” in
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011,
2011, pp. 673-684.

D. Barbard, Y. Li, and J. Couto, “COOLCAT: An entropy-based
algorithm for categorical clustering,” in Proceedings of the eleventh
international conference on information and knowledge management.
ACM, 2002, pp. 582-589.

P. Erd6s and A. Rényi, “On the evolution of random graphs,” Pub-
lications of the Mathematical Institute of the Hungarian Academy of
Sciences, vol. 5, pp. 17-61, 1960.

Springer Science &

Addison-Wesley

	I Introduction
	I-A The Problem

	II Related Work
	III Problem Background
	IV Query Clustering
	IV-A The simpleEntropy Clustering Algorithm:
	IV-B Analysis of the simpleEntropy Clusters:

	V Cluster Processing
	V-A The BetterGreedy algorithm
	V-B Analysis of the BetterGreedy Algorithm
	V-C Processing Simple Clusters
	V-D The General Cluster Processing Algorithm (GCPA)

	VI Query Processing in Real-time
	VI-A The Real-time Algorithm

	VII Experimental Evaluation
	VII-A Setup
	VII-A1 Datasets
	VII-A2 Baseline
	VII-A3 Machine

	VII-B Experimental Analysis of Clusterings
	VII-B1 Clustering Quality
	VII-B2 Real-time Applicability

	VII-C Experimental Comparison of Cluster Processing Algorithms

	VIII Conclusion
	References

