arXiv:1607.00714v2 [cs.PF] 30 Sep 2016

Stochastic Modeling of Hybrid Cache Systems

Gaoying Ju, Yongkun Li"2, Yinlong Xu':3, Jigiang Cheh, John C. S. LU
1School of Computer Science and Technology, University éé&® and Technology of China
2Collaborative Innovation Center of High Performance Cotimgy National University of Defense Technology
3AnHui Province Key Laboratory of High Performance Compgtin
“Department of Computer Science and Engineering, The Chiblesversity of Hong Kong
{jgy93317, cjqld @mail.ustc.edu.cr{ykli, ylxu } @ustc.edu.cn, cslui@cse.cuhk.edu.hk

Abstract—In recent years, there is an increasing demand of big page caches, one can mitigate the performance mismatch

memory systems so to perform large scale data analytics. Sia

DRAM memories are expensive, some researchers are suggasti
to use other memory systems such as non-volatile memory
(NVM) technology to build large-memory computing systems.

However, whether the NVM technology can be a viable alternave
(either economically and technically) to DRAM remains an ogn
question. To answer this question, it is important to considr

how to design a memory system from a “system perspective”

that is, incorporating different performance characteristics and
price ratios from hybrid memory devices.
This paper presents an analytical model of a hybrid page

between memory and storage.

Traditional page cache usually uses DRAM due to its high
throughput (in terms of IOPS), e.gl.| [2]._]11], [15]. Howeyve
solely relying on DRAM has at least three limitations. First
the development of DRAM technology has already reached its
limit, e.g., DRAM scaling is more difficult as charge storage

» and sensing mechanisms will become less reliable whendscale

to thinner manufacturing processes|[17]. Second, the fice
DRAM is still much higher than that of HDDs or SSDs, and it

cache system” so to understand the diverse design space and also consumes much more energy due to its refresh operations
performance impact of a hybrid cache system. We consider So DRAM-based main memory consumes a significant portion

(1) various architectural choices, (2) design strategiesand (3)
configuration of different memory devices. Using this model

we provide guidelines on how to design hybrid page cache to

reach a good trade-off between high system throughput (in @

of the total system cost and energy with its increasing size
[12]. Finally, DRAM is a volatile device and data in DRAM
will disappear if there is any power failure. Hence, keepang

per sec or IOPS) and fast cache reactivity which is defined by lot of data in DRAM implies lowering the system reliability.

the time to fill the cache. We also show how one can configure

the DRAM capacity and NVM capacity under a fixed budget.
We pick PCM as an example for NVM and conduct numerical
analysis. Our analysis indicates that incorporating PCM ina page
cache system significantly improves the system performancand
it also shows larger benefit to allocate more PCM in page cachia
some cases. Besides, for the common setting of performangeee
ratio of PCM, “flat architecture” offers as a better choice, but
“layered architecture” outperforms if PCM write performan ce
can be significantly improved in the future.

Keywords-Stochastic Model; Hybrid

Cache Systems

Mean-field Analysis;

I. INTRODUCTION

Non-volatile memory (NVM) technologies (e.g. PCM, STT-
MRAM, ReRAM) offer an alternative to DRAM due to their
byte-addressable feature (which is similar to DRAM) and
higher throughput than flash memory. In particular, NVM is
commonly accepted as a new tier in the storage hierarchy
“betweet DRAM and SSDs, and it also poses a design trade-
off when we use it as page cache. On the one hand, it is much
faster than flash-based SSDs but still slower than DRAM, so
replacing DRAM with NVM in page cache may degrade the
system performance. On the other hand, the price and single-
device capacity of NVM are also considered to lie between
DRAM and SSDs, so one can have more NVM storage
capacity than DRAM given a fixed budget. Furthermore, due

In modern computer systems, there is a common consén-the non-volatile property of NVM, even keeping a large
sus that secondary storage devices such as hard disk draemunt of data in NVM does not reduce the system reliability.
(HDDs) are orders of magnitude slower than memory dé&hus, it is possible to have a large page cache with NVM,

vices like DRAM. Even though flash-based storage devicedich increases the cache hit ratio and as a result improves
like solid-state drives (SSDs), which are much faster thdhe overall system performance. Therefore, it remains &mop
HDDs, have been quickly developed and widely used guestion whether it is more efficient to consider a hybricheac
recent years, they cannot replace DRAM since SSDs hasgstem with both DRAM and NVM, and how to fully utilize
lower 1/O throughput than DRAM (i.e., at least an order athe benefits of NVM in page cache desigris motivates us
magnitude lower). Due to the large performance gap betwendevelop a mathematical model to comprehensively study
memory and secondary storage, I/O access poses as a nt@j@rimpact of architecture design and system configurations
bottleneck for computer system performance. To address thih page cache performance, and explore the full design space
issue, one commonly used technique is to allow some memaviien both DRAM and NVM are available.

as page cache, which exploits workload locality by buffgrin However, analyzing a hybrid cache system is challenging.
the recently accessed data in fast-speed memory for a sherst, including NVM in page cache clearly introduces sgste
time before flushing to the slow-speed storage devices.gUsimeterogeneity, and so it offers more choices for systengdesi

http://arxiv.org/abs/1607.00714v2

and severely increases the analysis complexity. For exampl achieve a good trade-off between the cache performance
when both DRAM and NVM are used, should we consider a and cache reactivity. Besides, under the common setting
“flat architecturé which places DRAM and NVM in the same of performance-price ratio of PCM, flat architecture offers
level and accesses them in parallel, or considdageted ar- a better choice, but layered architecture outperforms if
chitecturé which uses DRAM as a cache for NVM? Another PCM write performance gets significantly improved.

question is how to allocate the capacity of each device underrhe rest of this paper proceeds as follows. il we

a fixed budget so as to maximize the system performang@roduce the architecture design and system configumstion
Second, since access to DRAM and NVM have differegff hybrid page cache, and formulate multiple design issues
latencies, it is not accurate to analyze the system perfocmato motivate our study. We present the Markov model for
by deriving only the hit ratio as in traditional cache an&lys characterizing the cache content distributiofflifij and derive

In fact, one needs to explicitly take the difference of laten the mean-field approximation §IV] We validate our analysis
into account in the analysis. We emphasize that measuremgyitusing DRAMSIm2 simulator irf¥/] and show the analysis
studies with simulator/prototype are also feasible me$hbdt results and insights via numerical ana|ysiﬁ Fina”y’ we

they may suffer from the efficiency problem due to the widgeview related work ifiVIT] and conclude the paper i§VIIT]
choices in system design. While analytical modeling is easy

to be parameterized and generally needs less running time. !l- DESIGNCHOICES ANDISSUES OFHYBRID CACHE
Motivated by the list-based model developed by Gast et al.In this section, we first introduce the system architecture
in [6], in this paper, we extend the model to analyze hybrignd design choices of hybrid cache systems that we analyze
cache systems under both the flat and layered architectuiesthis paper. In particular, we consider two types of system
We also take into consideration the device heterogeneity hychitectures: flat architecture and layered architec(aee
defining a latency-based model to characterize the cadfiEA], and study a fine-grained list-based cache replacémen
performance so as to explore the full design space and tigorithm (seeflI-B). After that, we formulate several design
optimal architecture design. To the best of our knowledgs, t issues to motivate our study (sgg-C).
is the first work which uses mathematical models to analyie .
hybrid cache systems with DRAM and NVM. . System Architecture
The main contributions of this paper are as follows. We focus on hybrid cache design which composes of both
« We extend the list-based model [fi [6] to characterize theRAM and NVM. For ease of presentation, we call DRAM
dynamics of cache content distribution in hybrid cach@"d NVM used in a cachie-CacheandN-Cache respectively,
systems under both flat and layered architectures, ad@d assume that we havep DRAM pages andny NVM
derive the steady-state solution by using a mean-fil@@ges with the same page size, say 4KB, in the system. That
approximation. We make each device operate in a file the capacity of D-Cache isip, and that of N-Cache is
granularity by dividing it into multiple lists with a layede mn~. We also denoten as the total capacity of the hybrid
structure so as to explore the optimal system performarf&che, i.e.m = mp + my. We denote the overall system
and full design space. cost asC = mp * cp + my * cy, Wherecp andcy denote
« We propose a latency-based metric to quantify the hie price/cost of each page of DRAM and NVM, respectively.
brid cache performance_ To support the |atency mode|,TO Organize D-Cache and N'CaChe, we further divide each
we conduct measurements in the Linux kernel level w them into multlple |iStS, each of which contains a certain
obtain the average request delay at the granularity @¢#mber of pages, and denote the number of lists in D-Cache
nanoseconds. With this latency model, we are able &d N-Cache a&p andhy, respectively. We label the lists
take the heterogeneity of different devices into accoufif N-Cache ady,--- 15, and label the lists of D-Cache as
s0 as to study the impact of different design choices dny+1." - »{n, Whereh = hy + hp denotes the total number
hybnd cache performance with h|gher accuracy. of lists in the whole system. For I|$L we define its Capacity
« We validate our analysis with simulations by modiWin@‘Shmi- so we have and we have = (mq,...,mp), With
the DRAMSIm2 simulator [[18]. We further study the)_;—; m: = m, which describes the whole cache system.
impact of different architectures (flat or layered) and We denote the secondary storage layer asidistithout
different system settings, such as the number of lists ipss of generality, we call list; the i-th list, i.e.,; = i.
each cache device, the performance-price ratio of NVNFigure[l shows an example of the list-based organization of
as well as the capacity allocation of each cache devide;Cache and N-Cache under different architectures.
on the hybrid cache performance via numerical analysis. To design a hybrid cache with both D-Cache and N-Cache,
. Our analysis results show that incorporating PCM iWe consider two architectures: flat architecture and layere
hybrid cache design significantly improves the systegichitecture, which are described as follows.
performance over traditional DRAM-only cache under the « Flat architecture: In this design, both D-Cache and N-
common setting of performance-price ratio. Furthermore, Cache are placed in the same level and accessed in
the hybrid cache design needs to be adjusted accordingly parallel as shown in Figuid 1(a). In particular, for a new
when the ratio varies. In particular, the number of lists data page which has not been cached before, it is either
in each cache device should be configured carefully to cached in D-Cache with probability or in N-Cache with

l; = ln,, pagek moves to a random position in ligt,

| D - Cache, ™ 3 as in the second case.
ot LLLL [L] Figure[1 shows the data flow under flat and layered archi-
! By [T1 : tectures. Note that data migration happens between ligtseof
N — Cache! . same type of cache, while the migration between D-Cache and
1 [fp:rj] ' N-Cache happens only in the case of layered architecture.
Storage storage o [T T 111111

C. Design Issues

Note that the overall performance of a hybrid cache system
may depend on various factors, such as system architecture,
probability 1 — .. Note thata is a tunable parameter, andc@pacity allocation between DRAM and NVM, as well as
increasing it implies that D-Cache is more preferred &€ configuration parameters like the number of lists in each
be used. In the flat architecture, pages are never migraf@fhe device. Thus, it poses a wide range of design choices
between the two types of caches. for hybrid cache, which makes it very difficult to explore
Note that both D-Cache and N-Cache contain multipi@€ full design space and optimize the cache performance.
lists. To exploit workload locality, we let pages bel© understand the impact of hybrid cache design on system
first buffered in the list with the smallest label in theP€rformance, in this work, we aim to address the following

corresponding cache, and then upgrade to the largi§sues by developing mathematical models.

numbered lists when they become hot (e.g., when cache For each architecture (flat or layered), what is the impact

hit happens). That is, lists in the same cache device are of the list-based hierarchical design, and how to set the

organized in a layered structure. best parameters so as to optimize the overall performance,
« Layered architecturetn this design, we use D-Cache as a including the numbers of listsp, andhy, as well as the

caching layer for N-Cache as shown in Figlte 1(b). Par- preference parameter for the flat architecture?

ticularly, new data page is directly buffered in N-Cache « Which architecture should be used when considering both

first, and when page in the list of the largest label in N- DRAM and NVM into a hybrid design?

Cache is accessed, it is upgraded to D-Cache. Similarly Under a fixed budgeC, what is the best capacity

we also organize lists in both D-Cache and N-Cache in allocation of each cache type for better performance?

a layered structure. Note that data migration between D-

Cache and N-Cache happens here, and usually, data in
D-Cache is considered to be hotter than data in N-Cacheln this section, we first describe the workload model, then

characterize the dynamics of data pages in hybrid cache, and
B. Cache Replacement Algorithm finally derive the cache content distribution in steadyestat

After that, we define a latency-based performance metrieas

. For cach_e replacement, we follow the Iist-base_d al_gorithm] the cache content distribution so as to quantify the divera
introduced in[[6], and extend it to hybrid cache with diffiere cache performance

architectures. Roughly speaking, a new data page enters int
a cache through the first list and moves to the upper list By Workload Model

exchanging with a randomly selected data page whenever g, this work, we focus on cache-effective applications like
cac_he hit occurs. Specifically, when a data pagerequested \yep search and database quény [22]] [11], in which memory
at time¢, one of the three events below happens: and 1/O latency are critical to system performance. Thus,
« Cache missPagek is not in D-Cache nor N-Cache. Incaching files in main memory becomes necessary to provide
this case, pagé enters into the first list in D-Cache sufficient throughput for these applications. To providghhi
(i.e., list I, +1) with probability o or into the first list data reliability, we assume to use the write-through policy
in N-Cache (i.e., list;) with probability (1 — o)) under which data is also written to the storage tier once it is lreffle
the flat architecture. For the layered architecture, pagein the page cache. With this policy, all data pages in cache
enters into the first list of N-Cache (i.e., lisf). For both should have a copy in the secondary storage.

(a) Flat Architecture (b) Layered Architecture
Fig. 1. Architecture of hybrid cache.

IIl. SYSTEM MODEL

architectures, the position in the list for writing palgés In this paper, we focus on the independent reference model
chosen uniformly at random. Meanwhile, the victim pagf®] in which requests in a workload are independent of each
in the position moves back to list O. other. Since cache mainly benefits the read performance, we

o Cache hit in list; wherel; # I, andl; # I, In this focus on read requests only, while we can also extend our
case, pagé: moves to a randomly selected positioof model to write requests. Suppose that we haviotal data
list /,.1, meanwhile, the victim page in positianof list pages in the system. In each time slot, one read requestsrriv
l;+1 takes the former position of pade and it accesses data pages according to a particular digbrib

o Cache hit in listi; wherel; = 5, or l; = [: In this where pagé: (k = 1, 2, ...,n) is accessed with probability;.
case, pagé remains at the same position under the flaElearly, we have}_,_, p, = 1. Without loss of generality,
architecture. However, for the layered architecture witlve assume that pages are sorted in the decreasing order of

their popularity. That is, ifi < j, thenp; > p;. It is well Proof: Please refer to the Appendix. |
known that workload possesses high skewness in the sense
that a small portion of data pages receive a large fraction REmarks: We point out that the steady-state results share the
requests, and the access probability usually follows a-Zigfame structure as the results[in [6] for both the flat and &yer
like distribution [3], [23]. Thus, we model;’s as a Zipf-like architectures. The difference is that our model introduzes
distribution. Mathematically, we let parameterht 4(l;), which represents the height of lists and
provides the capability of unifying the model for different
architectures. In particular, the notatibty (I;) (i.e., the height
wherec is the normalized constant. We would like to emphaef lists) is an “architecture-dependent parameter” (itg value
size that our model also allows other forms of distributionsdepends on the architecture of the hybrid system), and we
include it in the analysis so as to enhance the model’s wbilit
B. Markov Model in analyzing different architectures.

In this subsection, we extend the mathematical model inAccording to the probabilities 4 (c), we can calculate the
[6] to capture the dynamics of data pages in a hybrid cachi& probability of list /; in steady state, which is denoted
system with different architectures, and then derive thady- as H, = lim), ppE[X4,i(t)]. We also call this probability
state distribution to quantify the hit ratio of each request distribution cache content distributiorMathematically,

Note that we have: data pages in total in the system, and
the total capacity of the hybrid cache s. Without loss of Hi= > > prlgrecymalc), 3)
generality, we assume that < n, so only parts of data pages ceCp(m) k
can be kept in the hybrid cache. To characterize the systenwherely,c.,, is a 0-1 variable denoting whether paiges
state of the hybrid cache, we use a random variabje(t) in list /; or not.

(k=1,2,---,n,andi = 1,2,--- , h) to denote whether page However, it is not efficient to computea (c) by using the

k is in list [; at timet. If yes, we letXy;(t) = 1 and O above formula unless the cache capacityis small. In the
otherwise. If page: does not exist in the hybrid cache, i.e.next section, we will introduce a mean-field approach, which
Xg,i(t) =0 fori=1,2,---, h, then pagek must be stored can approximate the cache content distribution very efftte

in the secondary storage, and we It (t) = 1 in this case.)

Now we capture the system state from a perspective of lisfs, Performance Metric
and defineY;(¢t) = {k| Xy, =1} (i € {1,..,h}) as the set of Recall that we focus on hybrid cache systems consisting
pages in list; at timet. We have|Y;(t)| < m;. The process of both DRAM and NVM, which show very different char-
V() = (Y1(t),Y2(t), ..., Y (t)) denotes the distribution of acteristics in access latency. To take device heterogeimeit
pages in the hybrid cache at timie Now the state space ofaccount, we define a latency-based performance metric to eva
Yh(t), which we denote a€’,(m), can be viewed as theuate hybrid cache performance. Since requests are processe
set of all sequences df setsc = {¢1, ..., ¢;, } with each set; differently under different architectures, we distinduithe
consisting ofm; distinct integers taken from the sgt, ..., n}. definitions for flat architecture and layered architecture.

In each time slot, only one request arrives and triggers al) Latency Model under Flat ArchitectureSuppose that at
state transition accordingly. Under the independent egfee timet, a request arrives. To process this request, we first access
model inJIlI-A] the process)”(t) is clearly a Markov chain the metadata in file system to identify the current positte t
on the state spadg, (m) for the cache replacement algorithmsequest served, and there are two cases: (1) cache hit, which
described irffll-B] Now we denoter 4 (c) with ¢ = {¢1, ...,¢,} means that the requested page is available in the hybridcach
as the steady-state probability of statewhere A € {F, L} and (2) cache miss, which means that the requested page does
standing for the flat architecture or the layered architectwe not exist in the hybrid cache. In the following, we derive the
use a variabléit 4 (I;) to denote the height of lidf, which is access latency in the above two cases.
defined as the number of steps to move a data page from lisAt time ¢, if cache hit happens, the service time of accessing
lp to list [;. Precisely, we have a page depends on which cache page is accessed. If the hit

occurs in N-Cache, that S S piX:(t), then the
ii=1. . hy service time includes only the time to read a page from NVM,
htp(l;)=< " T andhty(l;) =i. (1) and we denote it agy,,, where N denotes N-Cache and
{Z_hN’ i=hy+1 . h, represents read. Otherwise, i.e., the hit occurs in D-Caaolde
Now the steady-state probability(c) can be derived as i h1 Lt Pr Xk i(8), then the service time is the time
shown in the following theorem. to read a page from DRAM, which we denote’Bs ;.

If cache miss happens, that i$,,_, pr Xk 0(t), then we
need to first copy the data from the secondary storage to the
destined cache (either D-Cache or N-Cache), then serve the

rale) = —1IT" (T 0’”*‘“”7) request from the corresponding cache. So the service time
Z(m) +ti=1 JEC; ; ;
includes the time to read a page from the secondary storage,
where Z(m) = X .o, (m) [T1=1 ([T ., pi)"a 0. which we denote af’s ., the time to write a page to cache,

pr=ck™7, >0,

Theorem 1. The steady state probabilities, (c), with ¢ €
C,(m), can be written as

H©) m©

which we denote a$), ,, for writing to D-Cache and’y ,, for (==
writing to N-Cache, and the time to read a page from cache.
Note that under the flat architecture, a new data page isenritt

to D-Cache (or N-Cache) with probability (or 1 — «), so

the service time in the case of cache miss can be derived as
OZ(T577~ + TD,w + TD,'I‘) + (1 - a)(TS,7‘ + TN,w + TN,'I‘)-

Dk

By summarizing the above two cases and noting that S Ht) Hon(®) Hial?)
H;(t) = > ¢, peXk,i(t), the average service time of pro- i e i
cessing the request at timeaunder the flat architecture, which (@) Flat Architecture
we also call the average latency, can be derived as follows. P e P P P P
Hy(t) Hy(t) Hpy-1(t) Huy(t) Hpua(t) Haoa(t)

my ™y Mhy Mhy+1 Mhy+2 M

(1=) (T + Tvr))+ (] Tago v (4)
i#£0

whered(7) is the device type of list;, i.e.,d(i) € {D, N, S}.

2) Latency Model under Layered ArchitecturSimilar to Particular deterministic processt) = {zyi(t)} (k= 1, ...,n
the above derivation, we can also derive the average Iater%iﬂi =1,...h).
under layered architecture, while there are two difference To formulate the set of ODEs to defingt), we first focus
First, if cache hit occurs in the highest list of N-Cache,,i.eon the flat architecture. According to the state transitioha
in list 1,,,,, then we need to exchange this data in N-Cacléngle data page illustrated in Figire 2(a), we can defifte
with a data page in D-Cache. As a result, we need one reaqusing the ODEs in[{6]-(10).
from N-Cache, one write to D-Cache, as well as one re&@hse 1:If ¢ #£0, 1, hy + 1, h, hy (i.e., in middle lists):
from D-Cache and one write to N-Cache, so the total time is

(b) Layered Architecture
Fig. 2. State transitions of a single data page.

!) . T,i (1)
Tnw+ Tpaw+Tp.r + T Second, if cache miss happens, at) = premia(t) =3 Psg,i-1 () ==
data can only be written to N-Cache, and the service time is Tpip1 (1)
+ D P ()T pa (1) ®)
Ts., + Tnw + Tn.r. In sSummary, the average latency under G PR Bk,

the layered architecture can be derived as: Case 2:If i = h ori = hy (i.e., in the highest list):

Li(t) = E[Ho®)](Ts,r+Tnwt+Thr) boi) = peania® - paa 02 @)
+E[Hpy ()TN +TNw+Tp .+ +Tp w) - L "
Case 3:If ¢ =1 (i.e., in the lowest list of N-Cache):
+ Z#O hNE[Hi(t)]Td(i),r- (5) e a®)
’ bei(t) = (L= a)pezio(t) = (1-a) 3 pjmjo(t) =
IV. MEAN FIELD ANALYSIS + Z]- pjxjvi(t)%:f) — P, (1) (8)

In this section, we conduct mean-field analysis to ap- o)
proximate the cache content distribution so as to make tHe@se 4:If i = hy +1 (i.e., in the lowest list of D-Cache):
computation more efficient. The rough idea of the mean- b(t) = oprao(t)—a S pya; (t):vk,i(t)
field analysis can be stated as follows. Instead of accyratel e Pkk,0 jPate ;
deriving the steady-state probability distribution dttgdrom " Z‘pjxj’i(t)mk,i+1(t) ~ ez a(). ©)
the Markov process, we first formulate a deterministic pssce J Mit1 ’
defined by a set of ordinary differential equations (ODHEsnt Case 5:If ¢ = 0 (i.e., in the storage layer):
we show that the Markov process can be approximated by the or 1 (D)

deterministic process, which converges to the fixed poiat,(i tro(t) = (1-a) Z], pﬂj,o(t)Tl
mean-field limit), and finally, we use the mean field limit to Thony+1(1)
approximate the steady-state solution of the Markov pmces +°‘Zj Pij0(t) ,ﬁhN+1 — Przk,0(t)- (10)

To illustrate the ODEs, we tak&l(6) as an example. First, if
A. ODEs pagek is in listi—1 at timet and it is accessed, then it moves
As mentioned in[[8], the rationale of the mean-field apffom listi—1 to ¢, and the probability ig,zx ;—1(t). Second,
proximation is that wherp, is small and the capacity ofif a page in listi — 1 is accessed, then it will exchange with a
each listm; (i € {0,1,...,h}) is large, the dynamics of randomly selected page in list The probability of accessing
one particular data page becomes independent of the hat rati page in listi — 1 is Zj pjz;i—1(t), which we denote as
of each list, hence, its behavior can be approximated B¥_,(¢), and the probability of pagé being in list: and
a time-inhomogeneous continuous-time Markov chain. Asaso being selected for exchanginguis;(¢)/m;. Thus, with
result, the stochastic proce¥$(¢) can be approximated by aprobability H; 1 (t)z.;(t)/m:, pagek moves from listi to

list — 1. Third, if a page in listi is accessed, then it will missed data pages in the fast-speed D-Cache so as to achieve

exchange with a randomly selected page indist 1. In this better overall cache performance. In terms of the convesgen

case, the probability of pagebeing in listi + 1 and moving note that the stochastic process under each architectsithda

back to listi is Z;;lpjxj,i()%ﬂt) At last, if pagek is reversible property, which is the same as Corollary 1in 6],

in list 4 and accessed, then it moves from listo list i + 1, we may also apply the method inl [1] to show that the process

and the corresponding probability jgx ;(¢). By summing will concentrate on the fixed point. We also point out that the

the above four cases, we have the ODE aglin (6). fixed-point provides an efficient numerical method to coreput
Now we consider the layered architecture, similar to tHtie steady-state performance for both architectures.

case of flat architecture, we can also formulate the set of ©DE

according to the state transitions illustrated in Figut) 2é4nd C. Convergence Results

the ODEs are defined b (1 1)={12). Here, we show that we can usg(t) = >, . (t)pr tO
Case 1:If i # 0 (i.e., in the hybrid cache): approximateH;(t) = >, Xx,i(t)pr wherex; ;(t) is defined
. s () by the set of ODEs. The convergence result is stated in the
Tp,i(t) = pragi—1(t) — Zj Wj,z'fl(t)Ti following theorem.

)M —prari(t). (1) Theorem 3. Whenp,—0 as n—oo (a=mazgp, — 0) and
i+l m; — oo, then for anyT, Elsup; ,p |Hi(t) — 6;(t)[]] — 0,
with initial condition H;(0) = 4;(0).

+ 1{<i<h)}(2ji’j%ﬂ(t

Case 2:If i =0 (i.e., in the storage layer):

iro(t) :Zj P30z (/M1 — prwpo(). (12) Proof: Please refer to the Appendix. [|

Remarks: We point out that the set of ODEs share similariteRemarks: Based on Theorefl 2 and Theorgin 3, we can use
with the ODEs formulated in[]6]. This is mainly becauséhe fixed point}_, 7 ; (derived in [1B)) to approximate the
we also divide each kind of device (DRAM or NVM) intocache content distributiofl; (defined in [(B)), which denotes
multiple lists so as to explore the full design space. Howevéhe hit probability of listi in the steady state. More impor-
we emphasize that with the consideration of multiple devicé&antly, it is efficient to compute; with this approximation,
and different architectures, the lists in the boundary befia which makes it feasible to further derive the average latenc
a very different way, and so the state transitions for boandeof the hybrid cache.

lists are also different.
V. MODEL VALIDATION

B. Fixed Point In this section, we first validate the mean-field approxima-
We derive the fixed point of the ODEs defined by] (6)tion by comparing the hit probabilities derived from modetia
(10),(11){12). The results are stated in the followingotieen. simulations, then we validate our model analysis of average

Theorem 2. The ODEs have a unlque fixed point, which wigtency by modifying the DRAMSIim2 simulator [1L8].

denote asr;; (k= 1,...,n andi = 0,..., h).
A. Validation on Mean-field Approximation

ht 4 (i)
Thyi = p}’j hi;(j) ; (13) In this subsection, we validate the mean-field approxinmatio
1 2= Py 53 using the trace-based simulations by setting = 200, mp
‘whereht 4(i) (A € {F,L}) is defined in[(l), ands, ..., s,) = 100,n = 1000, andp;. by following a Zipf-like distribution
is the unique solution of the following equation. with parametery = 0.8.
n NIZIOR To validate the mean-field approximation, we use the prob-
Z 1+Zk htAm =m;. ability of hitting each page in each device as a metric. Note
=1 i=1Pk that the hit probability can be derived from, ;. In particular,
Proof: Please refer to the Appendlx B for a particular page, the probability of hitting pagé: in

Remarks: Note that for the layered architecture, we havBl-Cache can be derived il 1 Tk,i» @nd the probability of
ht(i) = 4. By substituting it in the above Equations inhitting & in D-Cache iy —hy 41 Thi- FOr the simulation, we
Theorem[2, we have the same results as[in [6]. This fign 50 times and take an average result.

because for the layered architecture, the hybrid cache ean b
considered as a single unified cache contairfiniists when '

1

+ bt
deriving the cache content distribution. However, we woulz Z0s Pt gﬁl’::(:; %08 . e *"’*‘W:Nt;rom
like to emphasize that due to the device heterogeneity, t ooe a f*‘* *gﬁh:ogel' Sosf f.:"' Igﬁhﬁo%l'
average latency of the hybrid cache must be different froﬁu X st | Eoa 2ol [+ Sangn o
that of a single unified cache. On the other hand, for the fl .. :.3:** _ o298,
architecture, we see that in steady state, the fixed pqints 0 ERRESRe9ReY [V Mwwaga. .
independent of the parameter This implies that the hit ratio o e o e
is independent of the policy of choosing which cache dewice t () Flat Architecture (b) Layered Architecture

buffer new data. Thus, we can freely increasts cache more Fig. 3. Validation on mean-field approximation: The hit pmbbity of each

page in each device.

0.6

0.6 0.6

---0.9,simul
—+0.95,0DE

-6-(2,2),0DE
—(2,2),simul
~<(4,2),0DE
--+(4,2),simul
——(2,4),0DE
===(2,4),simul
-A-(4,4),0DE
* (4,4),simul

-6-(2,2),0DE
—(2,2),simul 0.55
~4(4,2),0DE
- - (4,2),simul
—(2,4),0DE
===(2,4),simul
-A-(4,4),0DE
* (4,4),simul

o
o
o

0.5

I
«n
o
3

-=~0.95,simul 0.45

Miss Ratio

o

S

a
Miss Ratio

o

S

o
Miss Ratio

I
~

0.35

o
w
@
o
w
@

10* 10° 10% 10* 10° 0?03 10* 10°
Number of Requests Number of Requests Number of Requests
(a) Flat (varyinga) (b) Flat (varyinghn, hp) (c) Layered (varyinghn, hp)
Fig. 4. Validation on mean-field approximation: Transieehaviors of the hybrid cache starting from an empty state.

o

w
o
w

o
S)
W

Figure[3 shows the model and simulation results under the. Storage Module: It simulates the access to storage devices by
flat and layered architectures.We see that the analysitgesu adding a delay to the request, then sends the new time clock to
match well with the simulation results. In particular, even the Time Collection Module. o
a very small system (e.gs, = 1000), we can still achieve a .]:Il'lr.ne. Col!ectlon Module: It collects the starting time and

inishing time of each request.

good approximation by using the mean-field analysis. « Device Performance Monitor Module: It collects the average
We further validate the mean-field approximation by con- read/write latency at device level for each cache deviceAMR
sidering the transient hit probability instead of the steathte and NVM) in each time interval.

result derived from the mean-field limit. We use the averageln our simulation, we use the Trace Generation Module to
miss ratio of the hybrid cache over all pages as a metric, agdnerate requests according to the Zipf-like distribytiamd
divide time into small intervals to compare the simulatiowda set the workload size: = 3000. We also use the Device
model results in each time interval. For the model resultBerformance Monitor Module to measure the device-level
since we now focus on the transient behavior, we derive thggency parameters of DRAM and NVMIG ., Tn ., T .w»
average miss ratio directly from the ODEs[ih (6)J(10) dnd{117 ,,), and then use them as inputs to our latency model to
(12). Precisely, the average miss ratio at time $lgt 1 is compute the average latency of the hybrid cache.
computed by>", prar,o(t + 1) = >, pr(r,0(t) + Tr0(t)). We validate our model by considering different design
For simulations, we record the position of each page afteéttings, including the system architecture, the capadify-
processing each request, and then measure the average mégshe and N-Cacher(p, andmy), and the number of lists
ratio in each time interval. in each cache devicé:, andhy). We only show the results
Figure [4 shows the results under different settings lyhder some settings in Talle | due to page limit. We see that
varying the parametes under flat architecture (Figuf@ 4(a))the analysis results match well with the simulation resemesn
and varyinghy and hp under flat and layered architecturesinder the settings of small systems, and the relative esrat i
(Figure[4(b) and4(c)). We see that even for the transiemiost2.87%. We also run more simulations for validation by
behavior, the mean-field model still approximates well foyarying the timing parameters of cache devices, results als
small systems. Another interesting observation is that tefow that our model captures the average latency of hybrid
number of lists in each cache device may have a big influenegche accurately. We skip the results in the interest ofespac
on the cache reactivity, which is measured by the time to fill
the cache. Precisely, if the number of lists is set to be |large_Ar¢._my__mp

hy hp Sim.(us) Model(us) Rel. Err.

hich Its i Il list si hen i d F 200 400 3 4 54.38 55.34 1.77%
which results in a small list size, then it may need a very— 500 400 3 3 5567 =i 68 178%
long time to fill the cache. That is, the convergence rate ¢o th—¢ 200 400 2 4 54.79 56.21 2.59%
steady state becomes small. F 100 200 3 4 6944 67.45 2.87%
L 400 200 4 3 49.28 49.30 0.04%

I L 400 200 3 3 70.04 67.54 0.36%

B. Validation on Average Latency 7200 200 4 2 6922 68.43 114%
L 300 100 3 2 8356 81.41 257%

To validate the model analysis of average latency, we de-
velop a hybrid cache simulator by modifying the DRAMSIim2 TABLE |
simulator [18], and it includes the following modules. L ATENCY VALIDATION UNDER DIFFERENT SETTINGS
« Trace Generation Module It generates requests with logical

address and request starting time.

« Memory Controller Module: It manages the cache metadata . .
and controls the page replacement. In this section, we use PCM as an example of NVM and

D-Cache Module: It simulates a DRAM device,serves theconduct numerical analysis to study the impact of system
requests coming to DRAM and sends the finishing time tarchitecture and design settings on hybrid cache perfocean
the Time Collection Module. The timing parameters of DRAMso as to understand the benefit of NVM and explore the design

refers to [14]. space of hybrid cache. In the following, we first introduce th

« N-Cache Module: It simulates a NVM device and serves the t i d iustifv their choi th f
requests coming to NVM. The default timing parameters drarameter setlings and Jus ify their choices, then we perfo

NVM are set according td [14], we can vary device-level lagen Numerical analysis to study the impact of various design
by adjusting the timing parameters. choices and provide insightful guidelines.

VI. NUMERICAL RESULTS AND GUIDELINES

~ — T, =128us
90 RS Ty =64Us

0 w 0
2 ~ T, =32Us 2 2 ©h
z RN Pl z > K N
< 80 ~o Ty =10us 2 2 sl ~e <h,
S o 7 R
g 8 K et T
o [@ 7
e g g < s
3 s 3 ?
z 3 z 60

50 50

01 02 03 04 05 06 07 0.8 0.9 1 2 3 4 5 6 7 8 9
a Num of lists N-Cache Num of lists D-Cache
(a) Impact ofa (b) Impact ofh (c) Impact ofhp

Fig. 5. Flat architecture: Impact ef, hy andhp on average latency of the hybrid cache denotes the probability of writing data to D-Cache when each
miss happenshy and hp denote the number of lists in N-Cache and D-Cache, resp@gtiv

A. Parameter Settings Figure [B(a) shows the analysis results. We see that the
fgyerage latency decreases wherincreases. That is, if we

Recall that our model takes device heterogeneity into' ssed d D-Cache with hiah babil
consideration by using a latency-based performance met{ffte¢ missed data pages to D-Cac € with higher probability,
E?en the overall cache performance increases, because more

Thus, to perform numerical analysis, we first configure th) .
y P umert ySis, we 1 gy ata will be served by the high-speed D-Cache. However,

erformance parameters for different devices. AR . .
P P g}e performance gain is limited when keep increasing PCM

DRAM parameters are measured at the granularity) .
nanoseconds in practical file system page cache environn%%'iformance since the speed gap between DRAM and PCM is

. . : . narrowed, especially for the write performance. For exampl
by patching Linux kernel 4.0.2. Both read and write Iateamél; we set the PCM write latency asyus, which is 8< smaller

are around 0,2s, averaged over millions of records. Note thal[h . .
: : . an the common setting, then less than 10% improvement
this latency is nearly 10 longer than that reported IEI[5]:[11'6]’can be achieved when increasingfrom 0.1 to 0.9. In the

which is 10 ~ 25ns, this is mainly because of the softwareT lowi tud p 0.8 under the flat architect
overhead caused by file system. As PCM is not available iRiowing study, we fixa as ©.6 under the flat architecture.

. Impact of hy and hp: Now we study the impact of
the market yet, we refer to the parameter settings_ih [13], an . 0
let T, = 6.7us and Ty ., = 128.3us. andhp, which denote the number of lists in N-Cache and D-

: Cache, respectively. To decouple the dependency betivgen
To set the latency of accessing the secondary storage, é’v% hp, e vary hx by fixing i in Figure[(b), and vary

consider an example of networked storage application, ' A
which the file server is equipped with an all-flash storagfﬁ% ?gllgﬁ?r?ghévblslzg:gi?(q Based on the results, we have

system[[10]. The network parameters are based on the timing i o)
parameters in previous workl[7], and precisely, the network* Increasing the number of lists in N-Cache (i/ex) does

overhead for 4 KB transmission is calculated as 41s((8.2 not always increase the cache performance. For example,
s basic latency + (4,096< 8) bits x 1 ns/bit). Thus, the as shown in Figurél5(b), whehp = 9, increasingh.y
overall read time is set as 154 (110us file server read time incurs even longer latency whény is larger than 7. The

+ 41 pus network transmission overhead). main reason is that increasing the number of lists in N-

Table[Tl summarizes the delay parameters of different de- Cache may resultin a r_eduction of the_ overall cache miss
vices used in this paper. Note that given the latency paensiet ~ Probability of the hybrid cache, but it also leads to a
in Table[Tl and the cache content distribution approximétgd reduction of the cache hit probability of D-Cache as hot
i in (I3), the average latency under flat and layered archi- data is more likely to be trapped in N-Cache.

tectures can be computed by usifigy (4) did (5), respectively. ® The average Iatgncy decreases when u_sing more lists in
D-Cache by setting a largérp, because increasinigp

DRAM —_PCM Storage not o_nly decreases the overall pache mi;s proba_bility, but
4KB R. Lat.. 0.2us 6.7us 151ps also increases the D-Cache hit probability. Besides, the
4KB W. Lat.: 0.2us 128.3us - performance gain diminishes whén, is already large.

TABLE Il We also conduct analysis by varying the latency of PCM, the

THE LATENCY OF DIFFERENT DEVICES IN COMMON SETTING Capacity of N-Cache and D'CaChe, and we observe the same

conclusions. We do not show the results here in the intefest o
B. Impact of Design Choices under Flat Architecture space. Further considering the impact/of and hp on the

In this subsection, we focus on the flat architecture, as@che reactivity (see Figuié 4), we recommend to use a large
study the impact of various design choices by setiing = hp and a smallhy under flat architecture, e.g., sep as 4
15000,mp = 5000,n = 100000, and;, by following a Zipf- ~ 6 andhy as 2~ 3.
like distribution with parametet = 0.8.

Impact of «: We first study the impact of parametet
which denotes the probability of writing data to D-Cache whe Now we focus on the layered architecture and study the
cache miss happens. Note that the missed data is writtenimpact of various design choices. Since the major factors
N-Cache with probabilityl — «. are h andhp under layered architecture, which denote the

C. Impact of Design Choices under Layered Architecture

150 o T Results show that the read performance of PCM has a
guo Tl EMOr w2l very small impact on the hybrid cache performance. However,
g <h g £ “""Tlencs] the impact of PCM write performancgy ., is significant.

%EZ ;iiiw In particular, when the write performance of PCM is slow,
L y S ok > the flat architecture achieves better performance than the
o o layered architecture, but when we increase the PCM write
b7 Cumotissncane 7 Cumotissocane — performance (by decreasin@ly.,,), the average latency of
(a) Impact ofhy (b) Impact of hybrid cache under layered architecture drops even faster,

Fig. 6. Layered architecture: Impact bfy andh, on average latencyh(y finally, |a_yered architecture OUIperforms_ﬂat ar(_:h'teewhen
andhp denote the number of lists in N-Cache and D-Cache, respggtv. PCM write becomes fast. Thus, choosing which architecture

. in hybrid cache for better performance really depends on the
number of lists in N-Cache and D-Cache, we also study thq,:;tM performance characteristics.

impact on the average latency of hybrid cache as before. To further investigate the architectural choices of hybrid

Impact of 7.y and hD:_ Figurel® Sh,OWS the analysis resuIts(:ache, we also take into consideration the capacity altmtat
and we have the following observations. of different cache devices. Results are shown in Fi§lire 8, in

« The average latency decreases when eitheor hp in- which the horizontal axis represents the percentage of PCM
creases. That is, better cache performance can be achieygehe by fixing the total budget, and the vertical axis shows
by addlng more lists in both N-Cache and D-Cache. the average |atency of the hybnd cache.

« The performance improvement is more significant when | Figurel8(a), we use the common settings in TaBle Il to set
adding more lists in N-Cache (i.e., increasing) than pcM write performance (i.eZy ., ~ 6407p,,,). We see that
increasinghp. In particular, the improvement is negligi-if we allocate more budget for PCM, the average latency keeps
ble when increasing p, especially wherhy is large. decreasing under the flat architecture as we can have a larger

We also vary the latency of PCM and the capacity of Nzache size. However, the result is very different for laglere
Cache and D-Cache. The results are in line with the obsereaehitecture, in particular, the average latency decesefiss,
tions. Further considering the impact iof andhp on cache but begins to increase when PCM capacity becomes very large.
reactivity (see Figurgl4), we recommend to set a ldrgeand The main reason is that under the layered architecture, even
a smallhp under layered architecture, e.g., $8f as 4~ 6 though we can have a large cache by using more PCM, it
andhp as 2~ 3. may incur a lot of data migrations between DRAM and PCM,

. which may incur a big overhead as PCM is two orders of
D. Impact of PCM Performance and Capacity magpnitude slower than DRAM.

In this subsection, we explore the performance impact andin terms of choosing which design between the flat and
design space of hybrid cache by varying the read and writgered architectures, we see that flat architecture caieach
performance of PCM, as well as its capacity allocation. Tigetter performance than layered architecture under the com
vary the PCM capacity in hybrid cache, we fix the total budg@on setting of performance-price ratio of PCM (as shown in
C, and adjusiny andmp by assuming that the price of PCMFigure[8(a)). However, if the write performance of PCM can
is 1 of that of DRAM [13]. have a big break through, e.g., in the extreme case where

Figure[T shows the impact of PCM performance und@iCM reaches the same performance as DRAM as shown in
flat and layered architectures. In this analysis, we fix PCMigure[8(b) (i.e.,Tn.. = Tp.), then layered architecture
capacity by settingny /(my +mp) = 50%, and we also fix becomes the better choice, and clearly, we do not need to
the read and write performance of DRANI . andTp .,) @S struggle with the capacity allocation problem in this siinia.
the common parameters in Tablé Il. We change the read ansl explore the whole design space, we also seek for the
write performance of PCM by varyingy , from 1x to 32x boundary condition as shown in Figure 8(c). In general, for
of Tp - (see Figurél7(a)), and varyifigy ., from 1x to 640x the common setting of performance-price ratio of PCM, flat
of Tp ., (see Figurél7(b)). Note that in common settirifis,. architecture outperforms layered architecture, but when t
is 32x of Tp . and T ., is 640x of Tp ., (see Tabl€&ll). write performance of PCM improves, we may need to switch

to the layered architecture.

140 140

©-Layered

———— Aot VIl. RELATED WORK

In recent years, researchers are suggesting to use non-
volatile devices to build a large memory page cache to imgprov
system performance. For example, researchers_ih [11] and

o [12] proposed to use NAND flash memories as a page cache
e e .0 01 between DRAM and disk storage so as to reduce the demand
of DRAM for system memory. Lee et al. in_[15] showed the
. . _ potential of using a small portion of STT-MRAM as the non-
Fig. 7. Impact of PCM read/write performanc@x(, and T). We fix . . L.
PCM capacity by settingnx /(my +mp) = 50%. ’ volatile buffer cache to eliminate the periodic flush ovexhe

H
Y]
S

Average Latency (us)
5
3

Average Latency (us)
= P
5 IS
8 S

®
3
@
Oy

©-Layered 3
ArFlat

@
wS
8

(@) Impact of Ty - (b) Impact of T,

Average Latency (us)
Average Latency (us)

a o o
<]

150

AFlat
©-Layered

Average Latency (us)

50
0 01 02 03 04 05 06 07 08 09 1
PCM Percentage

Fig. 8.

caused by the volatiie DRAM memory. Especially PCM, aj4]
large body of works to study how to architect PCM in memory,
€.g., D]! @]v m]' IB']! m]v B] [5]

However, recent study suggested that we should pay at-
tention to the difference between the material-level arel thl®!
system-level performance due to the under-developingsindu
trial technology [[1B]. Thus, it still necessitates a confyae [7]
sive study when incorporating NVM with DRAM from a]
system perspective.

This paper presents an analytical model to study the peid]
formance impact of incorporating NVM in hybrid page cache
by extending the list-based model inl [6], and we make they
following differences. First, we focus on hybrid cache syt [11]
and consider two system architectural designs. Second, ﬁvﬁ
take into account the device heterogeneity, and quantiy t
hybrid cache performance by developing a latency modél3]
Last, we conduct trace-driven simulations with the DRAM-
Sim2 simulator to validate our analysis. [14]

VIII. CONCLUSIONS 15

We develop mathematical models to analyze a hybrid cache
system so as to understand its performance impact and &
sign space. We study two different architectural desigas, fl
architecture and layered architecture, and develop adgaten
model by taking into consideration the device heterogga!neiE17
We conduct trace-driven simulations with DRAMSIm2 simu-
lator to validate our model, and perform extensive numeérica
analysis by incorporating different performance chanésties (18]
and capacity ratios. Based on our model analysis, we provide
multiple guidelines on how to design hybrid page cache so @8]
to reach high system throughput.

[20]
ACKNOWLEDGEMENTS

This work was supported by National Nature Science Fou 1]
dation of China (61303048 and 61379038), Anhui Provincia
Natural Science Foundation (1508085SQF214), CCF-Tencent
Open Research Fund. [22]

REFERENCES (23]
[1] J.-Y. L. Boudec. The stationary behaviour of fluid limitsf re-
versible processes is concentrated on stationary poar$iv preprint
arXiv:1009.5021 2010.
D. P. Bovet and M. CesatiUnderstanding the Linux KernelO’'Reilly
Media, Inc., 2005.
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.b\@aching

and Zipf-like Distributions: Evidence and Implicationsa INFOCOM,
1999.

(2]
(31

0 01 02 03 04 05 06 07 08 09 1
PCM Percentage

(a) Common settingT(y,.,~640Tp) (b) High-speed PCMTx,., = Tp,w)

50
0 01 02 03 04 05 06 07 08 09 1
PCM Percentage

(c) Boundary casel(y,., ~ 301D, w)

Impact of PCM capacity in hybrid cache under différparformance conditions.

J.-H. Choi, S.-M. Kim, C. Kim, K.-W. Park, and K. H. Park. RAMP:
Evaluation Framework for Optimal Page Allocation of Hybifidain
Memory Architecture. INEEE, ICPADS’'2012

G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: a Hybrid PRAMdan
DRAM Main Memory System. IHEEE DAC 2009.

N. Gast and B. Van Houdt. Transient and Steady-state rRegdf
A Family of List-based Cache Replacement Algorithms. AGM
SIGMETRICS2015.

D. A. Holland, E. L. Angelino, G. Wald, and M. |. Seltzerlash Caching
on The Storage Client. INSENIX, ATC'2013

J. M. Holte. Discrete gronwall lemma and applications. MAA-NCS
meeting at the University of North Dakoteolume 24, pages 1-7, 2009.
J. Hu, Q. Zhuge, C. J. Xue, W. C. Tseng, and H. M. Sha. So&wa
Enabled Wear-leveling for Hybrid PCM Main Memory on Embedide
Systems. IDATE, 2013.

IBM. IBM FlashSystem 820 and IBM FlashSystem 720.

T. Kgil and T. Mudge. FlashCache: A NAND Flash Memoryeg-ache
for Low Power Web Servers. IGASES 2006.

T. Kgil, D. Roberts, and T. Mudge. Improving NAND Flastaged Disk
Caches. INSCA IEEE, 2008.

H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. Evalugtifthase
Change Memory for Enterprise Storage Systems: A Study ohi@gc
and Tiering Approaches. IDSENIX, FAST'2014

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architectifitnase Change
Memory As A Scalable Dram AlternativeACM SIGARCH Computer
Architecture News37(3):2—-13, 2009.

E. Lee, H. Kang, H. Bahn, and K. Shin. Eliminating Per@&lush
Overhead of File I/O With Non-volatile Buffer Cache. Tmansactions
on ComputerslEEE, 2014.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalabligh Perfor-
mance Main Memory System Using Phase-change Memory Teaiwol
ACM SIGARCH Computer Architecture Newg3(3):24-33, 2009.

1 S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,(0.Chen, R. M.

Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, et ahase-
change Random Access Memory: A Scalable Technoldglyl Journal

of Research and DevelopmeBR(4.5):465-479, 2008.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSIim2Cycle
Accurate Memory System SimulatorComputer Architecture Letters
10(1):16-19, 2011.

C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li.
Emerging Non-volatile Memories: Opportunities and Chadles. In
CODES+ISSSACM, 2011.

R. D. Yates. A framework for uplink power control in aglhr
radio systems. IEEE Journal on selected areas in communicatjons
13(7):1341-1347, 1995.

H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, @dMutlu.
Row Buffer Locality Aware Caching Policies for Hybrid Menies. In
IEEE, ICCD’2012

W. Zheng and G. Zhang. FastScale: Accelerate RAID Bgaly
Minimizing Data Migration. InFAST, 2011.

G. K. Zipf. Relative Frequency as a Determinant of Plicn€hange.
Harvard studies in classical philologyt0:1-95, 1929.

APPENDIX this implies that

A. Proof of Theorem 1 1 h hta(li)
. _ Ta(e1) = 7 11 (H Pj) ; (15)
Note that, for the Layered Architecture, that is when (m) +Li=1 JeC

hta(i) = i, [[6], Theorem 1] has proofed the steady statBy using [I#), we can draw other states’s steady state
probability. Here, we follows the method to proof that Theoprobabilities4(c;). So far, we proof that (*)= (@) holds.
rem 1 is the probability in Flat Architecture. [|

We use(i, u) to denote the itemy in list 4, that isu € c;,
whereu is the item’s id, and use;)« (;») to denote the To prove Theorem 1, we start with the flat architecture.
new set that is same to seexcept that itemu in ¢, and item In flat architecture, we first derive the transition probities
v in ¢; exchanged. And denotg,_,; ,,) as the new set that is between state and another state, which are as follows.
same to set except that a new iterh from list 0 is changed . The probability that state is transited to another state

with item « from list i. For examplec = {c1,co,¢3,¢4} = can be expressed as:
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}, then C(172)<_>(274) and C9<_>(272)
can be draw as: mr(e) (1= > pi— Y. p)), (16)
JEChy J€Ech
ey = {14} {32}, {56}, {7, 8}}, noting that this transition will happen unless there is a
c = {{1,9},{3,4},{5,6},{7,8}}. hit on the highest list in D-Cache or N-Cache.
o2 = (1,93 (3,4}, 15,63, {7.8}}) o Then we express the probability that the other states are
To prove Theorem 1, we first show lemiia 1 as follows. transited back to state. Using the notations above, the

probability that the other states are transited back te stat
c can be expressed as

1—a) > > ar(Cisuw)pu/m (17)

k¢c,...,cp UECT

Lemma 1. For both the flat and layered architectureg &€ F
or L), equation[(2) is equivalent to the following equations:

DTAC (i 0y (i41,0))/ TA(C)=Pu /DuriF0, hiv, B,

() § 2)ma(Cro1,u))/ma(C) = Pr/Pu
)T a(Crs(1,u))/ma(c) 11/ o Z Z T (Chs (o 1.0))P/ Ty 11
3)7TA(Ck—>(hN+1,u))/7TA(C) = pk/pu kéc,...,cp UECh 41

Proof of Lemmal[l: First, we can see that Equatidn 2)(*) + Z Z ZWF(C(M)H@H_U))pv/miﬂ.
holds clearly. In order to prove (* (@), we label all the i£0 o b UE U1 ' '

statesc in C,,(m) ascy, ¢z, ..., €|, (m)|- FOr each pagé in . .
statec;, we definely (c;) as the height of the list that contains Reaching the steady state means that the probability that

i statec. i statec. ing list i state ¢ is transited to another state (i.e[LJ(16)) equals the
p:gg i I?hznale(céf)eégﬁlges (?rgcvleh a;ﬁstur?lln)g \/I\?ezn((:)(r)r?wgligz probability that other states are transited back to stafiee.,
gagh p;robabiﬁty Jwith feapect tor Usi?]gztr.\e 7). we draw (I8)). We can express the global balance equation of state

. o as follows,
the ratio of other state;’s steady state probabilitiess(c;)
(j € Cn(m),j # 1) to that ofc;: mr(c) 1 — § P — E :pj) (18)
n JE€Ch Jj€Ecn
C; cl) = | | Iy (ej)—1Ix(e1) 14
malej)/maler) (k=1 P) 4 =(1=0a) > > mr(Chuw)pu/m

k¢cr,...,clu€cy

By using thc';1t2|jcz"l(“‘)| ma(c;) = 1, as all the steady state
probabilities sums as 1, this yeilds +a Z Z TF(Chos (hy +1,0))Pu/ My +1

kc1,...,cuECH N 41

Calm)] + Y YD mr(Chuyo it)P/ M1
(1 n Z Hkilpkzk(cJ-)flk(m))m(cl) —1. i£0,hon s h UEC VEC 11
J=2 By plugging (*) into [I9), we draw that
So we get

JECh JjEcn k¢c i=1 u€c;

h
raen=1/(1+ S T peteer-nien). T SETE SITE ST S Sy
k=1
j=2

hich clearly holds asy_p; = 1, denoting that (*) is the
eady state probabilities. By using lemrhd 1, we proof
that Theorem 1 holds for the flat architecture. We see
|y (m)| that in steady state, the steady state of each state in flat
ma(cy) = Hk:1pk(1k(cl)/ Z szlp’flk(Cj)’ architecture (i.exr(c)) is independent of the parameter
=1

By multiple both the numerator and denominator in the Ieﬁ;
hand side by[],_, px'*(¢1), we get

B. Proof of Theorem 2 Therefore, we can conclude that the sequestg is

For the Layered Architecture, that is whény (i) = 7, [6] bounded, that i_s the sequence is increasing and it finally
enverges to a fixed poird.

Theorem 7 has proofed that the ODEs have a fixed point aft !]
the fixed point is unique. Here, we follows the method to show NOW we prove the uniqueness. Let> 1 and multiply all

the uniqueness in Flat Architecture. the elements in vector by A, we have:
Note that the equation_.has the same structure with a birth- n phtF(i)/\S.
and-death process. For lisE {1, ..., hx}, we have D;(\5) = Z — k i i —
p};mlmg,.,mi . o L Zj:l PiAs; + Zj:hN+1 Py, ASj
Tk = mxk#o,l S {O,l,...,h]\[}. n htF(i)S_
= Z P . T D;(9)

~ Noting that the listi € {hy +1,..., h} is the (i — hy)-th 1N+ Z;?gl pls;+ Z?:hzv-i—lpk s
list in D-Cache, so we have o _ _
oot unquaness 71 vmeh b A TheEren
i = “2r0.i € {hn+1,....h :
TR o Hy R0t S {hn =+ }

To simplify the above equation, we defireby letting

C. Proof of Theorem 3

M M2... My 1 .
si = ¢ ot ff Z €{1,...hn}, For the Layered Architecture, that is whény (i) = i, [[6]
ol om0 € thy +1,.. k). Theorem 7] has proofed the validity of the approximation.

Here, we follows the method to show validity of usibief) to
approximateH (¢) in Flat Architecture.
. By using that}_;_, z;,; = Let H (t) be the vector that describe the hit probability in
’ each list at time, where each elemet{;(t) = >, prXy,i(t)
is the hit probability of listi. Recall thatX} ;(t) denotes

Clearly, we have); zy,; = 1, which implies thatzy; =
pZtF(i)Si]
1+Z;271 piSjJFZ?:hNJA piihNS
m;, we can have

i z": pZtF(i)Si whether itemk is in list i at time t. If yes, X ;(t) = 1
m; = Lhyi = h - h —h - and 0 otherwise. Hende < H;(t) < 1.
k=1 o L+ ps e Pl Sy 2 S Hi{t) <

Let §(¢) be the vector that consists 6f(¢), each element
For a vectors = (s1, s2, ..., sp),i € {1,...,h}, where each §;(t) is defined byd;(t) = >, prxw,i(t), wherexy ;(t) is the

s; > 0. Define D;(s),i € {1,...,h} by unique solution of ODEs in({6]-(10), with initial conditien
" hir (i) x1,i(0) = X,;(0). So the sequencHt), t = 0,1, ... describes
(3 — Dy Si the deterministic process. By varying the initial condisowe
Dz(§> - Z hN 7 h j—hN . . f A . f h .
o L0 msi 2 i1 P S get series of sequence. At any time of the sequence, it is a

] . vector, denoted bﬁ. Let H be the name space of vector
Define a vectors;(y) to denote the vector that all thepnq we define two norms on anyin I:||8] _ = max; |d;],
elements equal te except that thei — th element isy. aﬂ;‘ﬂﬁ — max; |62 >
0o = i 104]7.

D;(8;(y)) = m; has a unique solution that we denotes . ' .
G4(5). HenceG(3) is a vector that calculated by Since Under the Flat Architecture, we define the functipron o

as follows.
Di(s) = 2": pprt? Case L:If i #0, 1, hy + 1, b, hy (i.., in middle lists):
AN h j h j— :
=1 1/51'+ng1p'115j/5i+zj:hN+1pi hNSj/Si f(_‘) 5 0i—10;
i = DPkOi—1 — ———

it implies that D;(3) is decreasing irs; whenj # 4, which 55 i
implies thatG;(3) is increasing ins. We define the sequence m—“ — Pr0s. (19)
5(t) by 5(0) = (0,0, ...,0) and 5(t + 1) = G(5(t)). o

M , , D;(8(t)) < m,;, which implies that)) S . .
oreover, for anyt, Di(s(t)) < mi, which implies tha Case 2:If i = h ori = hy (i.e., in the highest list):

h h
— = 0;0i—
n—Y mi<n-—Y D) [= padig — 221 (20)
i=1 i=i i
h i h i — . . .
N i pksi+ Y iny g Pi st Case 3:If i = 1 (i.e., in the lowest list of N-Cache):
- h j h j—h
— 1+ > N plst+ >0 pr N st 5.6
k=1 j=1Fk°j j=hn+1LlEk 7 NS o _) _ _ 10i—1
n 1 B = (-apdi - (-0 20
0i0;
= + . (21)

hn o J ot h J—hN .t m;
il S DD A D NI A i+l

Case 4:If i = hy + 1 (i.e., in the lowest list of D-Cache):

= 0i—10;
fi(d) = aprdi-i —a—=
m;
005
2L k. (22)
mit1
Case 5:If ¢ =0 (i.e., in the storage layer):
= 0001
i(0) = (1—
fi(6) = (1 =)=
000n,
a0%hN 41 Prdo. (23)
Mhyn+1

Now we first prove that the following four lemmas hold.

Lemma 2. f(H(t)) is the average variation ofi (), i.e.,
H(t)|F.] = fH(1)).

Lemma 3. The second moment of the variation &f(t) is
bounded is bounded:

E[|H(t+1)

EHt+1) -

— H)|2|F] < 202

Lemma 4. There exists a constart which is independent

with pi's and m;’s, such that the functiory is Lipschitz-
continuous of constant(a + b) on X, that is: for all 5 and
§" in H,

1£(8) = £l < Lla+)|§ — 6|

wherea = maxipr and b = max;(1/m;).

Lemma 5. With initial conditionsd; (0) =
can draw that:
t—1

H(0)+ > /(5(s)).

s=0

5(t) =

Proof of Lemmal[Z: Take case 1 as an example:i i 0, 1,
hyx + 1, h,hy (i.e.,
events can modify the value df;:

in middle lists), at time, two types of

o If attimet, itemk is requested in list, and it exchanges
with an itemj from list i + 1. The average variation of
H; due to these events is:

Z Xk,i(t)Xj,z'H(t)pk(

mit1

Pj — Pk)
ko
T Xie,i () X011 () pr

mi+1

pj
k.j

Z Xie,i () X041 () pr
- Pk

m;
P i+1

= ZX]LJrl pJZX’“ (O)pr/mita
—kaXJz+l /mz+lzxkz

Hz+1()Hi(t)

= — = —ppIli(t) (25)
mMi4+1
By summing the two terms, we have foe£ 0, 1, hy, h:
E[H(t+1) = Hi(t)|F] = fi(H (1))
Note thati is chosen randomly, we have
E[H(t+1) - H(t)|F] = f(H(t))
By summing up the cases of all the values oive can prove
Lemma 2. |

Proof of Lemma[3: The second moment of the variation of

E[H;(0)], then we [(t) can be derived as follows.

E[(Hz(t+1)

= Zsz 1(
+ ZXkL

Hi(t))?|F]
i(t) (px — p;) i/

Xj.i1(t)(ps — p)pr /it (26)

Since0 < p;, pr. < maxy, pr = a, we haveE[(H;(t+ 1) —

. Ifattimet, an item in listi — 1 is requested, denoted asHi(t))?|F¢] is less than:

k, ke{l,..,
i, denoted ag, j € {1,...,
H; due to these events is:

Xii—1(t) X, (t
3o X 1(1) X5, (t)pr (0% — py)
kg i

Pk

$ Xi,i—1(8) X5, (O)p
mq
Py,

()p

_ Z Xk,ifl(izf.(j,i s
= Dk Z JZ ZX Ji— 1
- zk: Xk,i—1(t)pk EJ: %f)pj

Hi—1(t)Hi(?)

mg

= peHia(t) — (24)

n}, and it exchanges with an item from list
n} . The average variation of

Zk,j Xk,i-1 (t)Xj»i(t)pkaz

mg

N >k Xii(t) X1 (t)pra®
mi+1

= (Hia(t)+ Hi(t))a® (27)
This shows that:
EllH (t+1) — H)|2, |7
= E[Sup(Hi(t +1) — Hy(t)*|]
< E[Z i(t+1) — Hi(t))?| 7]
< Z(Hz‘fl()+ Hi(t))a®
< 247 (28)

Thus, the second
bounded.

Proof of Lemmal[4: First we take case 1 as an example, that
is 7 75 0,1, hy +1, h, hy (i.e.,

fi(6)

We split f;(0) into

moment of the variation Bf(¢) is Proof of Theorem 3: Let M (¢) =" B(ﬁ(s—l—l) H(s)—

B f(H(s))), we have:

At = M) (29)

t—1
7(0)+ > f(H(s) +
s=0

in middle lists):

. - di—10i Combining Lemma 5 and Equatio {29), we get:
i t—1
5L5L — - — — —
o H(t) = 8(6) = S_(F(H(s)) = F(5(s))) + M (2)

s=0

four parts and denote each part aBy using norm, we have, for < 7, | H (t) — §(t)| ., is less

gi(6) for ease of presentation. We then show that each pHan

is Lipschitz-continuous individually. We denoté and 6"
two vectors which are chosen randomly frdin

Z 1) SAGON][

+sup || M(t)]
t<t

o Part 1:gi(5) = prd;_1. FOr anyi, i # 0, 1, hy + 1,

h, hy: By using Lemmal]4 we get|(f(H(s))_f(g(s)))Hoo
19:(8,) = 96| = pw(6; — 6,)] < peld; — 6 | ([ﬁg b))IIH((gIOO(]S(iS)LeO'ESStharfa + b). Hence, fort <
<alld =", })
X Y/ a+b Elsup || M(t
Hence|lg(d') - (6")||600§a||6’—6”|\00 2 L(a+b)E[|[(H(s) = 5(s))]l..] + [sup 177(1)]

o Part 2:¢,() =

For anyi, i # 0, 1, hy + 1,

By using LemmdBE]|| M(T)HZO] < 2a°7. Besides, we have

h,hy:
: R T - P .
19:(5;) — 9:(5;)] = | ———""=| E[M(t+ 1)|M(t), M(t —1), ..., M(0)]
i = BIM@)+H(t+1)=H(t)—=f(H(t))[M(t), M(t = 1), ..., M(0)]
_ |5i*1(6i =6) +0; (64 — 6i71)| = E[M()|M(t), M(t —1),..., M(0)]
m; + EH(t+1) = H(t) = f(H(®))[M(t), M(t = 1), ..., M(0)]
PN A 1 W (IO A = E[M(t)[M(t), M(t = 1), ..., M(0)] = M(t)
Sl So we havel [N (t + 1) [N (t), N (t — 1), ..., b (0)] = N (1),
, P b 9 which means thab/(t) is martingale. Thus, we have
b5171|(5z - 61)l + b61 |(5i71 - 51 1)| . 2
S 5 Efsup | M(r)]|] < E[IM(n)],] < V2a*r < vV2r(a +b)
<20)[6" =6 t<r
HenceHg(é)— 9(5”)”00 < 2b||67 B 57/”00 So far, we can pgtz\/le that far< T,AE[”ﬁ(t) - 5(t)|\oo] is
) = %941 “The proof is similar to part 2. €S thank(a+b6)> . E[[[(H(s) — 3(s))l o] + V27 (a+).

Sy °'7l

o Part 3:¢;(
HenceHg(

) —

(”)II

By using Discrete Gronwall inequality |rEI[8], The above

< 20|10 — 6" | inequality implies that E[sup,, |H(t) - 6(t)].] is less

o Part 4:g;()fpk5 The proofis S|m|Iarto part 1. Hencey, . (\/?(a + b))exp(L(a + b)r). Now by replacingT

19(6") = 9(6") |

Summing the above four parts, we can prove that igr0,
1, hy + 1, h,hy (i.e., in middle lists), there exists a constan{h

<ald - 8",

with 7oy ||H() = 5(0)]l.]

is less than(y/2(a+b)/L)e. Now we can finally show
at whenp, — 0 asn — oo (¢ = maxgpr — 0) and

we can haveE[sup,« .

L which is independent withp,'s and m;’s, such that the mi — 0o (i = 0.1,...h), then for r — | e
function f is Lipschitz-continuous of constaiit(a + b) on X, ! Y o L(a-+b) ’
that is Efsup;<, | H(t) = 8(¢)]|.] — 0, wheres(t) = 3=z (t)pr,

H(t) = 35, Xri(t)pr and H(0) = 5(0). u

1£(8)

— £l

< La+)|’ — 67|

wherea = maxypr andb = maz;(1/m;). By summing all
the cases of, we show Lemma 4 holds. [|

Proof of lemma[5: The proof of Lemma&l5 is simple aK0)
equalsH (0) and f(4(t)) is the variation ofj(¢) for all <. W

	I Introduction
	II Design Choices and Issues of Hybrid Cache
	II-A System Architecture
	II-B Cache Replacement Algorithm
	II-C Design Issues

	III System Model
	III-A Workload Model
	III-B Markov Model
	III-C Performance Metric
	III-C1 Latency Model under Flat Architecture
	III-C2 Latency Model under Layered Architecture

	IV Mean Field Analysis
	IV-A ODEs
	IV-B Fixed Point
	IV-C Convergence Results

	V Model Validation
	V-A Validation on Mean-field Approximation
	V-B Validation on Average Latency

	VI Numerical results and guidelines
	VI-A Parameter Settings
	VI-B Impact of Design Choices under Flat Architecture
	VI-C Impact of Design Choices under Layered Architecture
	VI-D Impact of PCM Performance and Capacity

	VII Related work
	VIII Conclusions
	References
	VIII-A Proof of Theorem 1
	VIII-B Proof of Theorem 2
	VIII-C Proof of Theorem 3

