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2École Polytechnique Fédérale de Lausanne (EPFL)

Abstract—This paper investigates the problem of deriv-
ing a white box performance model of Hardware Trans-
actional Memory (HTM) systems. The proposed model
targets TSX, a popular implementation of HTM integrated
in Intel processors starting with the Haswell family in 2013.

An inherent difficulty with building white-box models of
commercially available HTM systems is that their internals
are either vaguely documented or undisclosed by their
manufacturers. We tackle this challenge by designing a set
of experiments that allow us to shed lights on the internal
mechanisms used in TSX to manage conflicts among
transactions and to track their readsets and writesets.

We exploit the information inferred from this exper-
imental study to build an analytical model of TSX fo-
cused on capturing the impact on performance of two
key mechanisms: the concurrency control scheme and the
management of transactional meta-data in the processor’s
caches. We validate the proposed model by means of an
extensive experimental study encompassing a broad range
of workloads executed on a real system.

I. INTRODUCTION

One of the main sources of complexity in parallel pro-
gramming stems from the need to properly synchronize
accesses to shared memory regions. The traditional, lock-
based approach is well-known to be error-prone, even for
experienced programmers [23]. Transactional Memory
(TM) [22] has emerged as a simpler, and hence more
attractive, alternative to lock-based synchronization.

Over the last two decades, the research on TM has led
to many different designs and implementations, either in
software [18], [17], [7], hardware [24], [30], or combi-
nations of both [6]. Software-based TM (STM) systems
rely on software instrumentation to trace memory ac-
cesses and detect the concurrent execution of conflicting
transactions. STM supports a broad range of concurrency
control algorithms, but the overheads resulting from
software-based tracking of transactions’ data accesses
can severely hinder application performance [4]. These
overheads can be avoided by delegating the implementa-
tion of the TM abstraction to hardware mechanisms, an
approach that goes under the name of hardware trans-
actional memory (HTM). While a number of alternative
HTM designs have been proposed in the literature, the

HTM implementations that are currently commercially
available [24], [30] are built as relatively non-intrusive
extensions of the cache coherency algorithm and, as
such, suffer from several restrictions [16], [20]. Overall,
make the performance of HTM is much dependent on a
number of workload parameters and architectural design
choices [16], [20], [28], [15], [10] — which makes the
problem of predicting the performance achievable by
HTM-based applications a very challenging task.

This paper takes a step towards clarifying our under-
standing of HTM’s performance by developing what is,
to the best of our knowledge, the first analytical model
of an HTM system ever published in the literature. The
presented model targets a popular implementation of
HTM, which has been integrated in mainstream Intel
processors since 2013 and goes under the name of
Transactional Synchronization Extensions (TSX).

The first challenge we had to face in order to enable
the construction of an analytical model of TSX was to
obtain information on some key internal mechanisms,
which are undocumented by Intel and undisclosed by
previous literature. We addressed this issue by designing
a set of experiments that allowed us to gain insights
on how TSX resolves conflicts between transactions and
tracks memory accesses across the cache hierarchy.

Based on our experimental findings, we develop an
analytical model focused on capturing the dynamics
of two mechanisms that have a crucial impact on the
performance of HTM systems: the schemes employed to
manage conflicts among concurrent transactions and to
track the memory regions accessed by transactions. The
model allows us to gain a deeper understanding of the
effect that design choices, parameterization and work-
load characteristics have on performance. Moreover, the
model may serve as a building block to implement
performance prediction and optimization schemes for
applications that are built on top of TSX.

We validate the proposed model using a real system
and a set of synthetic micro-benchmarks. The exper-
imental results show that the model can predict the
application’s throughput and abort rate with < 10% error
for a broad range of workload settings.
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II. BACKGROUND

HTM applications use compiler directives to demar-
cate the begin and end (commit) transactions. The code
enclosed between these two directives is executed atom-
ically and in isolation, as if it was protected by a mutex
lock. The TM runtime executes the code speculatively
and leverages the underlying cache coherence protocol
to detect and resolve conflicting accesses to memory.

Current HTM systems provide a best-effort imple-
mentation of the TM abstraction, in the sense that
transactions are not guaranteed to commit even if they
run in absence of concurrency. This is due to the fact
that existing HTM systems use the processor’s cache
hierarchy to track transactional accesses, and rely on
the cache coherence protocol to detect conflicts. As a
consequence, transactions whose footprint exceeds the
processor’s cache capacity are subject to capacity aborts.
A transaction can also experience other types of spurious
aborts (i.e., aborts not imputable to conflicting accesses),
because of external events like page faults, context
switches and system calls.

HTM-based applications must, thus, rely on a fall-
back mechanism to guarantee that a transaction eventu-
ally commits. The default approach is to allow transac-
tions to execute in a software fall-back execution path,
guarded by a Single Global Lock (SGL). When a hard-
ware transaction aborts, it can acquire the SGL instead
of retrying its execution in hardware. The SGL is also
read by each transaction upon its start. Therefore, when
a transaction activates the fall-back path by acquiring the
SGL, any concurrent hardware transaction is aborted,
and only restarted when the lock becomes free again.
This approach ensures that a transaction that acquires
the SGL executes in isolation from other transactions.
The downside is that it serializes the execution of trans-
actions, which can severely decrease performance.

The policy governing the retry logic of a transaction
(upon an abort event) can be implemented either in
hardware or in software. The latter approach provides
more flexibility, allowing for tuning not only the max-
imum number of hardware attempts, which we call the
budget, but also how such budget should be consumed
in presence of different abort types [16].

III. DISSECTING INTEL’S HTM IMPLEMENTATION

We investigate two key aspects of TSX’s HTM imple-
mentation: i) how it manages conflict among concurrent
transactions, and ii) how a transaction’s metadata are
maintained in the cache hierarchy and what impact this
has on its capacity limitations.

Intel has disclosed limited information on the internal
mechanisms employed by its HTM implementation. The
information reported in the rest of this section is either
based on previous external studies [28], [29], or inferred
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Figure 1: Probability of capacity abort when accessing a
different number of cache lines. Comparing a real system
(HAR) vs a simulator modelling only L1 (SIM).

via experiments designed explicitly to shed light on the
internals of Intel’s HTM implementation. The results
reported in this section and in the remainder of this paper
are based on a i7-5960X eight-core processor running at
3.0GhZ, equipped with 32 GB RAM and Ubuntu 15.04.

A. Conflict detection and resolution.
Existing literature [28], [29] has already pointed out

that Intel’s HTM implementation relies on an eager
conflict detection scheme, i.e., when a conflict arises
between two transactions, one of the two transactions
is immediately aborted. Another relevant aspect of the
conflict detection schemes in existing HTM implemen-
tations is that, since they are built on top of a pre-
existing cache coherency protocol, the conflict detection
granularity is equal to the cache line size, which is, for
our target Intel CPU, 64 bytes. The conflict resolution
policy used by TSX, i.e., which transaction is aborted in
the presence of a conflict, is an aspect that, to the best
of our knowledge, has not been documented by Intel
and has not been systematically investigated by previous
studies. We tackled this issued by designing an exper-
iment that forces two transactions to issue conflicting
memory accesses (load or store of one memory word)
in different orders, by injecting properly tuned delays
during transaction’s execution. This experiment revealed
that TSX uses a a “last requester wins” policy, i.e., if
two concurrent transactions conflict (i.e., they access the
same memory word and at least one is a write), the first
transaction to have performed the access is aborted.

B. Capacity limitations.
Intel has not disclosed how transactional metadata are

maintained by its HTM implementation, but previous
studies [28], [29] have already partially answered this
question, reaching the following conclusions:
• Writes issued in a transaction are stored in the L1 data
cache. However, the maximum number of writes that
can be executed by a transaction is smaller than what
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could be accommodated by the entire L1 data cache,
around 450 cache lines vs a total of 512. Nguyen [29]
hypothesized that this reduction of the effective capacity
of the L1 cache could be explained by considering that a
transaction must also have sufficient space to store other
program metadata, like the head of the program stack.
• Read-only transactions can perform a much larger
number of reads than the L1 and L2 caches can possibly
store, and the maximum read capacity is around half of
the total L3 cache size. In the light of these observations,
Nguyen [29] therefore hypothesised that the transactional
reads are maintained in L3. Unlike L1, L3 is shared
among all the cores of the same processor, as well as
by programs code and data — which may explain why
a transaction’s read capacity is smaller than the size of
the entire L3 cache.

In this study, we address two questions that are still
unanswered by previous studies: i) how many cache
lines in L1 are occupied by additional metadata main-
tained by transactions (i.e., metadata not used to track
the transaction readset and writeset)? and ii) what is the
effective capacity of transactions that execute a mix of
read and write operations?

To answer these questions we built a simulator of an
L1 cache that uses the same geometry of our reference
processor (8-way associative, 64 sets, 64-bytes cache
lines, 32KB capacity) and implements a Least Recently
Used (LRU) eviction policy. To validate our assumptions
on the internal mechanisms employed in the considered
HTM implementation, we compare the output produced
by the execution of synthetic programs running on the
real system with the output generated by simulating the
execution of the same programs.

Size of additional transactional metadata in L1. To
determine the size of the additional metadata stored by
transactions, we designed the following experiment. We
occupy P cache lines, chosen uniformly at random in the
simulated cache, to emulate the insertion of additional
transactional metadata upon the start of a transaction.
Then we simulate random writes to memory using the
granularity of a cache line. We report a capacity event
in the simulation when we evict one of the cache lines
storing one of the addresses written by the transaction
or one of the additional transactional metadata. We
varied the value of P∈[0,512] and compared the average
number of writes that a transaction could successfully
execute in 50000 simulated and real runs. The value
of P that produces the best match is 3, a value that
appears reasonable especially if one considers that the
transactional metadata may not be cache line aligned and
hence may span multiple cache lines.

Capacity with mixes of read/write operations. Pre-
vious works on the capacity of HTM implementations,
e.g., [29], [28], have considered workloads composed

solely of read-only or write-only transactions. We report
in Figure 1 the probability for a transaction to incur a
capacity exception when attempting to access i distinct
cache-aligned addresses selected uniformly at random,
where each access has probability PW of being a write.

Figure 1 reveals that halving the number of writes
issued by a transaction (PW =0.5) does not lead to a dou-
bling of the effective capacity of transactions, but yields
only a modest increase of the transaction’s capacity —
whose median moves from around 220 to 250 accesses.
We argue that this phenomenon is not imputable to
evictions of (read) cache lines in the L3 cache, which
has a 8MB capacity and can accommodate thousands
of random reads with high probability. We hypothesize,
conversely, that, given the large relative difference in size
between L1 and L3 (32KB vs 8MB), the transaction
capacity is, for non-negligible values of PW , largely
dependent on dynamics taking place at the L1 cache.
In fact, whenever a transaction issues a read access, the
corresponding cache line has to be loaded in the L1
cache. This may cause the eviction from L1 of cache
lines that had been previously accessed by the same
transaction. If the evicted cache line had been written
by the transaction, a capacity exception is triggered. If
the evicted cache line had been read, the transaction does
not have to abort, since the corresponding metadata are
still stored in L3.

We tested our hypothesis using the same L1 simulator
mentioned above, and, as can be observed in Figure 1,
we obtain a very close match for PW values as small
as 1%. Below this value, as expected, the likelihood
of incurring evictions of cache lines in the transaction’s
readset (stored in L3) becomes non-negligible.

Overall, this study confirms that, for a broad range
of PW values ([1.0 - 0.01]), it is possible to predict the
probability of capacity aborts quite accurately via models
that capture exclusively the behavior of L1 and neglect
the dynamics affecting L3 — which are inherently more
complex given the typically shared nature of L3.

IV. ANALYTICAL MODEL

This section presents an analytical model of Intel’s
TSX. Section IV-A presents the model’s key parameters
and assumptions. Section IV-B illustrates the methodol-
ogy adopted to derive the model. Sections IV-C and IV-D
present a first version of the model that, for the sake
of presentation, does not consider capacity exceptions.
Then, in Section IV-E, we discuss how to extend the
model to encompass also these sources of transaction
aborts. Finally, Section IV-F details how to solve the
model and obtain the predicted KPIs.

A. Key parameters and assumptions
We consider an HTM system with θ threads that, in

a closed loop, execute either a transactional code block
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(TCB) or a non-transactional code block (NTCB). Intel
CPUs support simultaneous multi-threading (SMT) of up
to two threads in the same physical core. When multiple
threads run on the same physical core, they contend for
the core’s hardware resources, including its cache. For
the purpose of this work, we do not model the effects
of SMT. When a thread completes a code block, it starts
a new TCB with probability pt and a new NTCB with
probability 1− pt. A TCB has an average service time,
i.e., CPU demand, of C time units, and a NTCB has an
average service time Cn. The time to complete a TCB
is assumed to be the same, independently of whether
it is executed using HTM or using the software fall-
back path. However, the HTM path has additional costs
for starting (TB) and committing (TC) a transaction.
Likewise, the software fall-back path incurs costs for
acquiring (T l

B) and releasing (T l
C) the SGL.

We model the following retry policy to deal with
transaction aborts: transactions are initially assigned a
budget of B retries; upon an aborts, the transaction’s
budget is decremented by one; if the budget is exhausted,
the transaction is executed using the software fall-back.

A transaction accesses on average L distinct cache
lines, or granules. The timing of such accesses is spread
uniformly at random during a transaction’s lifetime. In
other words, a transaction performs a memory access, on
average, every C/L time units. The granule accessed at
each iteration is chosen uniformly at random over a set
of cardinality D. The probability that a memory access
is a write is denoted PW .

The model assumes that memory accesses issued by
threads running NTCBs do not interfere with the execu-
tion of transactional threads — an assumption that is met,
for instance, by the C++11 data-race-free model [3]. The
model also does not consider aborts caused by interrupts
or page faults. This last assumption simplifies the de-
velopment of the model without significantly impacting
its accuracy, as these sources of aborts are typically
negligible in real-life workloads [16].

In the model a restarted transaction is indistinguish-
able from a transaction that starts for the first time. In
addition, the execution times of code blocks are assumed
to be exponentially distributed i.i.d. variables.

Finally, the model assumes a stable and ergodic sys-
tem [26], so that quantities like abort probabilities and
the mean execution times exist and are finite, and defined
to be either long-run averages or steady-state quantities.

B. Modeling methodology and target KPIs
Our model is based on average value analysis [34]:

it takes as input system parameters, e.g., θ and B, the
average values corresponding to the workload character-
ization, e.g., C and Cn, and it returns average values of
three Key Performance Indicators (KPIs). Specifically,
the model computes the probability that a transaction

aborts, PA, the average throughput of the system, X , and
the average response time of a transaction, R, i.e., the
average time spent by the transaction including multiple
re-executions possibly in the fall-back path.

We model the evolution of the system by means
of a Continuous Time Markov Chain (CTMC) [26].
The CTMC’s vertices represent the states in which
the system can be and the edges represent the rates
at which the system transitions from one state to an-
other. A CTMC’s state is uniquely identified by a tuple
〈θB , θB−1, . . . , θ0, θn〉, where θi, i = B, . . . , 1 indi-
cates the number of threads that are running a TCB
and still have i hardware retries remaining from their
initial budget. θ0 is the number of threads that have
exhausted their budget and have to execute using the
sequential fall-back path. θn is the number of threads
executing a NTCB. Since we are modeling a closed
system where threads constantly execute a code block,

it follows that
∑B

i=0 θi + θn = θ. Overall, the number
of states in the CTMC is equal to the number of ways
in which θ indistinguishable balls can be put into B+2
distinguishable bins, which is given by

(
θ+B+1
B+1

)
[19].

The system transitions from one state to another upon
the completion of a NTCB, and upon the commit or
abort of one or more transactions. When θ0 = 0, threads
executing hardware transactions can execute in parallel.
When θ0 > 0, hardware transactions are stalled until
the global lock is free, and the execution of threads with
depleted budget is serialized. Threads executing a NTCB
are not affected by the acquisition of the global lock.

We denote by μt,s the rate at which a thread completes
a transactional code block, either successfully or prema-
turely because of an abort, in the current state s. Note
that, whenever the value of a variable is state-dependent,
we shall specify the identifier of the current state, s, as a
subscript. We denote by μn = 1/Cn the rate at which a
NTCB is completed and by μf = 1/C the rate at which a
thread completes a TCB in the fall-back path. In general,
let the system be in a state s where there are t hardware
transactions running concurrently and n threads running
a NTCB. Then, a state transition happens if i) any of
the t transactions commits; ii) any of the t transactions
aborts; or iii) any of the n NTCBs is completed. The
first transition is triggered at a rate given by the product
of the rate at which a TCB is completed times the (state-
dependent) probability that the completion is caused by
a commit times the number of concurrent transactions,
i.e., tμt,s(1 − pa,s). Following a similar reasoning, the
completion rates for the second and third events are
tμt,spa,s and nμn, respectively. If a transaction aborts
and fall-backs to acquiring the global lock, it induces
the abort of the other t − 1 transactions and decreases
their budget by one. The full set of transition rates is
reported in Table I and is based on the above reasoning.

To compute μt,s and pa,s we derive analytical expres-

224



Source state Destination State Transition Rate Corresponding Event

[θB , .., θ0, θn] [θB , .., θ0, θn] θnμn(1− pt) A thread finishes a NTCB and starts another NTCB

[θB , .., θ0, θn] [θB + 1, .., θ0, θn − 1] θnμnpt A thread finishes a NTCB and starts a TCB

[θB , .., θi, ..., θ1, 0, θn] [θB + 1, .., θi − 1, ..., θ1, 0, θn] θiμt,s(1− pa,s)pt A thread with i > 0 retries left commits a TCB and starts another TCB

[θB , .., θi, ..., θ1, 0, θn] [θB , .., θi − 1, ..., θ1, 0, θn + 1] θiμt,s(1−pa,s)(1−pt) A thread with i > 0 retries left commits a TCB and starts a NTCB

[θB , .., θi, ..., θ1, 0, θn] [θB , .., θi − 1, θi−1 + 1, ..., θ1, 0, θn] θiμt,spa,s A thread with i > 1 retries left aborts a TCB and restarts

[θB , .., θi, ..., θ1, 0, θn] [0, θB , .., θi+1, .., θ2, θ1, θn] θ1μt,spa,s A thread with 1 retry left aborts a TCB and falls-back

[θB , .., θ1, θ0, θn] [θB + 1, .., θ1, θ0 − 1, θn] μfpt A thread completes a TCB in the fall-back path and starts another TCB

[θB , .., θ1, θ0, θn] [θB , .., θ1, θ0 − 1, θn + 1] μf (1− pt) A thread completes a TCB in the fall-back path and starts a NTCB

Table I: State transition diagram.

sions that consider abort events due exclusively to con-
flicts between transactions, while neglecting cascading
abort events caused by the abort of transactions with
only 1 retry left. In fact, even in presence of multiple,
concurrent cascading aborts, the transition in the CTMC
is triggered by the abort (caused by a conflict or by a
capacity exception) that triggered the domino effect in
the first place. Also, the transition rates in Table I are
computed assuming the independence of the abort events
affecting different threads, and cascading abort events are
clearly not independent.

Once the CTMC is instantiated with the transition
rates, we obtain its stationary probability vector �π1.
Based on �π, we compute the global average throughput
and abort probability as the weighted average of the
probabilities �πs of being in state s and the corresponding
throughput/abort probability in that state. It is at this
stage that we account for the effects of cascading aborts
triggered when the fall-back path is acquired, by comput-
ing adjusted values for μt,s and pa,s, denoted as μ′t,s and
p′a,s. This allows for accurately reflecting these cascading
abort dynamics in the computation of the target KPIs.

C. Modelling aborts due to conflicts

As discussed in Section II, TSX employs an eager
conflict detection and a “last requester wins” conflict
resolution policy. After a hardware transaction T ac-
cesses the i-th granule and until its i+1-th access, there
is an average time interval of length C/L. During this
time, T can be aborted because of conflicting accesses
by concurrent transactions on any of the i data items T
has accessed. If we assume that the sequence of accesses
to granules issued by concurrent transactions forms a
Poisson process, we can express the probability density
function corresponding to the event that a conflicting
access is generated at time t, with t ∈ [0, C/L] as:

1This can be achieved by solving the set of linear equations
expressed by π ·Q=0, where Q is the infinitesimal generator matrix of
the CTMC [26]. We use a numerical solver [25] that relies on the QR
decomposition algorithm [33], which has O(n3) time complexity and
O(n2) space complexity, n being the number of states of the CTMC.

fc,s(i, t) = Hs(i)e
−Hs(i)t

Hs(i) is the rate at which concurrent transactions
conflicts on any of the i granules accessed by T in
state s, and it can be computed as Hs(i) = λsPh(i)PI ,
where: λs is the rate at which concurrent threads issue
accesses to memory words; Ph(i) is the probability that a
concurrent access targets one of the i granules previously
accessed by T ; PI is the probability that an access
by a concurrent transaction T ′ to a granule previously
read/written by T results in a conflict.

During the execution of a transaction, a thread issues
a memory access every C/L time units. Before starting
a transaction, however, a thread incurs a cost TB to
initialize the transaction. Similarly, when committing
(resp., aborting), the thread incurs a cost TC (resp., TA).
A transaction does not issue any memory access during
these lapses of time. Hence, assuming that TC ≈ TA,
a transactional thread executes a memory access, on
average, every (C +TA +TB)/L time units. Hence, the

model computes λs =
θt,s−1

(C+TA+TB)/L , where θt,s is the

number of transactional threads that are active in a given
CTMC state. Because we are assuming that memory
granules are chosen uniformly at random from a pool
of cardinality D, Ph(i) = i/D.

Finally, two concurrent accesses yield a conflict if at
least one of the two is a write: PI = 1− (1− PW )2.

D. Response time and abort probability
We now compute the mean response time Rt of a

single execution of a transaction T using HTM, assum-
ing that transactions can only be aborted because of
conflicts. This response time does not include multiple
re-executions of the same transaction: Rt is the average
time since the (re)start of T and its completion, inde-
pendently of whether it is successful.

We first introduce the probability that a transaction
T manages to successfully perform i memory accesses
in state s, PR,s(i). PR,s(i) has a recursive expression,
because it is given by the product of the probability that
T manages to access i− 1 granules and the probability
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that T then manages to access the i-th granule without
experiencing aborts due to a data conflict.

The average time between two memory accesses is
C/L. The probability that a transaction that has accessed
i granules is not aborted in such lapse of time is:

PR,s(i) = PR,s(i− 1)

(
1−

∫ C/L

0

fc,s(i− 1, t)dt

)

= PR,s(i− 1)
(
e−Hs(i−1)C/L

)
(1)

PR,s(i) is used to obtain Rt,s. Rt,s corresponds to
the cost of starting a transaction plus the sum of two
contributes: i) one corresponding to the case in which
T commits (RC

t,s); and, ii) one corresponding to the

abort case (RA
t,s). Namely Rt,s = TB + RC

t,s + RA
t,s.

A transaction T commits if it successfully performs L
memory accesses and it is not aborted during the final
commit operation. In this case, its average execution
time, including the final validation phase, is equal to
C + TC . The probability that the validation phase is
successful is computed as 1 minus the probability that T
is aborted in a time window of duration TC , after having
accessed L granules. Hence,

RC
t,s = PR,s(L)(C + e−Hs(L)TCTC) (2)

We now compute RA
t,s. Let us first compute the

probability density function (PDF) corresponding to the
event that T successfully accesses i granules and aborts
at time t, with t ∈ [0, C/L], before accessing the i+ 1-
th granule. By leveraging the assumption of independent
accesses to granules, this PDF is PR,s(i)fc,s(i, t). The
response time corresponding to the event is iC/L+ t.

The probability that T successfully accesses all the
L granules and then is aborted at time t, t ∈ [0, TC ],
during the final validation phase is PR,s(L)fc,s(L, t).
The corresponding response time is TB + C + t.

The execution time of T if T manages to perform i
accesses and is aborted at time t after the i-th access is
equal to TB+iC/L+t. RA

t,s is computed as the weighted
average that T is aborted after having accessed i granules
and while trying to access the i + 1-th, with i ranging
from 1 to L − 1. T can also abort during the commit
phase, because of a conflicting access towards any of the
L accessed granules. Using the shorthand W = C/L, we
can express RA

t,s as:

RA
t,s =

L−1∑
i=1

PR,s(i)

∫ W

0

iWtHs(i− 1)e−Hs(i)tdt

+ CPR,s(L)(1− e−Hs(L)TC )

We can now compute the abort probability pa,s and
average rate μt,s at which transactions complete, in a
state s of the CTMC, as:

pa,s = 1− PR,s(L)e
−Hs(L)TC , μt,s = R−1

t,s (3)

E. Modeling capacity aborts

The model presented so far captures only the aborts
triggered by conflicts between transactional operations.
We now extend the model to capture also capacity aborts.

We note P (c ≤ i) the probability that a transaction
experiences a capacity abort in any of its first i memory
accesses, conditioned to that it does not experience a data
conflict. Assuming to know how to obtain P (c ≤ i), we
can compute an updated version of the probability that
T successfully manages to access i granules as

P ′′R,s(i) = PR,s(i)(1− P (c ≤ i)) (4)

P ′′R,s(i) takes into account data conflicts, aborts due to
the activation of the fall-back path and capacity aborts.
By replacing PR,s with P ′′R,s(i) in Equations 2-3, we can
also update the variable pa,s and μt,s, which, we recall,
are used in the definition of the CTMC’s transition rates.

In the light of the findings reported in Section III-B,
our model assumes that a capacity abort can only be
triggered by the eviction of a cache line that was written
by a transaction. In this section we present a model to
calculate the probability of capacity exception at the i-
th accessed granule assuming a N-way associative cache
with a given number of sets. To compute the probability
that a transaction experiences a capacity abort at its i-th
access we compute the probability that two events jointly
happen: i) the corresponding granule is stored in a full
set of the L1 cache, and ii) the cache line selected for
eviction corresponds to a written granule.

We cast the problem of finding this probability to a
variation of the balls-into-bins problem. In our settings,
a ball is an accessed granule, the bins (β) are the sets
of the cache, and the capacity of each bin (γ) is the
associativity of the cache.

Each memory access of a transaction is a ball thrown
at a bin chosen uniformly at random. The variation with
respect to the classic bin-into-balls-problem is two-fold:
i) a ball can be a write or a read ball (with probability
PW , resp. 1 − PW ); ii) if a bin is full, a read ball can
be removed from it (if selected by the eviction policy)
to make room for another ball.

Let us start by considering the simpler case in which
only write accesses are performed. We define a valid
sequence of length i, a sequence of i ball throws such
that no bin overflows, i.e., no bin receives more than
γ balls. The total number of possible sequences of
length i with β bins is βi. These sequences also include
invalid ones, i.e., sequences in which bins can have
been assigned more than γ balls. We note Mβ,γ,i the
number of valid sequences after i balls have been thrown.
Then, the probability that at least one bin experiences an
overflow after throwing I balls, P (c ≤ i), is:

P (c ≤ i) = 1− Mβ,γ,i

βi
(5)
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We compute Mβ,γ,i as follows. Assume that exactly
x bins have been filled after i balls. The number of
combinations of balls-to-bins allocations is given by the
product of a) the number of ways in which the x bins
can be filled with xγ balls and b) the number, ν, of ways
in which the the remaining i−xγ balls can be assigned
to the remaining β − x bins without fully filling them.
It follows that ν can be computed as Mβ-x,γ-1,i-xγ , i.e.,
the number of ways in which the remaining i−xγ balls
can be thrown in β−x bins in such a way that, at most,
every bin is filled with γ − 1 balls.

The minimum value for x is the number of bins that
are filled if balls are assigned to bins in a round-robin
fashion: minγ = max(0, i − β(γ − 1)). The maximum
value for x is the number of bins that get filled if the
balls are thrown to the same bin until it gets full: maxγ =
�i/β�. These x bins can be chosen out of the total β
possible in

(
β
x

)
ways. Finally, the number of ways in

which γx balls can be thrown in x bins in such a way

that all the x bins are filled is
∏x-1

y=0

(
i-yγ
γ

)
. The resulting

equation for Mβ,γ,i is then

Mβ,γ,i =

maxγ∑
x=minγ

Mβ-x,γ-1,i-xγ

(
β

x

)
x-1∏
y=0

(
i-yγ

γ

)
(6)

We now describe how we extend the model to take
into account scenarios in which transactions issue a mix
of reads and writes. In this case, the number of valid
sequences of a given length i is larger than for the case of
PW = 1, since if a full bin contains at least a read ball b,
it can still accommodate an additional (read/write) ball,
provided that b is selected by the eviction policy. Given
the combinatorial nature of the problem, the number
of scenarios to be accounted for in order to derive an
exact probabilistic solution increases dramatically for
the case of PW 	= 1, along with the complexity and
computational cost of the resulting model.

We propose therefore an approximate solution tech-
nique that is based on the following approach. Let us
introduce the notations: a) P (c ≤ iPW

), to refer to the
probability of having a capacity abort upon during any
of the first i accesses of a transaction that executes writes
with probability PW ; ii) P (c = iPW

∧¬c < (i−1)PW
),

to refer to the probability of having a capacity abort
exactly at the i-th access and of not incurring capacity
aborts during the previous i-1 operations, where each
operation is a write with probability PW .

We express P (c = iPW
∧ ¬c < (i− 1)PW

) as:

P (c = iPW |¬c < (i− 1)PW )P (¬c < (i− 1)PW ) (7)

Next we observe that the probability of having a
capacity exception at operation i is not affected by
whether this operation is a read or write , but only
by whether the corresponding ball i hits a full bin and
causes the “eviction” of a write ball. Hence:

P (c = iPW
|¬c < (i−1)PW

) = P (c = i|¬c < (i−1)PW
)

Next, we introduce the following approximation:

P (c = I|¬c < (I−1)PW
) ≈ P (c = I|¬c < (I−1))PW

namely, we approximate the conditioned probability of
having a capacity after i read/write accesses with the
conditioned probability of having a capacity after i write
accesses scaled down by a factor PW . The latter scaling
factor reflects the fact that P (c = i|¬c < i − 1)
is computed assuming that all the full bins after i-
1 balls contain exclusively write balls. Conversely, if
transactions issue write operations with probability PW ,
on average the full bins after i − 1 throws will contain
only a fraction of write ball equal to PW γ over a total
of γ balls. This is an approximation, which, as we will
show in Section V, yields good accuracy for PW values
larger than 1%. In fact, as discussed in Section III-B,
assuming PW values larger than 1% is also a necessary
condition for modelling accurately the cache dynamics
by modelling solely the L1 dynamics.
P (c = i|¬c < i− 1) can be computed by expressing

it as (P (c ≤ i) − P (c ≤ i − 1))/(1 − P (c < i − 1))
and exploiting Eq. 5, using the definition of conditioned
probability. P (¬c < (i − 1)PW

), in Eq. 7, can be
expressed as:

1−
i−1∑
j=1

P (c = jPW
∧ ¬c < (j − 1)PW

)

and can be computed recursively by setting P (c = 1PW
∧

¬c < 0PW
) = 1.

Finally, P (c ≤ iPW
) can simply be expressed as

the sum of the probabilities of having a capacity abort
exactly at operation j, and not earlier, for all j < i :

P (c ≤ iPW
) =

i∑
j=0

P (c = jPW
∧ ¬c < (j − 1)PW

)

F. Computing the Target KPIs
We now describe how to obtain the average throughput

X , average transaction response time R∗t and average
abort probability PA. Unlike the response times com-
puted in the former section, R∗t represents the execution
of a transaction since its first begin to the time it
commits. Namely, R∗t includes possible multiple re-
executions of a transaction and the possible final exe-
cution in the fall-back path.

We start by computing the state transitions for the
CTMC (using the values of pa,s and μt,s derived in
Section IV-E that encompass both conflict and capacity
aborts), and by solving it to obtain the vector �π of the
states probabilities.

Next, we compute the adjusted abort probability, p′a,s,
and average transaction execution rate, μ′t,s, in each state
s, keeping into account that a transaction can abort, either
directly due to a conflict or capacity abort, or, indirectly,
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Figure 2: Real vs predicted KPIs in workloads with negligible capacity aborts.

because of the abort of a concurrent transaction with only
1 retry left. Such transactions, which we call dangerous
because they can trigger the cascading abort of all
concurrent transactions, are not accounted for in pa,s
and μt,s (as these variables are used solely to derive the
CTMC’s transition rates, which need to account only for
independent abort events), but they do have an impact
on the actual abort probability and average transaction
execution time of the system.

To ease the presentation, we postpone the discussion
on how to compute p′a,s and μ′t,s, and explain first how
to compute PA, X and R∗t .

The average abort probability PA is computed as
the weighted average of p′a,s across all the states with
no threads in the fall-back path (as no transaction can
execute and, hence, abort in such a state):

PA =
∑

s(i,f=0,n)∈S
�πsp

′
a,s (8)

where S denotes the set of states of the CTMC and the
notation s(i, f, n) indicates the state corresponding to i
active hardware transactions, f in the fall-back path and
n non-transactional active threads.

Let us denote with Xt the transactional throughput,
i.e., the rate at which transactions commit, and with X
the global throughput, i.e., the rate at which any thread in
the system completes a code block (either transactional
or not). Both throughputs are computed as the weighted
average of the system being in a state si times the
corresponding throughput in si. On its turn, the global
throughput in si is the sum of the rates corresponding
to the completion of a NTCB or the commit of a TCB.

X =
∑

s(i,f=0,n)∈S

�πs(iμ
′
t,s(1−p

′
a,s)+nμn)+

∑

s(i,f≥1,n)∈S

�πs(nμn+μf )

This equation captures the fact that in a state in which
there is at least one transaction in the fall-back path there
is only one transaction contributing to the transactional
throughput, by committing with a rate μf = 1

C . In a state
s in which f = 0, instead, the i hardware transactions
all contribute to the throughput of the system, with a rate
iμ′t,s(1 − p′a,s). The transactional throughput is simply:
Xt = Xpt.

We exploit Little’s law [27] to obtain the response
time of a transaction, R∗t . We first express X as the
product of the number of active threads θ and the
inverse of the average response time of a code block,
whether transactional or not, R∗. Once we obtain R∗

we note that it corresponds to the weighted average
of the response time of a transactional code block R∗t
and of a non-transactional code block R∗n. Because
the system is stable, the probability that a successfully
executed code block is (non) transactional corresponds
to the probability that a (non) transactional code block
is started. Hence, R∗ = ptR

∗
t +(1−pt)R

∗
n. Because R∗n

is equal to Cn and it is given as input to the model, we
can solve the equation and obtain R∗t .

Modeling aborts due to fall-backs. Finally, we describe
how to compute the per-state abort probability, p′a,s, and
average transaction execution rate, μ′a,s, which we have
introduced and used above to compute the model’s KPIs.
Let us consider a state with n non-dangerous transactions
and d dangerous ones. We model the increase in the
abort probability of T due to concurrent dangerous
transactions by computing an adjusted rate at which T
can abort. Such rate does not encompass only the rate at
which other transactions can issue conflicting accesses
with T , but also the rate at which T aborts due to the
abort of some dangerous transaction.

We express the adjusted rate as the previous rate Hs(i)
(see Section IV-C) plus the rate at which dangerous
transactions abort. The rate at which a dangerous trans-
action aborts (due to a conflict or a capacity exception)
is computed as μt,spa,s, obtained as discussed in Sec-
tion IV-E. The adjusted rate at which a non-dangerous
transaction can abort after having accessed i granules is
then Hn

s (i) = Hs(i) + dμt,spa,s. The adjusted rate is
different for a dangerous transaction, since it can only
abort because of the conflict of d − 1 other dangerous
transactions. Hence, Hd

s (i) = Hs(i) + (d− 1)μt,spa,s.

The first step to compute p′a,s is to derive the proba-
bility that a transaction successfully accesses i granules,
despite both direct aborts and cascading aborts due to
dangerous transactions. We again distinguish between

the case of non-dangerous transactions (P
′n(i)
R,s ) and
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dangerous transactions (P
′d(i)
R,s ). Both probabilities take

the value 1 for i = 1. For i > 1, following the same
reasoning applied when computing PR,s(i) and P ′′R,S

P
′n
R,s(i) = P

′n
R,s(i-1)e−Hn

s (i-1) C/L(1− P (c ≤ i))

P
′d
R,s(i) = P

′d
R,s(i-1)e−Hd

s (i-1) C/L(1− P (c ≤ i))

Taking into account the vulnerability window Tc corre-
sponding to the commit operation, we obtain p′a,s:

p′a,s = 1−
(nP ′nR,s(L)e

−Hn
s (L)Tc + dP

′d
R,s(L)e

−Hd
s (L)Tc

n+ d

)
(9)

We also obtain adjusted values for the response times of
an execution of dangerous (Rd) and non-dangerous (Rn)
transactions. To compute them, we use Equation 2 and
Equation IV-D, where we substitute H(i) accordingly.
Thus, we compute the average response time of a single
hardware execution of a transaction:

R′t,s =
n

n+ d
Rd,s +

d

n+ d
Rn,s

The adjusted μ′t,s is obtained as μ′t,s = 1/R′t,s.

V. MODEL VALIDATION AND EVALUATION

This section reports the results of a validation study
that compares the KPIs predicted by the proposed model
with those achieved when executing on our target exper-
imental platform (see Section III). In order to stress the
prediction accuracy of the presented model, we use a
synthetic benchmark that generates diverse workloads.
The micro-benchmark launches θ concurrent threads
bounded to different physical cores, hence, not sharing
private caches and other resources. These threads start
transactions that perform L accesses uniformly at ran-
dom over a granule pool of size D.

We first focus the study on validating the accu-
racy of the proposed model to predict the contention
dynamics among transactions and due to the fallback
path activation. To minimize the probability of capac-
ity aborts, we initially consider short transactions and
generate about 380 workloads/configurations varying the
model’s parameters as follows: L ∈ {2, 5, 10, 20}, D ∈
{512, 2048, 8192, 32768}, θ ∈ {2, 4, 8}, B ∈ {2, 4, 6},
PW ∈ {0.5, 1}. Figures 2a and 2b report a scatter plot
comparing the real and predicted KPI values for the
considered workloads. The reported data highlights the
accuracy of the proposed model in predicting both the
throughput and abort probability of the system: the Mean
Absolute Error (MAE) for the abort rate is less than 5%
and the Mean Percentage Absolute Error (MAPE) for
the throughput around 8%; the Pearson correlation factor
(R) is in both case larger than 0.99. Figures 2c and 2d
report the predicted/real throughput and abort probability
values while varying the thread count in a conflict
intensive workload. Also in such a challenging workload,
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where the abort probability spikes up to approx. 70%,
we can appreciate the high accuracy of the model in
predicting the actual system’s performance.

Next, we focus on validating the modelling of the
probability capacity aborts (P (c ≤ i)) in absence of
contention among transactions. To this end we consider
a single threaded execution, where we varied the number
of distinct granules (L) accessed by transactions, set
D = 8192 and vary PW ∈ [0.01, 1]. The results
of this study are reported in Fig. 3 and confirm the
high accuracy of the model, which attained a MAE of
2.12%. As expected, the larger errors are introduced for
smaller values of PW . This is due to the approximation
introduced in Section IV-E, which we use to compute
P (c ≤ i) when PW < 1. Nonetheless, this study shows
that the proposed approximation achieves good accuracy
even for PW values as small as 1%.

Next, we assess the model’s accuracy with workloads
that generate aborts induced both by capacity exceptions
and conflicts (see Fig. 4). To this end, we set Θ =4,
D =100000, PW =0.5 and varied L ∈[5, 320]. Also
in this case, the experimental data confirms the high
accuracy of the model.

Finally, Figure 5 reports the memory and time required
to solve the model while varying the two main factors
that affect its spatial and temporal complexity, i.e., θ
and B. The top plot reports the model solution time,
using a single threaded implementation based on the
Eigen [25] numerical library, running on an Intel E3-
1270v3@3.50GHz with 32GB of RAM (Ubuntu 12.04).
We observe that the model can be solved in less than 10
seconds for up to 100 threads, when B = 1. This result
is relevant, since B = 1 when using TSX’s in Hardware
Lock Elision mode [36] and given that, currently, the
largest TSX-enabled Intel’s processor has 28 physical
cores. As B grows, though, the solution time grows very
quickly, and for B = 5 it requires 3 minutes when θ = 9,
with a 3× increase with respect to θ = 8, B = 5. This
is expectable, since the CMTC’s state space, S, grows
combinatorially, as previously discussed.

The data in the bottom plot evaluates the spatial

229



 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 0  50  100  150  200  250  300  350

T
hr

ou
gh

pu
t (

10
6  tx

s/
s)

Number of Cachelines

(a) Throughput (106 txs./sec.)
Θ=4, B=4, D=100000, PW =0.5

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0  50  100  150  200  250  300  350

P
ro

ba
bi

lit
y 

of
 A

bo
rt

Number of Cachelines

Real
Predicted

(b) Abort probability
Θ=4, B=4, D=100000, PW =0.5

Figure 4: Workloads generating aborts due to both
contention and capacity.

complexity of the model, which is dominated by the
CTMC’s generator matrix, Q. An interesting observation
that we can draw from this plot is that Q, despite having
size |S| × |S|, is actually very sparse. This is clearly
illustrated by the bottom plot, which reports the total
number of elements in Q and the actual non-zero entries
of Q: for the largest models (e.g., B = 5, θ = 9) less
than 4% of the matrix holds non-zero values, i.e.,1̃50K
cells, for a memory occupation of less than 10 MB. This
suggests that the model’s solution is CPU-bound, rather
than memory-bound, and that it should be therefore pos-
sible to boost it using parallel implementations, possibly
exploiting hardware accelerators (like GPUs).

VI. RELATED WORK

The most closely related works lie in the area of
analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency
control for database management systems have been
proposed in the literature [35], [1], [37], [9]. More
recently, several analytical models have been proposed
for the concurrency control algorithms adopted by soft-
ware implementations of TM [38], [21], [8], [14], [12],
[32], [13]. The key difference with respect to these
approaches is that in our model we consider peculiar
characteristics of the concurrency control of HTM, in-
cluding the co-existence of optimistic techniques (i.e.,
speculative execution of parallel transactions) and of a
sequential/pessimistic fallback path. Indeed, to the best
of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Black box techniques for throughput prediction are
present in the literature for the case of STM [5], [31],
and also in HTM either to predict its throughput [29]
or to improve its performance by tuning the TM param-
eters [11], [15], [10]. Unlike the white-box analytical
model presented in this model, which can be instantiated
by simply providing a few parameters as input, these
black box models require an extensive training phase.
Indeed, the accuracy of black-model is known to be
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Figure 5: Model solution time (top) and memory con-
sumption (bottom).

strongly influenced by the representativeness of the data
collected during the training phase [2], [12].

VII. CONCLUSIONS

This paper introduces the first analytical model of
an HTM system. The presented model targets TSX, a
mainstream HTM implementation included since 2013
in Intel’s processors, and captures complex, non-linear
performance dynamics reflecting the joint impact of
architectural choices (e.g., cache size and geometry),
workload characteristics (e.g., number of accessed mem-
ory words) and specific features of the employed conflict
resolution scheme (e.g., the co-existence of optimistic
and pessimistic execution modes). The model has been
validated using a real system, achieving high accuracy
in a broad range of workloads.

Another relevant contribution of our work consists
in having shed lights, via a set of ad-hoc experiments
and simulations, on several internal and undisclosed
mechanisms of TSX: besides determining the conflict
detection and resolution schemes employed in TSX, we
have also investigated the cache capacity limitations
in presence of mixed read/write workloads, inferring
undisclosed information on how transactional meta-data
is stored and managed. Not only the insights gained
through this study allow for a better understanding of
performance dynamics of TSX; they were also crucial to
enable the development of analytical models capturing
both capacity and conflict aborts.
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