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Abstract

We first consider the static problem of allocating resources to (i.e., scheduling) multiple distributed application frameworks,

possibly with different priorities and server preferences, in a private cloud with heterogeneous servers. Several fair scheduling

mechanisms have been proposed for this purpose. We extend prior results on max-min and proportional fair scheduling to this

constrained multiresource and multiserver case for generic fair scheduling criteria. The task efficiencies (a metric related to

proportional fairness) of max-min fair allocations found by progressive filling are compared by illustrative examples. They show

that “server specific” fairness criteria and those that are based on residual (unreserved) resources are more efficient.

I. INTRODUCTION AND BACKGROUND

We consider a cloud provider that needs to run multiple software applications on its IT infrastructure. These applications

may be distributed and are also called frameworks or workloads in the literature. The cloud provider’s infrastructure consists

of multiple servers connected by a network. A server may be a physical machine or virtual machine (e.g., an instance or a

container). A server is also referred to as a worker or a slave in some popular resource management solutions. Each framework

desires multiple IT resources (CPU, memory, network bandwidth, etc.) for each of its “tasks.” A task is a framework-specific

basic unit of work that must be placed within a single server at a given time (e.g., it is useless for a task to be allocated CPU

from one server and memory from another). The provider’s challenge then is to determine who should get how many resources

from which servers. Our interest is in a private cloud setting wherein notions of fairness have often been used as the basis for

this resource allocation problem. In a public setting, on the other hand, the provider’s goal is typically to maximize its profit.

What are meaningful notions of fairness for such multi-resource and multi-server settings? This question has received much

attention in the recent past. Proposed fair schedulers include Dominant Resource Fairness (DRF) [12] extended to multiple

servers1, Task Share Fairness (TSF) [31], Per Server Dominant Share Fairness (PS-DSF) [18], [16], [17], among others, e.g., [5].

DRF is resource based, whereas TSF and “containerized” DRF [11] are task based2. In the following, we additionally consider

variants of these schedulers that employ current residual (unreserved) capacities of the servers in the fairness criteria (somewhat

similar to “best fit” variants [32]).

Background on existing approaches and their assumptions: Typically static problem formulations are considered under

a variety of simplifying assumptions on framework behavior that we discuss below:

This research was supported in part by NSF CNS 1526133, NSF CNS 1717571 and a Cisco Systems URP gift.
1DRF was originally defined for a single server in [12]. The multiple-server version, called DRFH in [32], [11], is also commonly called just DRF as done

in Apache Mesos [13] and as we do herein also.
2Containerized DRF has a “sharing-incentive” property not possessed by DRF, and TSF possesses “strategy-proofness” and “envy-freeness” properties which

are not possessed by containerized DRF [31]. Unlike DRF and TSF, PS-DSF is not necessarily Pareto optimal but is “bottleneck” fair. These properties are

not addressed herein
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• It is assumed that frameworks congest all the available servers. That is, it is assumed that there is sufficient work to

completely occupy at least one resource in every server.

• It is also assumed that the frameworks’ required resources (presumably to achieve certain performance needs) are well

characterized, e.g., [9], [19], [21], [3], [24], [33], [7], [1], [20].

• Frameworks are assumed to have linearly elastic resource demands in the following sense. Each task has a known

requirement dn,r for the resource type r. Therefore, if xn,i were the number of tasks of framework n placed on server i,

the framework would consume xn,idn,r amount of resource r on server i.

• xn,i may take on non-negative real values rather than being restricted to be non-negative integer valued3.

• Finally, frameworks may have different service priorities and server preference constraints (as in e.g., service-quality

constraints [34] or cache-affinity constraints), see also [31].

Note that in some settings, a goal is to minimize the number of servers to accommodate workloads with finite needs, again

as in multidimensional bin-packing problems [4], [6], [8]. Such problem formulations are typically motivated by the desire to

economize on energy. However, frequently cycling power to (booting up) servers may result in software errors and there are

energy spikes associated with boot-up resulting in increased electricity costs [10]. We are not interested in such settings herein.

Typically in existing papers, max-min fairness with respect to a proposed fairness criteria is specified assuming the afore-

mentioned congested regime under the following (linear) capacity constraints:

∀i, r,
∑

n

xn,idn,r ≤ ci,r, (1)

where ci,r is the amount of available resource r in server i for the instances under consideration4. Additionally, there may be

placement constraints, δn,i ∈ {0, 1}, whereby xn,i > 0 ⇒ δn,i = 1. Max-min fair allocation may be expressed as the solution

of a constrained centralized optimization problem. Alternatively, max-min fairness with respect to the proposed fairness criteria

may be approximated by a greedy, iterative “progressive filling” allocation. The latter approach is often preferred because of

the benefits this offers for online implementations. Moreover, progressive filling arguments can be used to establish other

potentially desirable fairness properties of schedulers defined for private clouds5.

Instead of max-min fairness, the cloud may admit and place instances so as to maximize, e.g., total weighted tasking

objective,

∑

n

φn

∑

i

xn,i (2)

subject to (1), where φn > 0 is the priority of application framework n. In this paper, we relate this task efficiency objective

to “proportional” fairness.

In Sections II and III, for generic fairness criteria, we generalize to multiple resources the static optimization problems of

e.g., [2], [23], [15] whose solutions correspond to max-min fairness and proportional fairness, respectively. In Section IV, a

simple, greedy, iterative method intended to achieve max-min fairness called progressive filling is described. Progressive filling

is important for online implementation. In Section V, the performance evaluation objectives of the following two sections are

discussed: task efficiency (related to proportional fairness) and overall execution time. In Section VI, illustrative numerical

examples are used to compare the task efficiencies of different schedulers, including variants using residual/unreserved server

3With x integer valued, such problems belong to the class of combinatorial-optimization multidimensional bin-packing problems, e.g., [4], [6], [8], which

are NP-hard. They have been extensively studied, including relaxations to simplified problems that yield approximately optimal solutions, e.g., by Integer

Linear Programs solved by iterated/online means.
4Note that if xn,i = 0 then workload type n is not assigned to server i.
5Again, Pareto optimality, sharing incentive, strategy proofness, bottleneck fairness, and envy freeness [12] - properties that are not addressed herein.



resource capacities specified herein. In [26], we give the results of an online experimental study using our implementations

of different schedulers on Spark and Mesos [22], [27] for benchmark workloads considering an execution-time performance

metric. The paper concludes with a summary in Section VII and a brief discussion of future work (regarding scheduling in

public clouds).

Our mathematical notation is given in Table I.

Symbol Definition

i server index

n user/framework index

r resource type index

ρ index of the dominant resource

φn weight/priority of user n

xn,i the number of tasks or workload intensity

dn,r per-task resource requirement

ci,r the total available resource amounts

Bn,i,r = dn,r/ci,r

δn,i server preference indicator

Ni the set of users that can run on server i

Ri fully booked resources of server i under x

Un,Kn,Mn allocation-fairness scores

TABLE I

MATHEMATICAL NOTATION.

II. MAX-MIN FAIRNESS

To generalize previous results on max-min fairness (e.g., [2], [12], [15]) to multiple resource types on multiple servers,

consider the following general-purpose fairness criterion for framework n,

Un =
1

φn

∑

i

un,ixn,i, (3)

for scalars un,i > 0 and priorities φn > 0 (specific examples of fairness criteria are given below). In addition, consider the

service-preference sets

Ni = {n | δn,i = 1} where xn,i > 0 ⇒ δn,i > 0. (4)

Relaxing the allocations {xn,i} to be real valued, consider strictly concave and increasing g with g(0) = 0, and define the

optimization problem

max
x

∑

n

φng(Un) (5)

such that (here restating (1))

∀i, r,
∑

n∈Ni

xn,iBn,i,r ≤ 1 and ∀n, i xn,i ≥ 0, (6)

where

Bn,i,r :=
dn,r
ci,r

. (7)

Note that the objective is continuous and strictly concave and the domain given by (6) (equivalently (1)) is compact. So, simply

by Weierstrass’s Extreme Value Theorem, there exists a unique maximum.



Regarding fully booked resources in server i under allocations x = {xn,i}, also let

Ri := {(x, r) |
∑

n∈Ni

xn,iBn,i,r = 1}.

For the following definition, assume that ∀n, i, r, Bn,i,r > 0.

Definition 1: A feasible allocation {xn,i} satisfying (6) is said to be U -Max-Min Fair (MMF) if:

Uℓ > Um, xm,i > 0, & ∃r s.t.
∑

n∈Ni

xn,iBn,i,r = 1

implies that xℓ,i = 0.

Note that if instead xℓ,i > 0 in this definition, then xℓ,i can be reduced and xm,i increased to reduce Uℓ−Um. Also, if {xn,i}
is U -MMF and xm,i, xℓ,i > 0 for some server i then Um = Uℓ. Quantization (containerization) issues associated with workload

resource demands are considered in [11].

Under multi-server DRF [12], [32], frameworks n are selected using criterion

Mn =
1

φn

xn max
r

dn,r
∑

j cj,r
, (8)

where xn =
∑

i xn,i. That is, under multi-server DRF,

∀i, un,i = max
r

dn,r
∑

j cj,r
. (9)

The server-specific PS-DSF criterion can be written as

Kn,j =

∑

i xn,idn,ρ(n,j)

φncj,ρ(n,j)
=

Bn,j,ρ(n,j)xn

φn

, (10)

where ρ is such that

Bn,j,ρ(n,j) := max
r

Bn,j,r when δn,j = 1. (11)

Max-min fairness according to the joint framework-server criterion Kn,j is considered in [18], [16], [17]. Here define

Kn =
∑

i

Kn,iδn,i =
1

φn

xn

∑

i

Bn,i,ρ(n,i)δn,i

=
1

φn

xn

∑

i

max
r

dn,r
ci,r

δn,i (12)

So, under PS-DSF,

∀i ∈ Ni, un,i = max
r

dn,r
ci,r

. (13)

Proposition 1: A solution x = {xn,i} of the optimization (5) s.t. (6) has at least one resource r fully booked in each server

i. In addition, there is a unique U -MMF solution if also:

∃j s.t. δm,j = 1 = δℓ,j ⇒ ∀r, dm,r = dℓ,r, Nm = Nℓ, and ∀i, um,i = uℓ,i. (14)

Proof: See Appendix A. The proof is an adaptation of that in [2], [15] for a single resource type.

Considering (9) and (13), ∀r, dm,r = dℓ,r implies ∀i, um,i = uℓ,i. So, (14) is satisfied for both DRF and PS-DSF when only

frameworks with the same resource demands share the same set of servers.

For task-based allocations (integer-valued x), max-min fairness can be approximated by a greedy incremental optimization

known as progressive filling, see [2], [12], [26].



III. PROPORTIONAL FAIRNESS

For weighted proportional fairness, consider the objective

max
x

∑

n

φnga(xn), (15)

i.e., without dividing by φn in the argument of ga [23]. For parameter a > 0 specifically take

ga(X) =







log(X) if a = 1

(1− a)−1X1−a else

i.e., g′a(X) = 1/Xa, again see [23]. Obviously, in the case of a = 1 (g = log), whether the factor φ is in the argument of g

is immaterial.

The following generalizes Lemma 2 of [23] on Proportional Fairness. See also the proportional-fairness/efficiency trade-off

framework of [14] for a single server.

Proposition 2: A solution x∗ of the optimization (15) s.t. (6) is uniquely (weighted) (φ, a) x-proportional fair, i.e., for any

other feasible solution x,

Φ(x, x∗) :=
∑

n

φn

xn − x∗
n

(x∗
n)

a
≤ 0. (16)

Proof: See Appendix B.

From the proof, {x∗
n =

∑

i x
∗
n,i}n is unique though x∗ = {x∗

n,i}n,i may not be. We can normalize φ̂n := φn/
∑

k φk and

when a = 1 write (16) as

∑

n

φ̂n

xn

x∗
n

≤ 1.

A possible definition of the efficiency of a feasible allocation is (2) corresponding to a = 0,

∑

n

φn

∑

i

xn,i =
∑

n

φnxn, (17)

i.e., the weighted total number of tasks scheduled. So, the optimization of Proposition 2 with a = 1 gives an allocation x∗ that

is related to a task efficient allocation. Clearly, x∗ satisfying (16) for all other allocations x with a = 1 does not necessarily

maximize (17). This issue is analogous to estimating the mean of the ratio of positive random variables E(X/X∗) using the

ratio of the means EX/EX∗, see e.g. p. 351 of [28] or (11) of [25] . For simplicity in the following, we use (17) instead of

(16).

Note that the priority φn of framework n could factor its resource footprint {dn,r}r. Alternatively, the resource footprints

of the frameworks can be explicitly incorporated into the main optimization objective via a fairness criterion. The proof of the

following corollary is just as that of Proposition 2. Recall that the generic fairness criterion Un (3) is a linear combination of

{xn,i}i.

Corollary 1: A solution x∗ of the optimization problem

max
x

∑

n

φn log(Un) s.t. (6)



is uniquely (φ, 1) U -proportional fair, i.e., for any other feasible x,

∑

n

φn

Un − U∗
n

U∗
n

≤ 0.

Again, optimal {U∗
n} would be unique but x∗ = {x∗

n,i}n,i may not be.

Recall for DRF and PS-DSF, the Kn (12) and Mn (8), respectively, are proportional to xn. Thus, using Un = Kn or

Un = Mn in Corollary 1 reduces to the result of Proposition 2 when a = 1.

IV. PROGRESSIVE FILLING TO APPROXIMATE MAX-MIN FAIR ALLOCATION

In the following evaluation studies, resources are incrementally (taskwise) allocated to frameworks n with the intention to

approximate max-min fairness (with respect to the fairness criterion used). The approach is greedy: simply, the framework n

with smallest fairness criterion Un (or Un,i), based on existing allocations {xn,i}n,i, will be allocated a resource increment

{εdn,i}i for small6 ε > 0. If a framework’s resource demands cannot be accommodated with available resources, the framework

with the next smallest fairness criterion will be allocated by this progressive filling approach [2], [12]. The choice of server from

which to allocate can be random, e.g., as for the Mesos default task-level progressive filling for DRF, see [26]. Alternatively,

the framework and server can be jointly chosen (e.g., using PS-DSF).

Note how progressive filling can operate in the presence of churn in the set of active frameworks, where in asynchronous

fashion, new frameworks could be initiated or a framework would release all of its resources once its computations are

completed, see [26]. In the following we assess the efficiencies of max-min fair approximations by progressive filling according

to different schedulers.

Because there is no resource revocation, a problem occurs when, say, servers are booked so that there are insufficient

spare resources to allocate for a task of a just initiated framework (particularly a higher priority one). Thus, new frameworks

may need to wait for sufficient resources to be released (by the termination of other frameworks). Alternatively, all existing

frameworks could be reallocated whenever any new framework initiates or any existing framework terminates. Though within

a server such reallocations are commonplace in a private setting, the effect of such “live” reallocations may be that tasks need

to be terminated and reassigned to other servers (or live migrated). The following illustrative numerical examples allocate

a single initial framework batch (without framework churn). In the following emulation study for equal priority workloads

and framework churn, we work with the default progressive-filling mechanism in Mesos wherein existing frameworks are not

adjusted upon framework churn.

V. EVALUATION OBJECTIVES: TASK EFFICIENCY OF MAX-MIN FAIR ALLOCATIONS

In the following, though we aim for max-min fairness with progressive filling, we are also interested in the proportional

fairness achieved. We compare the efficiency (17) of the allocations achieved by progressive filling for examples with

heterogeneous workloads and servers. In the performance evaluation of our Mesos implementations, efficiency is defined

by overall execution time.

Though PS-DSF allocations achieved by progressive filling may not be Pareto optimal, we show that they are more efficient,

even in some of our Mesos experiments where servers are (at least initially) selected at random.

In the following, for brevity, we consider only cases with frameworks of equal priority (∀n, n′, φn = φn′ ) and without

server-preference constraints (i.e., δn,i ≡ 1).

6Typically ε = 1 when allocations x are measured in “tasks”.



P
P
P
P
P
P
P
P

sched.

(n, i)
(1,1) (1,2) (2,1) (2,2) total

DRF [12], [32] 6.55 4.69 4.69 6.55 22.48

TSF [31] 6.5 4.7 4.7 6.5 22.4

RRR-PS-DSF 19.44 1.15 1.07 19.42 41.08

BF-DRF [32] 20 2 0 19 41

PS-DSF [17] 19 0 2 20 41

rPS-DSF 19 2 2 19 42

TABLE II

WORKLOAD ALLOCATIONS xn,i FOR DIFFERENT SCHEDULERS UNDER PROGRESSIVE FILLING FOR ILLUSTRATIVE EXAMPLE WITH PARAMETERS (18)

AND (19). AVERAGED VALUES OVER 200 TRIALS REPORTED FOR THE FIRST THREE SCHEDULERS OPERATING UNDER RRR SERVER SELECTION.

P
P
P
P
P
P
PP

sched.

(n, i)
(1,1) (1,2) (2,1) (2,2)

DRF [12], [32] 2.31 0.46 0.46 2.31

TSF [31] 2.29 0.46 0.46 2.29

RRR-PS-DSF 0.59 0.99 1 0.49

TABLE III

SAMPLE STANDARD DEVIATION OF ALLOCATIONS xn,i FOR DIFFERENT SCHEDULERS UNDER RRR SERVER SELECTION WITH. AVERAGED VALUES OVER

200 TRIALS REPORTED.

VI. ILLUSTRATIVE NUMERICAL STUDY OF FAIR SCHEDULING BY PROGRESSIVE FILLING

In this section, we consider the following typical example of our numerical study with two heterogeneous distributed

application frameworks (n = 1, 2) having resource demands per unit workload:

d1,1 = 5, d1,2 = 1, d2,1 = 1, d2,2 = 5; (18)

and two heterogeneous servers (i = 1, 2) having two different resources with capacities:

c1,1 = 100, c1,2 = 30, c2,1 = 30, c2,2 = 100. (19)

For DRF and TSF, the servers i are chosen in round-robin fashion, where the server order is randomly permuted in each round;

DRF under such randomized round-robin (RRR) server selection is the default Mesos scheduler, cf. next section. One can also

formulate PS-DSF under RRR wherein RRR selects the server and the PS-DSF criterion only selects the framework for that

server. Frameworks n are chosen by progressive filling with integer-valued tasking (x), i.e., whole tasks are scheduled.

Numerical results for scheduled workloads for this illustrative example are given in Tables II & III, and unused resources are

given in Tables IV and V. 200 trials were performed for DRF, TSF and PS-DSF under RRR server selection, so using Table

III we can obtain confidence intervals for the averaged quantities given in Table II for schedulers under RRR. For example,

the 95% confidence interval for task allocation of the first framework on the second server (i.e., (n, i) = (1, 2)) under TSF is

(6.5− 2 · 0.46/
√
200, 6.5 + 2 · 0.46/

√
200) = (6.43, 6.57).

Note how PS-DSF’s performance under RRR is comparable to when frameworks and servers are jointly selected [17], and

with low variance in allocations. We also found that RRR-rPS-DSF performed just as rPS-DSF over 200 trials.

We found task efficiencies improve using residual forms of the fairness criterion. For example, the residual PS-DSF (rPS-

DSF) criterion is

K̃n,j,x
j

= xn max
r

dn,r
φn(cj,r −

∑

n′ xn′,jdn′,r)



P
P
P
P
P
P
P
P

sched.

(i, r)
(1,1) (1,2) (2,1) (2,2)

DRF [32] 62.56 0 0 62.56

TSF [31] 62.8 0 0 62.8

RRR-PS-DSF 1.8 4.6 4.86 1.92

BF-DRF [32] 0 10 1 3

PS-DSF [17] 3 1 10 0

rPS-DSF 3 1 1 3

TABLE IV

UNUSED CAPACITIES ci,r −
∑

n xn,idi,r FOR DIFFERENT SCHEDULERS UNDER PROGRESSIVE FILLING FOR ILLUSTRATIVE EXAMPLE WITH PARAMETERS

(18) AND (19). AVERAGED VALUES OVER 200 TRIALS REPORTED UNDER RRR SERVER SELECTION.

P
P
P
P
P
P
P
P

sched.

(i, r)
(1,1) (1,2) (2,1) (2,2)

DRF [12], [32] 11.09 0 0 11.09

TSF [31] 10.99 0 0 10.99

RRR-PS-DSF 0.59 0.99 1 0.49

TABLE V

SAMPLE STANDARD DEVIATION OF UNUSED CAPACITIES ci,r −

∑
n xn,idi,r FOR DIFFERENT SCHEDULERS UNDER RRR SERVER SELECTION OVER 200

TRIALS.

That is, this criterion makes scheduling decisions by progressive filling using current residual (unreserved) capacities based

on the current allocations x. From Table II, we see the improvement is modest for the case of PS-DSF.

Improvements are also obtained by best-fit server selection. For example, best-fit DRF (BF-DRF) first selects framework n

by DRF and then selects the server whose residual capacity most closely matches their resource demands {dn,r}r [32].

VII. SUMMARY AND FUTURE WORK

For a private-cloud setting, we considered scheduling a group of heterogeneous, distributed frameworks to a group of

heterogeneous servers. We extended two general results on max-min fairness and proportional fairness to this case for a static

problem under generic scheduling criteria. Subsequently, we assessed the efficiency of approximate max-min fair allocations

by progressive filling according to different fairness criteria. Illustrative examples in heterogeneous settings show that max-

min fair PS-DSF and rPS-DSF scheduling, are superior to DRF in terms of task efficiency performance (a metric related to

proportional fairness) and that the efficiency of these “server specific” schedulers did not significantly suffer from the use of

randomized round-robin server selection. Task efficiency was also improved when either the “best fit” approach to selecting

servers was used or the fairness criteria was modified to use current residual/unreserved resource capacities. We also open-

source implemented oblivious (“coarse grained”) and workload-characterized (specified resource demands d) online prototypes

of these schedulers on Mesos [22], [27], with the Mesos default/baseline being oblivious DRF. Using two different Spark

workloads and heterogeneous servers, we showed that the schedulers were similarly ranked using the total execution time as

the performance measure. Moreover, execution times could be shortened with workload characterization.

In future work, we will consider scheduling (admission control and placement) problems in a public cloud setting. To this

end, note that similar objectives to those considered herein for a private-cloud setting, particularly (2), may be reinterpreted as

overall revenue based on bids φ for virtual machines or containers with fixed resource allocations d. Also, as profit margins

diminish in a maturing marketplace, one expects that public clouds will need to operate with greater resource efficiency. Note



that notions of fair scheduling and desirable properties of schedulers as defined in, e.g., [12], [11], [30] may not be relevant

to the public-cloud setting, where the expectation is that different customers/frameworks simply “get what they pay for.”

Moreover, in a public cloud setting, what the customers do with their virtual machines/containers is arguably not the concern

of the cloud operator so long as the customer complies with service level agreements. But, e.g., notions of strategy proofness

are important considerations in the design of auction [29] and spot-pricing mechanisms (where under spot price mechanisms,

virtual machines or containers may be revoked).
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APPENDIX A: PROOF OF PROPOSITION 1

Define the Lagrangian to be maximized over x and over Lagrange multipliers λ, ν ≥ 0:

L =
∑

n

φng(Un) +
∑

i,r

λi,r(1 −
∑

n∈Ni

xn,iBn,i,r)

+
∑

i,n∈Ni

νn,ixn,i.

The first-order optimality condition,

∀i, n ∈ Ni, δn,i = 1,

0 =
∂L

∂xn,i

= un,ig
′(Un)−

∑

r

λi,rBn,i,r + νn,i, (20)

and g strictly increasing imply

∀i, n ∈ Ni,
∑

r

λi,rBn,i,r > νn,i ≥ 0. (21)

So, ∀i, ∃r s.t. λi,r > 0. Thus, complementary slackness is

∀i, r, λi,r(1−
∑

n∈Ni

xn,iBn,i,r) = 0 (22)

⇒ ∀i, ∃r s.t.
∑

n∈Ni

xn,iBn,i,r = 1, (23)

i.e., in every server i, one resource r (which may depend on i) is fully booked. So, the set of fully booked resources in server i

under allocations x = {xn,i} can be characterized by {r | λi,r > 0}. Now by (20) and assumed strict concavity of g, uniquely

∀i, n ∈ Ni, Un = (g′)−1

(

∑

r

λi,r

Bn,i,r

un,i

− νn,i
un,i

)

= (g′)−1





∑

r:λi,r>0

λi,r

Bn,i,r

un,i

− νn,i
un,i



 .

Now consider two frameworks m and ℓ and server i such that xm,i > 0 and δm,i = 1 = δℓ,i. So, complementary slackness

∀j, n ∈ Nj , νn,jxn,j = 0, (24)

implies νm,i = 0.



Because (g′)−1 is strictly decreasing (g strictly concave): if δm,i = 1 = δℓ,i then

Um = (g′)−1





∑

r:λi,r>0

λi,r

Bm,i,r

um,i





≤ (g′)−1





∑

r:λi,r>0

λi,r

Bℓ,i,r

uℓ,i

− νℓ,i
uℓ,i



 = Uℓ,

where we have used assumption (14) which is sufficient for the inequality. Because of this and (23), a solution x = {xn,i} of

the optimization (5) s.t. (6) is U -MMF.

APPENDIX B: PROOF OF PROPOSITION 2

The Lagrangian here is

L =
∑

n

φnga(xn) +
∑

i,r

λi,r(1 −
∑

n∈Ni

xn,iBn,i,r)

+
∑

i,n∈Ni

νn,ixn,iδn,i

where, again, the Lagrange multipliers λ, ν ≥ 0. A first-order optimality condition is

∀i, n ∈ Ni, 0 =
∂L

∂xn,i

(x∗)

= φng
′
a(x

∗
n)−

∑

r

λi,rBn,i,r + νn,i. (25)

Multiplying (25) by xn,i − x∗
n,i and summing over i and n ∈ Ni gives7

0 =
∑

n

φng
′
a(x

∗
n)(xn − x∗

n) +
∑

i,n∈Ni

νn,i(xn,i − x∗
n,i)

−
∑

i,r

∑

n∈Ni

λi,rBn,i,r(xn,i − x∗
n,i)

where the first term is Φ(x, x∗) and recall the definition of Ni (4). Thus, by complementary slackness (22) and (24) (taking

x = x∗ there in those equations),

Φ(x, x∗) =
∑

i,r:λi,r 6=0

λi,r

(

∑

n∈Ni

xn,iBn,i,r − 1

)

−
∑

i,n∈Ni

νn,ixn,i.

Finally, no resource overbooking (6) implies Φ(x, x∗) ≤ 0.

7Simply use Fubini’s theorem for the first term,
∑

i

∑
n∈Ni

φng′(x∗
n)(xn,i − x∗

n,i) =
∑

n

∑
i:δn,i=1

φng′(x∗
n)(xn,i − x∗

n,i)
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