
Practical Design Space Exploration
1st Luigi Nardi

Stanford University
lnardi@stanford.edu

2nd David Koeplinger
Stanford University

dkoeplin@stanford.edu

3rd Kunle Olukotun
Stanford University
kunle@stanford.edu

Abstract—Multi-objective optimization is a crucial matter in
computer systems design space exploration because real-world
applications often rely on a trade-off between several objectives.
Derivatives are usually not available or impractical to compute
and the feasibility of an experiment can not always be determined
in advance. These problems are particularly difficult when the
feasible region is relatively small, and it may be prohibitive to
even find a feasible experiment, let alone an optimal one.

We introduce a new methodology and corresponding software
framework, HyperMapper 2.0, which handles multi-objective
optimization, unknown feasibility constraints, and categori-
cal/ordinal variables. This new methodology also supports injec-
tion of the user prior knowledge in the search when available. All
of these features are common requirements in computer systems
but rarely exposed in existing design space exploration systems.
The proposed methodology follows a white-box model which is
simple to understand and interpret (unlike, for example, neural
networks) and can be used by the user to better understand the
results of the automatic search.

We apply and evaluate the new methodology to the automatic
static tuning of hardware accelerators within the recently in-
troduced Spatial programming language, with minimization of
design run-time and compute logic under the constraint of the
design fitting in a target field-programmable gate array chip. Our
results show that HyperMapper 2.0 provides better Pareto fronts
compared to state-of-the-art baselines, with better or competitive
hypervolume indicator and with 8x improvement in sampling
budget for most of the benchmarks explored.

Index Terms—Pareto-optimal front, Design space exploration,
Hardware design, Performance modeling, Optimizing compilers,
Machine learning driven optimization

I. INTRODUCTION

Design problems are ubiquitous in scientific and industrial
achievements. Scientists design experiments to gain insights
into physical and social phenomena, and engineers design ma-
chines to execute tasks more efficiently. These design problems
are fraught with choices which are often complex and high-
dimensional and which include interactions that make them
difficult for individuals to reason about. In software/hardware
co-design, for example, companies develop libraries with tens
or hundreds of free choices and parameters that interact in
complex ways. In fact, the level of complexity is often so high
that it becomes impossible to find domain experts capable of
tuning these libraries [10].

Typically, a human developer that wishes to tune a computer
system will try some of the options and get an insight of the
response surface of the software. They will start to fit a model in
their head of how the software responds to the different choices.
However, fitting a complex multi-objective function without
the use of an automated system is a daunting task. When

the response surface is complex, e.g. non-linear, non-convex,
discontinuous, or multi-modal, a human designer will hardly
be able to model this complex process, ultimately missing the
opportunity of delivering high performance products.

Mathematically, in the mono-objective formulation, we
consider the problem of finding a global minimizer of an
unknown (black-box) objective function f :

x∗ = arg min
x∈X

f(x) (1)

where X is some input decision space of interest (also called
design space). The problem addressed in this paper is the
optimization of a deterministic function f : X → R over
a domain of interest that includes lower and upper bound
constraints on the problem variables.

When optimizing a smooth function, it is well known
that useful information is contained in the function gradi-
ent/derivatives which can be leveraged, for instance, by first
order methods. The derivatives are often computed by hand-
coding, by automatic differentiation, or by finite differences.
However, there are situations where such first-order information
is not available or even not well defined. Typically, this is the
case for computer systems workloads that include many discrete
variables, i.e., either categorical (e.g., boolean) or ordinal
(e.g., choice of cache sizes), over which derivatives cannot even
be defined. Hence, we assume in our applications of interest
that the derivative of f is neither symbolically nor numerically
available. This problem is referred to in the literature as DFO
[10], [24], also known as black-box optimization [12] and, in
the computer systems community, as design space exploration
(DSE) [16], [17].

In addition to objective function evaluations, many optimiza-
tion programs have similarly expensive evaluations of constraint
functions. The set of points where such constraints are satisfied
is referred to as the feasibility set. For example, in computer
micro-architecture, fine-tuning the particular specifications of
a CPU (e.g., L1-Cache size, branch predictor range, and cycle
time) need to be carefully balanced to optimize CPU speed,
while keeping the power usage strictly within a pre-specified
budget. A similar example is in creating hardware designs
for field-programmable gate arrays (FPGAs). FPGAs are a
type of reconfigurable logic chip with a fixed number of units
available to implement circuits. Any generated design must
keep the number of units strictly below this resource budget to
be implementable on the FPGA. In these examples, feasibility
of an experiment cannot be checked prior to termination of

ar
X

iv
:1

81
0.

05
23

6v
3

 [
cs

.L
G

]
 2

4
Ju

l 2
01

9

Name Multi RIOC var. Constr. Prior
GpyOpt 7 7 7 7
OpenTuner 7 3 7 7
SURF 7 3 7 7
SMAC 7 3 7 7
Spearmint 7 7 3 7
Hyperopt 7 3 7 3
Hyperband 7 3 7 7
GPflowOpt 3 7 3 7
cBO 7 7 3 7
BOHB 7 3 7 7
HyperMapper 1.0 3 3 7 7
HyperMapper 2.0 3 3 3 3

TABLE I: Derivative-free optimization software taxonomy.
Multi notes if the software is multi-objective or not. RIOC
var. says if the software supports all Real, Int, Ordinal and
Categorical variables. Constr. refers to inequality constraints
that define a feasible region that are used in the optimization
process. Prior represents the ability of the software to inject
prior knowledge in the search.

the experiment; this is often referred to as unknown feasibility
in the literature [14]. Also note that the smaller the feasible
region, the harder it is to check if an experiment is feasible
(and even more costly to check optimality [14]).

While the growing demand for sophisticated DFO methods
has triggered the development of a wide range of approaches
and frameworks, none to date are featured enough to fully
address the complexities of design space exploration and
optimization in the computer systems domain. To address this
problem, we introduce a new methodology and a framework
dubbed HyperMapper 2.0. HyperMapper 2.0 is designed for
the computer systems community and can handle design
spaces consisting of multiple objectives and categorical/ordinal
variables. Emphasis is on exploiting user prior knowledge via
modeling of the design space parameters distributions. Given
the years of hand-tuning experience in optimizing hardware,
designers bear a high level of confidence. HyperMapper 2.0
gives means to inject knowledge in the search algorithm. This
is achieved by introducing for the first time the use of a Beta
distribution for modeling the user belief, i.e., prior knowledge,
on how each parameter of the design space influences a
response surface. In addition, bearing in mind the feasibility
constraints that are common in computer systems workloads
we introduce for the first time a model that considers unknown
constraints, which is, constraints that are only known after
evaluating a system configuration. To aid comparison, we
provide a list of existing tools and the corresponding taxonomy
in Table I. Our framework uses a model-based algorithm, i.e.,
construct and utilize a surrogate model of f to guide the
search process. A key advantage of having a model, and more
specifically a white-box model, is that the final surrogate of f
can be analyzed by the user to understand the space and learn
fundamental properties of the application of interest.

As shown in Table I, HyperMapper 2.0 is the only framework
to provide all the features needed for a practical design space
exploration software in computer systems applications. The

contributions of this paper are:
• A methodology for multi-objective optimization that

deals with categorical and ordinal variables, unknown
constraints, and exploitation of the user prior knowledge.

• An integration and experimental results of our method-
ology in a full, production-level compiler toolchain for
hardware accelerator design.

• A framework dubbed HyperMapper 2.0 implementing the
newly introduced methodology, designed to be simple,
user-friendly and application independent.

The remainder of this paper is organized as follows: Sec-
tion II provides the problem statement and background. In
Section III, we describe our methodology and framework. In
Section IV we present our experimental evaluation. Section V
discusses related work. We conclude in Section VI with a brief
discussion of future work.

II. BACKGROUND

In this section, we provide the notation and basic concepts
used in the paper. We describe the mathematical formulation
of the mono-objective optimization problem with feasibility
constraints. We then expand this to a definition of the multi-
objective optimization problem and provide background on
randomized decision forests [8].

A. Mono-objective Optimization with Unknown Feasibility
Constraints

Mathematically, in the mono-objective formulation, we con-
sider the problem of finding a global minimizer (or maximizer)
of an unknown (black-box) objective function f under a set
of constraint functions ci:

x∗ = arg min
x∈X

f(x)

subject to ci(x) ≤ bi, i = 1, . . . , q,

where X is some input design space of interest and ci are q
unknown constraint functions. The problem addressed in this
paper is the optimization of a deterministic function f : X→ R
over a domain of interest that includes lower and upper bounds
on the problem variables.

The variables defining the space X can be real (continuous),
integer, ordinal, and categorical. Ordinal parameters have a
domain of a finite set of values which are either integer and/or
real values. For example, the sets {1, 5, 8} and {3.4, 2.5, 6, 9.1}
are possible domains of ordinal parameters. Ordinal values
must have an ordering by the less-than operator. Ordinal
and integer cases are also referred to as discrete variables.
Categorical parameters also have domains of a finite set of
values but have no ordering requirement. For example, sets
of strings describing some property like {true, false} and
{car, truck,motorbike} are categorical domains. The primary
benefit of encoding a variable as an ordinal is that it can
allow better inferences about unseen parameter values. With a
categorical parameter, the knowledge of one value does not tell
one much about other values, whereas with an ordinal value

1

2

3

4

5

6

7

True False

1.5

6.3

Categorical

Real

O
rd

in
al

M
in

Min

M
ax

Max

Fig. 1: Example of a multi-objective space. The multi-objective
function f maps each point in the 3-dimensional design space
on the left to the optimization space on the right.

we would expect closer values (with respect to the ordering)
to be more related.

We assume that the derivative of f is not available, and that
bounds, such as Lipschitz constants, for the derivative of f
is also unavailable. Evaluating feasibility is often in the same
order of expense as evaluating the objective function f . As for
the objective function, no particular assumptions are made on
the constraint functions.

B. Multi-Objective Optimization: Problem Statement

A pictorial representation of a multi-objective problem is
shown in Figure 1. On the left, a three-dimensional design
space is composed by one ordinal (p1), one real (p2), and one
categorical (p3) variable. The red dots represent samples from
this search space. The multi-objective function f maps this
input space to the output space on the right, also called the
optimization space. The optimization space is composed by two
optimization objectives (o1 and o2). The blue dots correspond to
the red dots in the left via the application of f . The arrows Min
and Max represent the fact that we can minimize or maximize
the objectives as a function of the application. Optimization
will drive the search of optima points towards either the Min
or Max of the right plot.

Formally, let us consider a multi-objective optimization (min-
imization) over a design space X ⊆ Rd. We define f : X→ Rp
as our vector of objective functions f = (f1, . . . , fp), taking x
as input, and evaluating y = f(x). Our goal is to identify the
Pareto frontier of f ; that is, the set Γ ⊆ X of points which are
not dominated by any other point, i.e., the maximally desirable
x which cannot be optimized further for any single objective
without making a trade-off. Formally, we consider the partial
order in Rp: y ≺ y′ iff ∀i ∈ [p], yi 6 y′i and ∃j, yj<y′j , and
define the induced order on X: x ≺ x′ iff f(x) ≺ f(x′). The
set of minimal points in this order is the Pareto-optimal set
Γ = {x ∈ X : @x′ such that x′ ≺ x}.

We can then introduce a set of inequality constraints c(x) =
(c1(x), . . . , cq(x)), b = (b1, . . . , bq) to the optimization, such
that we only consider points where all constraints are satisfied
(ci(x) 6 bi). These constraints directly correspond to real-
world limitations of the design space under consideration.

Applying these constraints gives the constrained Pareto

Γ = {x ∈ X : ∀i 6 q, ci(x) 6 bi}
where @x′ ∈ X such that ci(x′) 6 bi and x′ ≺ x

Similarly to the mono-objective case in [13], we can define
the feasibility indicator function ∆i(x) ∈ 0, 1 which is 1 if
ci(x) 6 bi, and 0 otherwise. A design point where ∆i(x) = 1
is termed feasible. Otherwise, it is called infeasible.

We aim to identify Γ with the fewest possible function eval-
uations, solving a sequential decision problem and constructing
a strategy X : f 7→ {X1, X2, X3, . . . } to iteratively generate
the next Xn+1 ∈ X to evaluate. If the evaluation Xi is not very
expensive then it is possible to construct a strategy that, for
each sequential step, runs multiple evaluations, i.e., a batch of
evaluations. In this case it is standard practice to warm-up the
strategy with some previously sampled points, using sampling
techniques from the design of experiments literature [26].

It is worth noting that, while infeasible points are never
considered our best experiment, they are still useful to add to
our set of performed experiments to improve the probabilistic
model posteriors. Practically speaking, infeasible samples help
to determine the shape and descent directions of c(x), allowing
the probabilistic model to discern which regions are more likely
to be feasible without actually sampling there. The fact that
we do not need to sample in feasible regions to find them is
a property that is highly useful in cases where the feasible
region is relatively small, and uniform sampling would have
difficulty finding these regions.

As an example, in this paper, we evaluate the compiler
optimization case for targeting FPGAs. In this case, p = 2, q =
1, f1(x) = Cycles(x) (number of total cycles, i.e., runtime),
f2(x) = Logic(x) (logic utilization, i.e., quantity of logic gates
used) in percentage, and ∆1(x) ∈ 0, 1 represents whether the
design point x fits in the target FPGA board.

C. Randomized Decision Forests

A decision tree is a non-parametric supervised machine
learning method widely used to formalize decision making
processes across a variety of fields. A randomized decision tree
is an analogous machine learning model, which “learns” how
to regress (or classify) data points based on randomly selected
attributes of a set of training examples. The combination of
many weak regressors (binary decisions) allows approximat-
ing highly non-linear and multi-modal functions with great
accuracy. Randomized decision forests [8], [11] combine many
such decorrelated trees based on the randomization at the level
of training data points and attributes to yield an even more
effective supervised regression and classification model.

A decision tree represents a recursive binary partitioning
of the input space, and uses a simple decision (a one-
dimensional decision threshold) at each non-leaf node that
aims at maximizing an “information gain” function. Prediction
is performed by “dropping” down the test data point from
the root, and letting it traverse a path decided by the node
decisions, until it reaches a leaf node. Each leaf node has a
corresponding function value (or probability distribution on

function values), adjusted according to training data, which
is predicted as the function value for the test input. During
training, randomization is injected into the procedure to reduce
variance and avoid overfitting. This is achieved by training each
individual tree on randomly selected subsets of the training
samples (also called bagging), as well as by randomly selecting
the deciding input variable for each tree node to decorrelate
the trees.

A regression random forests is built from a set of such
decision trees where the leaf nodes output the average of the
training data labels and where the output of the whole forest
is the average of the predicted results over all trees. In our
experiments, we train separate regressors to learn the mapping
from our input parameter space to each output variable.

It is believed that random forests are a good model for
computer systems workloads [7], [15]. In fact, these work-
loads are often highly discontinuous, multi-modal, and non-
linear [21], all characteristics that can be captured well by the
space partitioning behind a decision tree. In addition, random
forests naturally deal with categorical and ordinal variables
which are important in computer systems optimization. Other
popular models like Gaussian processes [23] are less appealing
for these type of variables. Additionally, a trained random
forests is a “white box” model which is relatively simple
for users to understand and to interpret (as compared to, for
example, neural network models, which are more difficult to
interpret).

III. METHODOLOGY

A. Injecting Prior Knowledge to Guide the Search
Here we consider the probability densities and distributions

that are useful to model computer systems workloads. In these
type of workloads the following should be taken into account:
• the range of values for a variable is finite.
• the density mass can be uniform, bell-shaped (Gaussian-

like) or J-shaped (decay or exponential-like).
For these reasons, in HyperMapper 2.0 we propose the Beta
distribution as a model for the search space variables. The
following three properties of the Beta distribution make it
especially suitable for modeling ordinal, integer and real
variables; the Beta distribution:

1) has a finite domain;
2) can flexibly model a wide variety of shapes including a

bell-shape (symmetric or skewed), U-shape and J-shape.
This is thanks to the parameters α and β (or a and b)
of the distribution;

3) has probability density function (PDF) given by:

f(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (2)

for x ∈ [0, 1] and α, β > 0, where Γ is the Gamma
function. The mean and variance can be computed in
closed form.

Note that the Beta distribution has samples that are confined
in the interval [0, 1]. For ordinal and integer variables, Hyper-
Mapper 2.0 automatically rescales the samples to the range of

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p(
x|

,
)

Beta Distribution
Uniform : = 1.0, = 1.0
Gaussian : = 3.0, = 3.0
Decay : = 0.5, = 1.5
Exponential : = 1.5, = 0.5

Fig. 2: Beta distribution shapes in HyperMapper 2.0.

values of the input variables and then finds the closest allowed
value in the ones that define the variables.

For categorical variables (with K modalities) we use a
probability distribution, i.e., instead of a density, that can be
easily specified as pairs of (xk, pk), where the set xk represents
the k values of the variable and pk is the probability associated
to each of them with

∑K
k=1 pk = 1.

In Figure 2 we show Beta distributions with parameters α
and β selected to suit computer systems workloads. We have
selected four shapes as follows:

1) Uniform (α = 1, β = 1): used as a default if the user
has no prior knowledge on the variable.

2) Gaussian (α = 3, β = 3): when the user thinks that it is
likely that the optimum value for that variable is located
in the center but still wants to sample from the whole
range of values with lower probability at the borders. This
density is reminiscent of an actual Gaussian distribution,
though it is finite.

3) Decay (α = 0.5, β = 1.5): used when the optimum is
likely located at the beginning of the range of values.
This is similar in shape to the log-uniform distribution
as in [5], [6]

4) Exponential (α = 1.5, β = 0.5): used when the optimum
is likely located at the end of the range of values. This is
similar in shape to the drawn exponentially distribution
as in [5]

B. Sampling with Categorical and Discrete Parameters

We first warm-up our model with simple random sampling.
In the design of experiments (DoE) literature [26], this is
the most commonly used sampling technique to warm-up the
search. When prior knowledge is used, samples are drawn from
each variable’s prior distribution, or the uniform distribution
by default if no prior knowledge is provided.

C. Unknown Feasibility Constraints

The unknown feasibility constraints algorithm in Hyper-
Mapper 2.0 is an adaptation of the constrained Bayesian
optimization (cBO) method introduced in [13]. cBO is based
on Gaussian Processes (GPs) to model the constraints and it
uses these probabilistic models to guide the search, which is, it
multiplies the acquisition function of the Bayesian optimization
iteration by the constraints represented by the GPs; this leads to
a new probabilistic model that is the combination of constraints
and surrogate models. We refer to [13] for a more detailed
explanation of the cBO algorithm.

In HyperMapper 2.0 we implement the constraints with a
random forests classification model. The advantage of this
choice is that RF is a lightweight model that is interpretable
shading light on how the feasibility design space looks like.
Experiments in Section IV-C show the effectiveness of the
random forests classifier in the context of feasibility constraints.
This model can be seen as a filter that is at the core of the search
algorithm in HyperMapper 2.0, as explained in Section III-D.
The filter instructs the search algorithm on which configurations
are likely to be infeasible so that the sampling budget can be
used more efficiently.

D. Active Learning

Active learning is a paradigm in supervised machine learning
which uses fewer training examples to achieve better prediction
accuracy by iteratively training a predictor, and using the
predictor in each iteration to choose the training examples
which will increase its accuracy the most. Thus the optimization
results are incrementally improved by interleaving exploration
and exploitation steps. We use randomized decision forests as
our base predictors created from a number of sampled points
in the parameter space.

The application is evaluated on the sampled points, yielding
the labels of the supervised setting given by the multiple
objectives. Since our goal is to accurately estimate the points
near the Pareto-optimal front, we use the current predictor
to provide performance values over the parameter space and
thus estimate the Pareto fronts. For the next iteration, only
parameter points near the predicted Pareto front are sampled
and evaluated, and subsequently used to train new predictors
using the entire collection of training points from current
and all previous iterations. This process is repeated over a
number of iterations forming the active learning loop. Our
experiments in Section IV indicate that this guided method
of searching for highly informative parameter points in fact
yields superior predictors as compared to a baseline that uses
randomly sampled points alone. By iterating this process several
times in the active learning loop, we are able to discover high-
quality design configurations that lead to good performance
outcomes.

Algorithm 1 shows the pseudo-code of the model-based
search algorithm used in HyperMapper 2.0. Figure 3 shows a
corresponding graphical representation of the algorithm. The

Search
Space[]

Obj 1 Validity
....

Obj N Validity

Random
Samples

Machine
Learning

Run
Predicted

Pareto

Classifier
(Filter)

New Samples

Active Learning

[]

Pareto Front

Input Processing Output

Objective 1
....

Objective N[] Compute
Valid

Predicted
Pareto

Regressor

Fig. 3: Active learning with unknown feasibility constraints.

Algorithm 1: Pseudo-code for HyperMapper 2.0 optimiz-
ing a two-objective (obj1 and obj2) application with one
feasibility constraint (fea). − denotes set difference, ∪
denotes set union.

Data: Design space X, warm-up sampling size N ,
maxAL is the maximum samples in an active
learning iteration.

Result: Pareto front P .
1 Warm-up ← RS;
2 Xout ← Warm-up N distinct configurations from X;
3 Yobj1 , Yobj2 , Yfea ← Evaluate(Xout);
4 Mobj1 ← Fit RF Regressor(Xout, Yobj1);
5 Mobj2 ← Fit RF Regressor(Xout, Yobj2);
6 Mfea ← Fit RF Classifier(Xout, Yfea);
7 P ← Predict Pareto(Mobj1 ,Mobj2 ,Mfea,X, Xout);
8 i← 0;
9 while (P −Xout 6= ∅) and (i < maxAL) do

10 Xout ← P −Xout;
11 Y obj1 , Y obj2 , Y fea ← Evaluate(Xout);
12 Xout ← Xout ∪Xout;
13 Yobj1 ← Yobj1 ∪ Y obj1 ;
14 Yobj2 ← Yobj2 ∪ Y obj2 ;
15 Yfea ← Yfea ∪ Y fea;
16 Mobj1 ← Fit RF Regressor(Xout, Yobj1);
17 Mobj2 ← Fit RF Regressor(Xout, Yobj2);
18 Mfea ← Fit RF Classifier(Xout, Yfea);
19 P ←

Predict Pareto(Mobj1 ,Mobj2 ,Mfea,X, Xout);
20 i← i+ 1;
21 end
22 return P ;

while loop on line 9 in Algorithm 1 is the active learning
loop, represented by the big loop in the preprocessing box
of Figure 3. The user specifies a maximum number of active
learning iterations given by the variable maxAL. The function
Fit RF Regressor() at lines 4, 5, 16 and 17 trains random
forests regressors Mobj1 and Mobj2 which are the surrogate
models to predict the objectives given a parameter vector.

We train p separate models, one for each objective (p=2 in
Algorithm 1). The random forests regressor is represented by
the box ”Regressor” in Figure 3.

The function Fit RF Classifier() on lines 6 and 15 trains
a random forests classifier Mfea to predict if a parameter vec-
tor is feasible or infeasible. The classifier becomes increasingly
accurate during active learning. Using a classifier to predict
the infeasible parameter vectors has proven to be very effective
as later shown in Section IV-C. The random forests classifier
is represented by the box ”Classifier (Filter)” in Figure 3.
The function Predict Pareto on lines 7 and 19 filters the
parameter vectors that are predicted infeasible from X before
computing the Pareto, thus dramatically reducing the number
of function evaluations. This function is represented by the
box ”Compute Valid Predicted Pareto” in Figure 3.

For sake of space some details are not shown in Algorithm 1.
For example, the while loop on line 9 is limited to M
evaluations per active learning iteration. When the cardinality
|P − Xout| > M , a maximum of M samples are selected
uniformly at random from the set P − Xout for evaluation.
In the case where |P −Xout| < M , a number of parameter
vector samples M − |P −Xout| is drawn uniformly at random
without repetition. This ensures exploration analogous to the
ε-greedy algorithm in the reinforcement learning literature [32].
ε-greedy is known to provide balance between the exploration-
exploitation trade-off.

E. Pareto Wall

In Algorithm 1 lines 7 and 19, the function Predict Pareto
eliminates the Xout samples from X before computing the
Pareto front. This means that the newly predicted Pareto
front never contains previously evaluated samples and, by
consequence, a new layer of Pareto front is considered at each
new iteration. We dub this multi-layered approach the Pareto
Wall because we consider one Pareto front per active learning
iteration, with the result that we are exploring several adjacent
Pareto frontiers. Adjacent Pareto frontiers can be seen as a thick
Pareto, i.e., a Pareto Wall. The advantage of exploring the Pareto
Wall in the active learning loop is that it minimizes the risk of
using a surrogate model which is currently inaccurate. At each
active learning step, we search previously unexplored samples
which, by definition, must be predicted to be worse than the
current approximated Pareto front. However, in cases where
the predictor is not yet very accurate, some of these unexplored
samples will often dominate the approximated Pareto, leading
to a better Pareto front and an improved model.

F. The HyperMapper 2.0 Framework

HyperMapper 2.0 is written in Python and makes use of
widely available libraries, e.g., scikit-learn and pyDOE. The Hy-
perMapper 2.0 setup is via a simple json file. A light interface
with third party software used for optimization is also necessary:
templates for Python and Scala are provided. HyperMapper 2.0
is able to run in parallel on multi-core machines the classifiers
and regressors as well as the computation of the Pareto front
to accelerate the active learning iterations.

Spatial Compiler

1. Initialization
Parameter domain analysis

Initial optimizations

3. Elaboration
Loop unrolling

Final optimizations
Pipeline retiming
Code generation

Spatial IR

 Parameters

Resource utilization and
performance estimates

Proposed parameter values

2. Analyses
Pipeline scheduling

Memory layout analysis
FPGA resource modeling
FPGA runtime modeling

HyperMapper 2.0

Chisel

Fig. 4: An overview of the phases of the compiler for the
Spatial application accelerator design language. HyperMapper
2.0 interfaces at the beginning and ending of phase 2 to drive
accelerator design space exploration and the selection of design
parameter values.

IV. EVALUATION

We run the evaluation on the recently proposed Spatial
compiler [19], which implies a full integration of HyperMapper
2.0 on the Spatial production-level compiler toolchain for
designing application hardware accelerators on FPGAs. We
compare HyperMapper 2.0 with the HyperMapper 1.0 multi-
objective auto-tuner to show the effectiveness of the feasibility
constraints methodology. Then we compare HyperMapper 2.0
against the real Pareto where exhaustive search is possible, i.e.
a total of three benchmarks. This is to give an insight on how
the optimizer works in a controlled environment, i.e. when the
Pareto front in known and the benchmark is small. Finally a
comparison with the previous approach in Spatial, which is
a mix of expert programmer pruning and random sampling,
is given. The blocking factor to run more comparisons with
other auto-tuners is that there is no available framework that
has both RIOC variables and multi-objective features as shown
in Table I. As an example, the popular OpenTuner supports
multiple objectives that are scalarized in one objective or allows
optimization of one objective while thresholding a second
objective. This means that OpenTuner is inherently single-
objective1 making the comparison with HyperMapper 2.0 not
legitimate.

A. The Spatial Programming Language

Spatial [19] is a domain-specific language (DSL) and corre-
sponding compiler for the design of application accelerators on
reconfigurable architectures. The Spatial frontend is tailored
to present programmers with a high level of abstraction for
hardware design. Control in Spatial is expressed as nested,
parallelizable loops, while data structures are allocated based on
their placement in the target hardware’s memory hierarchy. The
language also includes support for design parameters to express
values which do not change the behavior of the application
and which can be changed by the compiler. These parameters
can be used to express loop tile sizes, memory sizes, loop
unrolling factors, and the like.

As shown in Figure 4, the Spatial compiler lowers user
programs into synthesizable Chisel [2] designs in three phases.
In the first phase, it performs basic hardware optimizations

1Refer to this OpenTuner code for example: https://tinyurl.com/ybxcokyn.

and estimates a possible domain for each design parameter
in the program. In the second phase, the compiler computes
loop pipeline schedules and on-chip memory layouts for some
given value for each parameter. It then estimates the amount of
hardware resources and the runtime of the application. When
targeting an FPGA, the compiler uses a device-specific model
to estimate the amount of compute logic (LUTs), dedicated
multipliers (DSPs), and on-chip scratchpads (BRAMs) required
to instantiate the design. Runtime estimates are performed using
similar device-specific models with average and worst case
estimates computed for runtime-dependent values. Runtime is
typically reported in clock cycles.

In the final phase of compilation, the Spatial compiler unrolls
parallelized loops, retimes pipelines via register insertion, and
performs on-chip memory layout and compute optimizations
based on the analyses performed in the previous phase. Finally,
the last pass generates a Chisel design which can be synthesized
and run on the target FPGA.

Benchmark Variables Space Size
BlackScholes 4 7.68× 104

K-Means 6 1.04× 106

OuterProduct 5 1.66× 107

DotProduct 5 1.18× 108

GEMM 7 2.62× 108

TPC-H Q6 5 3.54× 109

GDA 9 2.40× 1011

TABLE II: Spatial benchmarks and design space size.

B. HyperMapper 2.0 in the Spatial Compiler

The collection of design parameters in a Spatial program,
together with their respective domains, yields a hardware design
space. The second phase of the compiler gives a way to estimate
two cost metrics - performance and FPGA resource utilization
- for a given design in this space. Existing work on Spatial
has evaluated two methods for design space exploration. The
first method heuristically prunes the design space and then
performs randomized search with a fixed number of samples.
The heuristics, first established by Spatial’s predecessor [20],
help to eliminate obviously bad points within the design space
prior to random search; the pruning is provided by expert
FPGA developers. This is, in essence, a one-time hint to guide
search. The second method evaluated the feasibility of using
HyperMapper 1.0 [7] to drive exploration, concluding that the
tool was promising but still required future development. In
some cases, it performed poorly without a feasibility classifier
as the search often focused on infeasible regions [19].

Spatial’s compiler includes hooks at the beginning and end
of its second phase to interface with external tools for design
space exploration. As shown in Figure 4, the compiler can
query at the beginning of this phase for parameter values to
evaluate. Similarly, the end of the second phase has hooks to
output performance and resource estimates. HyperMapper 2.0
interfaces with these hooks to receive cost estimates, build a
surrogate model, and drive search of the space.

In this work, we evaluate design space exploration when
Spatial is targeting an Altera Stratix V FPGA with 48 GB
of dedicated DRAM and a peak memory bandwidth of
76.8 GB/sec (an identical approach could be used for any
FPGA target). We list the seven benchmarks we evaluate with
HyperMapper 2.0 in Table II. These seven benchmarks are a
representative subset of those previously used to evaluate the
Spatial compiler [19].

C. Feasibility Classifier Effectiveness

We address the question of the effectiveness of the feasibility
classifier in the Spatial use case. Of all the hyperparameters
defined for binary random forests [22], the parameters that
usually have the most impact on the performance of the
random forests classifier are: n estimators, max depth,
max features and class weight. The reader car refer to
the scikit-learn random forests classifier documentation for
more details on these model hyperparameters. We run an
exhaustive search to fine-tune the binary random forests
classifier hyperparameters and test its performance. The range
of values we considered for these parameters is shown in
Table III. This defines a comprehensive space of 81 possible
choices, small enough that it can be explored using exhaustive
search. We dub these choices of parameter vectors as config 1
to config 81 on the x axis.

Name Range of Values
n estimators [10, 100, 1000]
max depth [None, 4, 8]
max features [’auto’, 0.5, 0.75]
class weight [{T: 0.50, F: 0.50}, {T: 0.75, F: 0.25}, {T: 0.9, F: 0.1}]

TABLE III: Random forests classifier hyperparameter tuning
search space.

We perform a 5-fold cross-validation using the data collected
by HyperMapper 2.0 as training data and report validation
recall averaged over the 5 folds. The goal of this optimization
procedure is for the binary classification to maximize recall.
We want to maximize recall, i.e., true positives

true positives+false negatives ,
because it is important to not throw away feasible points that
are misclassified as being infeasible and that can potentially be
good fits. Precision, i.e., true positives

true positives+false positives , is less
important as there is smaller cost associated with classifying
an infeasible parameter vector as feasible. In this case the only
downside is that some samples will be wasted because we are
evaluating samples that are infeasible, which is not a major
drawback.

Figure 5 reports the recall of the random forests classifier
across the 7 benchmarks and hyperparameter configurations.
For sake of space, we only report the first 25 configurations,
but the trend persists across all configurations. Figure 5 (top)
shows the recall just after the warm-up sampling and before
the first active learning iteration (Algorithm 1 line 6). Figure 5
(bottom) shows the recall after 50 active learning iterations
(Algorithm 1 line 15 after 50 iterations of the while loop, where
each iteration is evaluating 100 samples). The recall goes up

0

0.2

0.4

0.6

0.8

1

1.2

GDA Kmeans BlackScholes MatMult_outer OuterProduct DotProduct TPCHQ6

m
y	l
as
t	e

xp
er
im

en
ts

Be
st

0

0.2

0.4

0.6

0.8

1

1.2

GDA Kmeans BlackScholes MatMult_outer OuterProduct DotProduct TPCHQ6

m
y	l
as
t	e

xp
er
im

en
ts

Be
st

A
t 0

 A
ct

iv
e

Le

ar
ni

ng
 It

er
at

io
ns

A
t 5

0
A

ct
iv

e

Le
ar

ni
ng

 It
er

at
io

ns

0

0.2

0.4

0.6

0.8

1

1.2

GDA K-Means BlackScholes GEMM OuterProduct DotProduct T-PCH	Q6

m
y	
la
st
	e
xp
er
im

en
ts

Be
st

R
ec

al
l

Max mean Max median Max min
0.784 0.826 0.600

(a) Recall at 0 active learning iterations.
0

0.2

0.4

0.6

0.8

1

1.2

GDA Kmeans BlackScholes MatMult_outer OuterProduct DotProduct TPCHQ6

m
y	l
as
t	e

xp
er
im

en
ts

Be
st

0

0.2

0.4

0.6

0.8

1

1.2

GDA Kmeans BlackScholes MatMult_outer OuterProduct DotProduct TPCHQ6

m
y	l
as
t	e

xp
er
im

en
ts

Be
st

A
t 0

 A
ct

iv
e

Le

ar
ni

ng
 It

er
at

io
ns

A
t 5

0
A

ct
iv

e

Le
ar

ni
ng

 It
er

at
io

ns

0

0.2

0.4

0.6

0.8

1

1.2

GDA K-Means BlackScholes GEMM OuterProduct DotProduct T-PCH	Q6

m
y	
la
st
	e
xp
er
im

en
ts

Be
st

R
ec

al
l

Max mean Max median Max min
0.967 0.984 0.886

(b) Recall at 50 active learning iterations.

0

0.2

0.4

0.6

0.8

1

1.2

GDA Kmeans BlackScholes MatMult_outer OuterProduct DotProduct TPCHQ6

m
y	l
as
t	e

xp
er
im

en
ts

Be
st

0

0.2

0.4

0.6

0.8

1

1.2

GDA Kmeans BlackScholes MatMult_outer OuterProduct DotProduct TPCHQ6

m
y	l
as
t	e

xp
er
im

en
ts

Be
st

A
t 0

 A
ct

iv
e

Le

ar
ni

ng
 It

er
at

io
ns

A
t 5

0
A

ct
iv

e

Le
ar

ni
ng

 It
er

at
io

ns

0

0.2

0.4

0.6

0.8

1

1.2

GDA K-Means BlackScholes GEMM OuterProduct DotProduct T-PCH	Q6

m
y	
la
st
	e
xp
er
im

en
ts

Be
st

Fig. 5: RF feasibility classifier 5-fold cross-validation recall
over all benchmarks. The first 25 hyperparameter configurations
of the classifier are shown. “Max mean”, “Max median”, and
“Max min” are the maximum across the mean, median, and
minimum recall scores for all 7 benchmarks, respectively.

during the active learning loop implying that the feasibility
constraint is being predicted more accurately over time. The
tables in Figure 5 show this general performance trend with
the max mean improving from 0.784 to 0.967.

In Figure 5 (top) the recall is low prior to the start of active
learning. The configuration that scores best (the maximum
score of the minimum scores across the different configurations)
has a minimum score of 0.6 on the 7 benchmarks. The con-
figuration is: {’class weight’:{T:0.75,F:0.25}, ’max depth’:8,
’max features’:’auto’, ’n estimators’:10}. The recall of this
configuration ranges from a minimum of 0.6 for TPC-H Q6 to
a maximum of 1.0 on BlackScholes with mean and standard
deviation of 0.735 and 0.15 respectively.

In Figure 5 (bottom) the recall is high after 50 iterations
of active learning. There are two configurations that score
best, with a minimum score of 0.886 on the 7 benchmarks.
The configurations are: {’class weight’:{T:0.75,F:0.25},
’max depth’:None, ’max features’:’0.75’, ’n estimators’:10}
and {’class weight’:{T:0.9,F:0.1}, ’max depth’:None,
’max features’:’0.75’, ’n estimators’:10}. In general, most
of the configurations are very close in terms of recall and

0 20 40 60 80 100
Logic Utilization (%)

108

109

1010

1011

1012

Cy
cle

s (
lo

g)

Valid Samples - w/o Feasibility
w/o Feasibility
Invalid Samples - w/o Feasibility
Valid Samples - w/ Feasibility
w/ Feasibility
Invalid Samples - w/ Feasibility

Fig. 6: Effect of the binary constraint classifier on the GDA
benchmark. HyperMapper 2.0, with his feasibility classifier
feature, is shown as black (feasible) and green (infeasible). Hy-
perMapper 1.0 is shown as blue (feasible) and red (infeasible).
The final approximated Pareto fronts are shown as black (our
approach) and blue (HyperMapper 1.0) curves.

the default random forests configuration scores high, perhaps
suggesting that the random forests for these kind of workloads
does not need a major tuning effort. The statistics of these
configurations range from a minimum of 0.886 for DotProduct
to a maximum of 1.0 on BlackScholes with mean and standard
deviation of 0.964 and 0.04 respectively.

Figure 6 compares the predicted Pareto fronts of GDA, the
benchmark with the largest design space, using HyperMapper
1.0 and HyperMapper 2.0. HyperMapper 1.0 does not exploit
the feasibility constraints feature introduced by HyperMapper
2.0 as shown in Table I. In both cases, we use random
sampling to warm-up the optimization with 1,000 samples
followed by 5 iterations of active learning. The red dots
representing the invalid points for the case without feasibility
constraints (HyperMapper 1.0) are spread farther from the
corresponding Pareto frontier while the green dots for the
case with constraints (HyperMapper 2.0) are close to the
respective frontier. This happens because the non-constrained
search focuses on seemingly promising but unrealistic points.
HyperMapper 2.0 with its constrained search focuses in a
region that is more conservative but feasible. The effect of the
feasibility constraint is apparent in its improved Pareto front,
which almost entirely dominates the approximated Pareto front
resulting from unconstrained search. For the sake of brevity, we
only show experiments on the biggest design space considered
in this evaluation section, i.e., the GDA benchmark, however
the results are confirmed in the rest of the benchmarks.

D. Optimum vs. Approximated Pareto

We next take the smallest benchmarks, BlackScholes, Dot-
Product and OuterProduct, and run exhaustive search to com-
pare the approximated Pareto front computed by HyperMapper

2.0 with the true optimal one. This can be achieved only
for such small benchmarks as exhaustive search is feasible.
However, even on these small spaces, exhaustive search requires
6 to 12 hours when parallelized across 16 CPU cores. In
our framework, we use random sampling to warm-up the
search with 1000 random samples followed by 5 active learning
iterations of about 500 samples total.

Comparisons are synthesized in Figure 7. The optimal Pareto
front is very close to the approximated one provided by
HyperMapper 2.0, showing our software’s ability to recover the
optimal Pareto front. About 1500 total samples are required
to recover the Pareto optimum, about the same number of
samples for BlackScholes and 66 times fewer for OuterProduct
and DotProduct compared to the prior Spatial design space
exploration approach using pruning and random sampling.

E. Hypervolume Indicator
We next show the hypervolume indicator (HVI) [12] function

for the whole set of the Spatial benchmarks as a function of the
initial number of warm-up samples (for sake of space we omit
the smallest benchmark, BlackScholes). For every benchmark,
we show 5 repetitions of the experiments and report variability
via a line plot with 80% confidence interval. The HVI metric
gives the area between the estimated Pareto frontier and the
spaces true Pareto front. This metric is the most common to
compare multi-objective algorithm performance. Since the true
Pareto front is not always known, we use the accumulation
of all experiments run on a given benchmark to compute our
best approximation of the true Pareto front and use this as a
true Pareto. This includes all repetitions across all approaches,
e.g., baseline and HyperMapper 2.0. In addition, since logic
utilization and cycles have different value ranges by several
order of magnitude, we normalize the data by dividing by the
standard deviation before computing the HVI. This has the
effect of giving the same importance to the two objectives
and not skewing the results towards the objective with higher
raw values. We set the same number of samples for all the
experiments to 100,000 (the default value in the prior work
baseline). Based on advice by expert hardware developers,
we modify the Spatial compiler to automatically generate the
prior knowledge discussed in Section III-A based on design
parameter types. For example, on-chip tile sizes have a “decay”
prior because increasing memory size initially helps to improve
DRAM bandwidth utilization but has diminishing returns after a
certain point. This prior information is passed to HyperMapper
2.0 and is used to magnify random sampling. The baseline has
no support for prior knowledge.

Figure 8 shows the two different approaches: HyperMapper
2.0 using a warm-up sampling phase with the use of the prior
and then an active learning phase; Spatial’s previous design
space exploration approach (the baseline).

The y-axis reports the HVI metric and the x-axis the number
of samples in thousands.

Benchmark HyperMapper 2.0 Spatial Baseline
BlackScholes 0.1± 0 0± 0
K-Means 0± 0 0.1± 0.05
OuterProduct 0.08± 0.06 0± 0
DotProduct 0.1± 0 0± 0
GEMM 0.12± 0.06 0± 0
TPC-H Q6 0.43± 0.2 0.06± 0.06
GDA 0.08± 0.11 0.4± 0.22

TABLE IV: Performance of HyperMapper 2.0 in terms of
mean ± 80% confidence interval at the end of the optimization
process. Note that our approach terminates using a much lower
number of samples.

Objective
Benchmark Parameter Logic Util. Cycles

BlackScholes

Tile Size 0.003 0.569
OP 0.261 0.072
IP 0.735 0.303

Pipelining 0.001 0.056

OuterProduct

Tile Size A 0.095 0.290
Tile Size B 0.075 0.323

OP 0.170 0.084
IP 0.321 0.248

Pipelining 0.340 0.055

TABLE V: Parameter feature importance per benchmark. Tile
sizes are given for each data structure. OP and IP are the outer
and inner loop parallelization factors, respectively. Pipelining
determines whether the key compute loop in the benchmark
is pipelined or sequentially executed. Scores closer to 1 mean
that the parameter is more important for that objective. Scores
for a single objective sum to 1.

Table IV quantitatively summarizes the results. We observe
the general trend that HyperMapper 2.0 needs far fewer samples
to achieve competitive performance compared to the baseline.
Additionally, our framework’s variance is generally small, as
shown in 8. The total number of samples used by HyperMapper
2.0 is 12,500 on all experiments while the number of samples
performed by the baseline varies as a function of the pruning
strategy. The number of samples for GEMM, T-PCH Q6,
GDA, and DotProduct is 100,000, which leads to an efficiency
improvement of 8×, while OuterProduct and K-Means are
31,068 and 18,720, which leads to an improvement of 2.49×
and 1.5×, respectively.

As a result, the autotuner is robust to randomness and only
a reasonable number of random samples are needed for the
warm-up and active learning phases.

F. Understandability of the Results

HyperMapper 2.0 can be used by domain non-experts to
understand more about the domain they are trying to optimize.
In particular, users can view feature importance to gain a better
understanding of the impact of various parameters on the design
objectives. The feature importances for the BlackScholes and
OuterProduct benchmarks are given in Table V.

In BlackScholes, innermost loop parallelization (IP) directly
determines how fast a single tile of data can be processed.

0.0 0.2 0.4 0.6 0.8 1.0
106

107

108
C
yc

le
s

(l
og

)
Approximated Pareto samples
Real Pareto samples
Invalid samples
Real Pareto
Approximated Pareto

Logic Utilization (%)

BlackScholes

0.0 0.2 0.4 0.6 0.8 1.0
Logic Utilization (%)

104

105

106

C
yc

le
s

(l
o
g
)

Approximated Pareto Samples
Real Pareto Samples
Invalid Samples
Real Pareto
Approximated Pareto

OuterProduct

0.0 0.2 0.4 0.6 0.8 1.0
Logic Utilization (%)

42000

42500

43000

43500

44000

44500

45000

45500

46000

C
yc

le
s

Approximated Pareto Samples
Real Pareto Samples
Invalid Samples
Real Pareto
Approximated Pareto

DotProduct

Fig. 7: Optimum versus approximated Pareto front for the BlackScholes (left, y-axis in log scale), OuterProduct (center, y-axis
in log scale) and DotProduct (right) benchmarks. The x-axis is compute logic, reported as a percentage of the total LUT
capacity of the Stratix V FPGA. The y-axis is the total cycles taken to run the benchmark. The approximated Pareto front is
computed by HyperMapper 2.0 and the real Pareto is computed by exhaustive search. The invalid (or infeasible) samples are
samples that would not be possible to synthesize on the FPGA given the hardware constraints.

Consequently, as shown in Figure V, IP is highly related to
both the design logic utilization and design run-time (cycles).
Since BlackScholes is bandwidth bound, changing DRAM
utilization with tile sizes directly changes the run-time, but
has no impact on the compute logic since larger memories do
not require more LUTs. Outer loop parallelization (OP) also
duplicates compute logic by making multiple copies of each
inner loop, but as shown in Figure V, OP has less importance
for run-time than IP.

Similarly, in OuterProduct, both tile sizes have roughly even
importance on the number of execution cycles, while IP has
roughly even importance for both logic utilization and cycles.
Unlike BlackScholes, which includes a large amount of floating
point compute, OuterProduct has relatively little computation,
making the cost of outer loop pipelining relatively impactful
on logic utilization but with little importance on cycles. In both
cases, this information is taken into account when determining
whether to prioritize further optimizing the application for inner
loop parallelization or outer loop pipelining.

G. Optimization Wall-clock Time

Since HyperMapper 1.0 was not optimized for tuning time
[21], our framework is already one order of magnitude faster
in average. We run on four Intel XEON E7-8890 at 2.50GHz
but HyperMapper 2.0 runs mostly sequentially. Optimization
wall-clock time varies with the benchmark and is in the same
order of magnitude as the Spatial baseline (tens of seconds).
This includes the time to evaluate the Spatial samples which
is independent from HyperMapper 2.0.

V. RELATED WORK

During the last two decades, several design space exploration
techniques and frameworks have been used in a variety of
different contexts ranging from embedded devices to compiler
research to system integration. Table I provides a taxonomy of
methodologies and software from both the computer systems
and machine learning communities. HyperMapper 2.0 has been

inspired by a wide body of work in multiple sub-fields of
these communities. The nature of computer systems workloads
brings some important features to the design of HyperMapper
2.0 which are often missing in the machine learning community
research on design space exploration tools.

In the system community, a popular, state-of-the-art design
space exploration tool is OpenTuner [1]. This tool is based
on direct approaches (e.g., , differential evolution, Nelder-
Mead) and a methodology based on the Area Under the Curve
(AUC) and multi-armed bandit techniques to decide what
search algorithm deserves to be allocated a higher resource
budget. OpenTuner is different from our work in a number of
ways. First, our work supports multi-objective optimization.
Second, our white-box model-based approach enables the user
to understand the results while learning from them. Third, our
approach is able to consider unknown feasibility constraints.
Lastly, our framework has the ability to inject prior knowledge
into the search. The first point in particular does not allow a
direct performance comparison of the two tools.

Our work is inspired by HyperMapper 1.0 [7], [19], [21],
[25]. Bodin et al. [7] introduce HyperMapper 1.0 for
autotuning of computer vision applications by considering
the full software/hardware stack in the optimization process.
Other prior work applies it to computer vision and robotics
applications [21], [25]. There has also been preliminary study
of applying HyperMapper 1.0 to the Spatial programming
language and compiler like in our work [19]. However, it lacks
fundamental features that makes it ineffective in the presence
of applications with non-feasible designs and prior knowledge.

In [16] the authors use an active learning technique to
build an accurate surrogate model by reducing the variance
of an ensemble of fully connected neural network models.
However, our work is fundamentally different because we are
not interested in building a perfect surrogate model, instead we
are interested in optimizing the surrogate model (over multiple
objectives). So, in our case building a very accurate surrogate

0 20 40 60 80 100
Number of samples (in thousands)

0

100

Lo
g

Hy
pe

rV
ol

um
e

In
di

ca
to

r (
HV

I)
Line plot with 80% confidence intervals

Heuristic
HyperMapper 2.0

GEMM

0 5 10 15 20 25 30
Number of samples (in thousands)

0

100

Lo
g

Hy
pe

rV
ol

um
e

In
di

ca
to

r (
HV

I)

Line plot with 80% confidence intervals
Heuristic
HyperMapper 2.0

OuterProduct

0 5 10 15
Number of samples (in thousands)

0

100

Lo
g

Hy
pe

rV
ol

um
e

In
di

ca
to

r (
HV

I)

Line plot with 80% confidence intervals
Heuristic
HyperMapper 2.0

K-Means

0 20 40 60 80 100
Number of samples (in thousands)

0

100

101

Lo
g

Hy
pe

rV
ol

um
e

In
di

ca
to

r (
HV

I)

Line plot with 80% confidence intervals
Heuristic
HyperMapper 2.0

GDA

0 20 40 60 80 100
Number of samples (in thousands)

0

100

Lo
g

Hy
pe

rV
ol

um
e

In
di

ca
to

r (
HV

I)

Line plot with 80% confidence intervals
Heuristic
HyperMapper 2.0

T-PCH Q6

0 20 40 60 80 100
Number of samples (in thousands)

0

100

Lo
g

Hy
pe

rV
ol

um
e

In
di

ca
to

r (
HV

I)

Line plot with 80% confidence intervals
Heuristic
HyperMapper 2.0

DotProduct

Fig. 8: Performance of HyperMapper 2.0 versus the Spatial programming language baseline.

model over the entire space would result in a waste of samples.
Recent work [9] uses decision trees to automatically tune

discrete NVIDIA and SoC ARM GPUs. Norbert et al. tackle
the software configurability problem for binary [29] and for
both binary and numeric options [28] using a performance-
influence model which is based on linear regression. They
optimize for execution time on several examples exploring
algorithmic and compiler spaces in isolation.

In particular, machine learning (ML) techniques have been
recently employed in both architectural and compiler research.
Khan et al. [18] employed predictive modeling for cross-
program design space exploration in multi-core systems. The
techniques developed managed to explore a large design
space of chip-multiprocessors running parallel applications
with low prediction error. In [4] Balaprakash et al. introduce
AutoMOMML, an end-to-end, ML-based framework to build
predictive models for objectives such as performance, and
power. [3] presents the ab-dynaTree active learning parallel
algorithm that builds surrogate performance models for sci-
entific kernels and workloads on single-core, multi-core and
multi-node architectures. In [34] the authors propose the Pareto
Active Learning (PAL) algorithm which intelligently samples
the design space to predict the Pareto-optimal set.

Our work is similar in nature to the approaches adopted in
the Bayesian optimization literature [27]. Example of widely
used mono-objective Bayesian DFO software are SMAC [15],
SpearMint [30], [31] and the work on tree-structured Parzen
estimator (TPE) [6]. These mono-objective methodologies are

based on random forests, Gaussian processes and TPEs making
the choice of learned models varied.

VI. CONCLUSIONS AND FUTURE WORK

HyperMapper 2.0 is inspired by HyperMapper 1.0 [7], by
the philosophy behind OpenTuner [1] and SMAC [15]. We
have introduced a new DFO methodology and corresponding
framework which uses guided search using active learning. This
framework, dubbed HyperMapper 2.0, is built for practical,
user-friendly design space exploration in computer systems,
including support for categorical and ordinal variables, design
feasibility constraints, multi-objective optimization, and user
input on variable priors. Additionally, HyperMapper 2.0 uses
randomized decision forests to model the searched space. This
model not only maps well for the discontinuous, non-linear
spaces in computer systems, but also gives a “white box” result
which the end user can inspect to gain deeper.

We have presented the application of HyperMapper 2.0
as a compiler pass of the Spatial language and compiler for
generating application accelerators on FPGAs. Our experiments
show that, compared to the previously used heuristic random
search, our framework finds similar or better approximations
of the true Pareto frontier, with significantly fewer samples
required, 8x in most of the benchmarks explored.

Future work will include analysis and incorporation of other
DFO strategies. In particular, the use of a full Bayesian ap-
proach will help to leverage the prior knowledge by computing
a posterior distribution. In our current approach we only exploit

the prior distribution at the level of the initial warm-up sampling.
Exploration of additional methods to warm-up the search from
the design of experiments literature is a promising research
venue. In particular the Latin Hypercube sampling technique
was recently adapted to work on categorical variables [33]
making it suitable for computer systems workloads. Future
work will target an extension of this work to the Spatial ASIC
back end as well as the Halide programming language.

VII. ACKNOWLEDGEMENTS

The authors wish to thank the HyperMapper 2.0 users for
their help in improving the framework. We thank Professor
Joseph Salmon for feedback on the manuscript and Matthew
Feldman for compiler support. This research is supported by
affiliate members and supporters of the Stanford DAWN project:
Ant Financial, Facebook, Google, Infosys, Intel, Microsoft,
NEC, Teradata, SAP, and VMware.

REFERENCES

[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
Opentuner: An extensible framework for program autotuning. In
Parallel Architecture and Compilation Techniques (PACT), 2014 23rd
International Conference on, pages 303–315. IEEE, 2014.

[2] J. Bachrach, Huy Vo, B. Richards, Yunsup Lee, A. Waterman, R. Avizie-
nis, J. Wawrzynek, and K. Asanovic. Chisel: Constructing hardware in
a scala embedded language. In Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE, pages 1212–1221, June 2012.

[3] Prasanna Balaprakash, Robert B Gramacy, and Stefan M Wild. Active-
learning-based surrogate models for empirical performance tuning. In
Cluster Computing (CLUSTER), 2013 IEEE International Conference
on, pages 1–8. IEEE, 2013.

[4] Prasanna Balaprakash, Ananta Tiwari, Stefan M Wild, Laura Carrington,
and Paul D Hovland. Automomml: Automatic multi-objective modeling
with machine learning. In International Conference on High Performance
Computing, pages 219–239. Springer, 2016.

[5] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(Feb):281–305,
2012.

[6] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In Advances in neural
information processing systems, pages 2546–2554, 2011.

[7] Bruno Bodin, Luigi Nardi, M Zeeshan Zia, Harry Wagstaff, Govind
Sreekar Shenoy, Murali Emani, John Mawer, Christos Kotselidis, Andy
Nisbet, Mikel Lujan, et al. Integrating algorithmic parameters into
benchmarking and design space exploration in 3d scene understanding.
In Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation, pages 57–69. ACM, 2016.

[8] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[9] Marco Cianfriglia, Flavio Vella, Cedric Nugteren, Anton Lokhmotov,

and Grigori Fursin. A model-driven approach for a new generation of
adaptive libraries. arXiv preprint arXiv:1806.07060, 2018.

[10] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction
to derivative-free optimization, volume 8. Siam, 2009.

[11] Antonio Criminisi, Jamie Shotton, Ender Konukoglu, et al. Decision
forests: A unified framework for classification, regression, density
estimation, manifold learning and semi-supervised learning. Foundations
and Trends® in Computer Graphics and Vision, 7(2–3):81–227, 2012.

[12] Paul Feliot, Julien Bect, and Emmanuel Vazquez. A bayesian approach
to constrained single-and multi-objective optimization. Journal of Global
Optimization, 67(1-2):97–133, 2017.

[13] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger,
and John P Cunningham. Bayesian optimization with inequality
constraints. In ICML, pages 937–945, 2014.

[14] Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian
optimization with unknown constraints. arXiv preprint arXiv:1403.5607,
2014.

[15] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential
model-based optimization for general algorithm configuration. In
International Conference on Learning and Intelligent Optimization, pages
507–523. Springer, 2011.

[16] Engin Ïpek, Sally A McKee, Rich Caruana, Bronis R de Supinski, and
Martin Schulz. Efficiently exploring architectural design spaces via
predictive modeling, volume 41. ACM, 2006.

[17] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for
effective design space exploration. In Monterey Workshop, pages 33–54.
Springer, 2010.

[18] Salman Khan, Polychronis Xekalakis, John Cavazos, and Marcelo Cintra.
Using predictivemodeling for cross-program design space exploration in
multicore systems. In Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques, pages 327–338.
IEEE Computer Society, 2007.

[19] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, and Kunle Olukotun. Spatial: A Language and
Compiler for Application Accelerators. In ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), June 2018.

[20] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou,
Christos Kozyrakis, and Kunle Olukotun. Automatic generation of
efficient accelerators for reconfigurable hardware. In International
Symposium in Computer Architecture (ISCA), 2016.

[21] Luigi Nardi, Bruno Bodin, Sajad Saeedi, Emanuele Vespa, Andrew J
Davison, and Paul HJ Kelly. Algorithmic performance-accuracy trade-off
in 3d vision applications using hypermapper. In Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2017 IEEE International,
pages 1434–1443. IEEE, 2017.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[23] Carl Edward Rasmussen. Gaussian processes in machine learning. In
Advanced lectures on machine learning, pages 63–71. Springer, 2004.

[24] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization:
a review of algorithms and comparison of software implementations.
Journal of Global Optimization, 56(3):1247–1293, 2013.

[25] Sajad Saeedi, Luigi Nardi, Edward Johns, Bruno Bodin, Paul HJ Kelly,
and Andrew J Davison. Application-oriented design space exploration
for slam algorithms. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 5716–5723. IEEE, 2017.

[26] Thomas J Santner, Brian J Williams, and William I Notz. The design
and analysis of computer experiments. Springer Science & Business
Media, 2013.

[27] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
De Freitas. Taking the human out of the loop: A review of bayesian
optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

[28] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian
Kästner. Performance-influence models for highly configurable systems.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 284–294. ACM, 2015.

[29] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner, Sven Apel,
Don Batory, Marko Rosenmüller, and Gunter Saake. Predicting
performance via automated feature-interaction detection. In Proceedings
of the 34th International Conference on Software Engineering, pages
167–177. IEEE Press, 2012.

[30] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in neural
information processing systems, pages 2951–2959, 2012.

[31] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur
Satish, Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan
Adams. Scalable bayesian optimization using deep neural networks. In
International conference on machine learning, pages 2171–2180, 2015.

[32] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An
introduction. MIT press, 1998.

[33] Laura P Swiler, Patricia D Hough, Peter Qian, Xu Xu, Curtis Storlie, and
Herbert Lee. Surrogate models for mixed discrete-continuous variables. In
Constraint Programming and Decision Making, pages 181–202. Springer,
2014.

[34] Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus
Püschel. Active learning for multi-objective optimization. In International
Conference on Machine Learning, pages 462–470, 2013.

	I Introduction
	II Background
	II-A Mono-objective Optimization with Unknown Feasibility Constraints
	II-B Multi-Objective Optimization: Problem Statement
	II-C Randomized Decision Forests

	III Methodology
	III-A Injecting Prior Knowledge to Guide the Search
	III-B Sampling with Categorical and Discrete Parameters
	III-C Unknown Feasibility Constraints
	III-D Active Learning
	III-E Pareto Wall
	III-F The HyperMapper 2.0 Framework

	IV Evaluation
	IV-A The Spatial Programming Language
	IV-B HyperMapper 2.0 in the Spatial Compiler
	IV-C Feasibility Classifier Effectiveness
	IV-D Optimum vs. Approximated Pareto
	IV-E Hypervolume Indicator
	IV-F Understandability of the Results
	IV-G Optimization Wall-clock Time

	V Related Work
	VI Conclusions and Future Work
	VII Acknowledgements
	References

