
A Smart Background Scheduler for Storage Systems
Maher Kachmar

Northeastern University
Department of Electrical and Computer Engineering

Boston, MA
kachmar.ma@northeastern.edu

David Kaeli
Northeastern University

Department of Electrical and Computer Engineering
Boston, MA

kaeli@ece.neu.edu

Abstract—In today’s enterprise storage systems, supported
data services such as snapshot delete or drive rebuild can cause
tremendous performance interference if executed inline along
with heavy foreground IO, often leading to missing SLOs (Service
Level Objectives). Typical storage system applications such as
web or VDI (Virtual Desktop Infrastructure) follow a repetitive
high/low workload pattern that can be learned and forecasted. We
propose a priority-based background scheduler that learns this
repetitive pattern and allows storage systems to maintain peak
performance and in turn meet service level objectives (SLOs)
while supporting a number of data services. When foreground
IO demand intensifies, system resources are dedicated to service
foreground IO requests and any background processing that can
be deferred are recorded to be processed in future idle cycles as
long as forecast shows that storage pool has remaining capacity.
The smart background scheduler adopts a resource partitioning
model that allows both foreground and background IO to execute
together as long as foreground IOs are not impacted where
the scheduler harness any free cycle to clear background debt.
Using traces from VDI application, we show how our technique
surpasses a method that statically limit the deferred background
debt and improve SLO violations from 54.6% when using a fixed
background debt watermark to merely a 6.2% if dynamically set
by our smart background scheduler.

Index Terms—enterprise storage systems, priority scheduling,
time series forecasting, performance guarantees, snapshot delete
performance, QoS

I. INTRODUCTION

Storage servers and the cloud providers are today more
than ever under marketing pressure to meet their service
level objectives (SLOs) and maintain peak1 performance while
supporting ever-exploding large datasets. Due to advances
in hardware in general and storage processors in particular,
hundreds of cores can be packed in multiple CPU sockets and
hundreds of gigabytes of memory are typical of nowadays
storage processors, which is a building block for storage
clusters [1], [2]. It is expected that storage providers utilize
these resources to scale to larger datasets, exceed a higher
performance bar, all while supporting services such as data
protection, data efficiencies, and data analytics. For instance,
if volume snapshot retention time happen to expire during a
burst of foreground IO or a request to unmap a large address
space was issued by an application or a disk needs to be
rebuilt during a busy period, this can stress the storage system
and lead to QoS violations. A recent study [3] reports that

1Storage Server Peak Performance is measured under favorable conditions
where no data services are running

drive rebuild has 78.5% impact on the performance of ZFS
file system.

Furthermore, storage vendors are adopting log structured
based design that improves write workloads through coalesc-
ing multiple writes into a larger data block while deferring
garbage collection of old overwritten data to a background
process [4]. This log structured design often utilizes a fast but
expensive media tier that requires a background process to
continuously flush newly written data to a slower media tier.
This background process is considerably heavy compared to
foreground IO especially if it has to provide core data effi-
ciency services such as inline compression and deduplication.

Moreover, during load bursts, the foreground I/O stack can
be further lightened by deferring any data/metadata, that needs
be prefetched and/or modified in order to complete an I/O,
to another background process so that more IOPS can be
squeezed during said bursts.

Storage application background processing include the fol-
lowing types of background ops but they are not limited to
this list:

• Snap shot delete, volume delete , and unmaps.
• Deep compression and offline deduplication.
• Garbage collection and defragmentation.
• Drive / stripe rebuild.
• Prefetching and relocation of data.
• Data and Metadata flush.
• Replication sync.
• Integrity checks.
• Data Analytics.

Except the last 3 types of background ops which improves
reliability and serviceability, the only drawback of not instan-
taneously catering for these background ops is the potential
to tie free pool storage. However, tying up too much deferred
debt can lead to pool running out of space which is another
ballpark hard SLA violation, DU/DL (Data Unavailable/Data
Loss). Such a requirement justifies coming up with a smart
background scheduler that is powered by forecasting models,
statistical or machine learning based, to lively profile and
characterize workloads on a per deployment basis in order
to strike a perfect balance between servicing user IO requests
and meeting the required data services.

Our proposed smart background scheduler adopts a re-
source partitioning model that allows both foreground and
background IO to execute together as long as foreground IOs

ar
X

iv
:2

00
6.

01
40

2v
1 

 [
cs

.D
C

] 
 2

 J
un

 2
02

0



are not impacted. The scheduler is backed by a forecasting
component so to harness any free cycle to clear the back-
ground debt and keep background work minimal during heavy
IO. Using traces from VDI (Virtual Desktop Infrastructure)
application, we show how our technique surpasses a method
that statically limit the deferred background debt and improve
SLO violations from 54.6% when using a fixed background
debt watermark to merely a 6.2% if dynamically set by our
smart background scheduler.

After this introduction, the paper is organized in the
following order. Section 2 discusses related work. In Section
3, we present the experimental setup. Section 4 presents
motivation and a workload characterization of multiple
popular applications hosted on a typical enterprise storage
system. In Section 5, we present the forecasting and the
background scheduler models. Section 6 presents trace
driven simulations that provides a comparison of multiple
forecasting algorithms and demonstrates the effectiveness
of our background scheduler. Finally, we conclude and list
future work in Section 7.

II. RELATED WORK

There is a rich body of work already established on
workload characterization and predictions. They are typically
used for cache warmup and prefetching [5]. In some cases,
these workload characterizations have been used to direct the
scheduling of maintenance or background work [6]–[8], for
capacity planning [9], or for improving the performance of
busty workloads [10]. Taylor [11], et. al., lays down a time-
series forecasting method that can be used for most datasets
with limited data science expertise. Their method decompose
time-series to 3 components: trend, seasonality, and holiday
and address each component separately. Their prophet fore-
casting model is able to elegantly capture short and long
term seasonality as a curve-fitting exercise, all without over-
fitting training data. Alshawabkeh [12], et. al., uses Markov
Chain Correlation of the spacial and temporal characteristics
of storage blocks to intelligently place blocks on a tiered
storage systems. Their method isolate a group of devices
into a cluster that behave similarly. A Markov Chain Cluster
transition between High, Medium, and Low arrival intensities
which in turn guide the placement of these devices on their
ideal tier. Ravandi [13], [14], et. al., models storage providers
on cloud as a black box where they assess vendors level
of Quality of Service (QoS) through monitoring or synthetic
test tool. In turn, this information is fed to a ML based
algorithm where they classify the level of QoS met in order
to enhance SLA/SLO violations and balance it with storage
capacity requested. Xue [5], [15], et. al, explains how to use
machine learning techniques such as neural networks to predict
user workload intensities in order to schedule data analytics
work during idle time but also warmup caches before the next
cycle of user workload. Stokely [9], et. al, used ensembles
of time series models to project disk utilization trends in a
cloud setting. Zhang [16], et. al., study the IO characteristics

of storage systems to ensure that reliability background jobs do
not impact foreground IO. Their analytical model incorporates
characteristics such as burstiness, arrival dependence, and
system utilization and use it to find optimal intersection points
where impact of background jobs on foreground IO is reduced.

However, we depart from previous work in several aspects
that allow us to provide a holistic and more realistic solution
for the storage industry. Prior approaches assumed that back-
ground ops cannot be executed along with foreground IO or the
need to warmup the cache after executing each workload. With
recent advances in hardware where a datacenter-on-a-chip is
no longer a science fiction [1], this paradigm is no longer
applicable. Isolating execution domains between foreground
and background allows these different workloads to co-execute
in their perspective domains. Moreover, prior approaches lack
key information needed for the scheduler to perform as an
ideal storage cluster that has both performance and capacity
guarantees. It is not feasible to delay background processing if
the pool is running out of blocks or when reliability becomes
compromised when not meeting drive rebuild time. To provide
a framework for the storage industry where performance and
capacity are tightly coupled, we feed this knowledge directly
to the priority based scheduler where we:

• Quantify the cost of the deferred background work and
the time to clear it.

• Track free pool space and deferred debt tied space in
order to estimate time before running out of resources.

• Grade current incoming load and harvest any free cycle to
execute background ops using isolated domains to reduce
any effect on foreground I/O.

For example, deleting hundreds of snaps is typically CPU
intensive, but also, deferring large volume deletes or defer-
ring offline deduplication can tie tremendous storage capacity
risking the user application to run out of space. Adding these
key information to the model helps provide a more realistic
priority based scheduler for the storage server that balance
both foreground and background processing.

III. EXPERIMENTAL SETUP

To guide the development our smart scheduler, we run syn-
thetic workloads on a live storage server. Our testbed consists
of a server running Centos 7 with 2 NUMA CPU sockets, 6
cores per socket, 24 GB of memory and 2 SAS2 drives. The
SAS2 drive have a capacity of 300GB and can support 10,500
RPM. We use the FIO tool version 3.7 to produce synthetic
block-based workload on the system [17]. FIO has a capability
to create various workload streams (random, mixed, etc.) with
varying compression and deduplication ratios. This tool is used
to produce workload traces used to evaluate the scheduler.

Various storage traces of real enterprise applications exist.
SNIA [18] provide VDI traces (discussed in later section), as
well several other storage traces. Wikipedia traces also exist
for public research use [19]. These traces are used to compare
the forecasting models, which are used in turn to evaluate our
smart background scheduler.



After collecting traces, we designed a trace-driven simulator
that has the following features:

• Ability to process I/O traces.
• Ability to read and apply background scheduling policies

(snap policies, efficiency policies, etc.).
• Model background processing costs for various back-

ground workload types.
• Modular design with ability to attach to various back-

ground scheduler models (be able to attach to any Fore-
casting or Scheduler model).

• Generate performance metrics and visualize results.
Our goal is to compare the performance of the system

with and without background data services supported. Ideally,
the background data services should have little to no impact
on the user during IO busy phases. The proposed solution
should surpasses any method that statically limit the deferred
background debt.

IV. TRACE GENERATION

To better understand the potential performance degradation
introduced by background processing, for the Linux filesystem
(XFS) on the testbed we ran FIO [17] to generate a random
read workload using 8 jobs (threads). This workload nearly
saturates the drives (≥ 90%). We consider here two scenarios.
The first test is run without any background load. Then in
the second test introduce some background load. We repre-
sented the background load in this experiment by concurrently
running deletes of 20 large files. Figure 1 shows the FIO
profile used in this experiment. Figure 2 reports the IOPS and
resulting response time on XFS file system.

Fig. 1. FIO random read profile.

Although the delete of these 20 files may have only involved
metadata updates in this filesystem implementation, this back-
ground traffic was still enough to produce a measurable
impact. We found that IO latency was doubled and the number
of IOPS were cut in half. This impact grows significantly in
the case when the background process is a snap delete of a
volume that shares data blocks between the deleted snap and
primary copy.

Today, a typical storage array of same family and compa-
rable feature set is sized and priced based on two criteria:

1) Performance - the maximum IOPS achieved and the
ability to handle bursty traffic due to virtual machine
boots or shutdown storms.

Fig. 2. Impact of background load on the performance of the XFS filesystem.

2) Capacity - the number of objects, physical space, and
efficiency achieved through thin provisioning, compres-
sion, and deduplication.

Thus, the goal of our smart background scheduler is to tradeoff
capacity in order to gain performance, as long as there is some
excess performance available during periods.

Fig. 3. Typical storage system IO arrival rate over a 35 day period [5].

Fig. 4. User request arrival intensity (Incoming load) of VDI workload on 3
LUNs over 6 days (starting 2/24/2016 @ 7am) and a zoomed-in view of the
first 24-hour period.

Many storage workloads tend to be bursty in nature, follow
repeatable patterns in time (day/night or weekday/weekend),
and are tightly coupled to the number of time zones in which
storage clusters are deployed. Figure 3 shows the IO arrival
rate for a production storage system [5]. There are clear
patterns present, based on day/night and weekday/weekend
intervals. Figure 4 shows the input IO intensity of our Virtual
Desktop Infrastructure (VDI) workload run on 3 LUNs over
a 6 day period. We include a snapshot of the first 24-hour
period . The traces can be obtained from SNIA [18]. Even



at a fine granularity (hourly), there clearly a distinct pattern
that repeats. Figure 5 plots the autocorrelation of incoming
intensity at different lags, where the highest at is at point
144 (a one-day lag, plotted at 10 minute intervals). Figure 6
shows the 24-hour lag spread, which indicates a strong 24-
hour correlation. All in all, typical storage workloads follow
a repeatable pattern and storage clusters are usually impacted
by the number of time zones in which it is deployed.

Fig. 5. VDI workload autocorrelation at different lags.

Fig. 6. 24-hour lag spread of VDI workload.

Given the strong correlations observed at hourly, daily and
weekly lags, the IO arrival and block write rates emerge as
time series models. The forecast produced from the time series
model is used by the background scheduler to populate an
hourly, daily, weekly, and even monthly plan of how system
resources (i.e., CPU and memory resources) are allocated. This
plan will guide the scheduler on how much background debt
to defer (size the background debt buckets) and indicate the
time they will be paid, that is based on forecasting the idle
cycle, we can note time we start processing this debt.

The input sensors/features of our forecasting algorithm are:

• the IO arrival rate, provided at different granularities
(different granularity may favor a different forecasting
method).

• the free storage capacity.
• Types of load/bursts (percentage by load type: read, write,

unmap).
• Deferred background debt (averaged in block size) and

per-queue processing rate.
The smart background scheduler predicts the idle cycles, level
of idleness(remaining processing capacity), storage capacity,
deferred debt, produce a debt processing plan, and ultimately
size the deferred-debt bucket accordingly. The bucket size of
the deferred-debt continuously grows and shrinks according
to the debt processing plan. Growing the debt bucket allows
the system to defer more background work and reduce the
impact on foreground IOs during peak times. The scheduler
will ultimately produce an hourly, daily, and weekly forecast
plan of potential free windows when debt can be paid off. The
window indicates how much debt can be paid and which debt
to pay first. The scheduler prioritizes debt processing based
on how much space can be reclaimed and ultimately guide a
weekly debt balance sheet to keep debt in check.

V. METHODOLOGY

A. Forecasting Model

The IO arrival intensity exhibit many elements of a time
series model. The incoming IO count and the read-write mix
observed at any specified time window is a time ordered series.
There is some great research already established in the area of
time series forecast. We compare few of the leading methods
that worked best in this area. However, we add new dimensions
that are specific for our model such as forecasting read-write
mix, free pool space, and the cost to clear Background debt.
Background ops such as data/metadata flush requires a more
finer time granularity (second/minute).
In particular, we explore and compare the following models
which are sorted by compute-complexity. We expect the more
compute-complex the model is, the better at prediction esti-
mation and the more states it can identify:

• Time Series based on Markov Modulated Poisson Process
[5] (We identify user arrival intensity low/medium/high
states and interval between them). This is no suitable for
fine-grained forecasting.

• Time Series based on ARMA/ARIMA(p, d, q) model
(Auto-Regression Integrated Moving-Average) [20]. We
calculate ACF and PACF to choose p & q parameters
which correspond to lag and moving-average window
size, while d becomes a factor if trend is not stationary.

• Time-Series based on Triple Exponential Smoothing us-
ing Holt-winters’ method [21] (Trend, Season, and Resid-
ual factors).

• Machine Learning techniques, in particular, reinforce-
ment learning (RL) and Long-Term-Short-Term-Memory
(LSTM). This non-linear solution is to be explored for a
finer prediction model.



However, We propose a forecasting model that is similar to
exponential smoothing. This method initially decomposes the
time-series into trend, season, and noise where:
Yt = Trendt + Seasont +Noiset
Exponential smoothing forecasting model does not provide
multiple seasonality periods. Trend index may have a weekly
cyclic pattern but season index most likely have a daily cycle
(see section 4). In order to predict future days IO intensity
or read-write mix, we use an exponentially weighted moving
average (EWMA) of the trend with a weekly cycle and season
based on daily cycle where the EWMA for a series Y is
defined as a recursive function:

St =

{
Y1, t = 1

αYt + (1− α)St−1, t > 1

Where:
• The coefficient α represents the degree of weighting

decrease, a constant smoothing factor between 0 and 1.
A higher α discounts older observations faster.

• Yt is the value at a time period t.
• St is the value of the EWMA at any time period t.

The weekly forecast is simply the sum of trend index and
season index:

Ŷt = EWMATrendt
+ EWMASeasont

Even though the prediction error might still be high, MPE
(Mean Percentage Error) is expected to be low. The white
noise effect of over-prediction (positive error) and under-
prediction (negative error) will offset each other out, where
the prediction error at time t is the following:

t∑
0

(Yt − Ŷt) = ε

where ε is bounded by error at time t, i.e. (Yt − Ŷt).
We are not concerned at minimizing the error between predic-
tion and actual as long as the cumulative error at any time t
is small. This comes from the idea that if the prediction error
lead to burning through debt more than required at any time
t, the next cycle (t + 1) can lead to burning less debt which
essentially cancel out the prediction error effect.

Predicting and factoring in the IO arrival rate, the type of IO
(read, write, unmap, etc ), the various data services policies,
and the deferred debt is key to estimate free pool space and
the potential freeable space if we execute an item off the
background debt queue.

B. Background Scheduler Model

As we explained earlier, the scheduler needs the following
data to make a good scheduling decision which become the
features of the established learning algorithm:

• Forecast of IO arrival intensity (by type: read, write) and
forecast of free pool space based on adopted data services
policies.

Fig. 7. Background Scheduler executing isolated domains according to
forecasted plan.

• Accumulated Debt of different background services, cost
to service one item off each of the background queues,
and potential tied capacity of an item off each of the BG
queues.

• Current free capacity and estimation of tied capacity.
The learning algorithm will produce the following information
for the smart scheduler:

• Partition the resources between foreground and back-
ground processing

• Prioritize the BG queues.
• Provide a future plan of when and how much to process

off the BG debt and size the various BG buckets accord-
ingly.

Since the background scheduler may have to work in
a muddied environment along with foreground I/O if the
forecast is not favorable for the upcoming periods. This
usually happen due to a stressed system condition. In order
to avoid cache thrashing or varying runtime effects, we tend
to execute background jobs in an isolated domain that either
uses a separate CPU socket in multi-socket platforms or
group of cores in a single socket platforms. Partitioning the
resources and segregating foreground I/O from background
ops allows foreground requests to execute in a lower latency
environment and without the need to warm up the caches.
This is a clear distinction and advantage of our priority
based scheduler. Figure 7 shows a rough idea how to execute
the isolated domains according to scheduler forecasted plan.
Foreground I/O latency typically demands a relatively small
latency compared to other ops. Having for foreground I/O
to wait behind a heavy lifting and bulky background thread
impacts foreground latency greatly. Thus, the importance of
partitioning the resources and segregating cores used to service
foreground I/O vs background is a key part of this design.

The foreground IO load is a combination of both read and
write loads where read factor is usually multiple that of write.

LFG(t) = LRead(t) + LWrite(t)



LRead(t) = r(t) ∗ LFG(t)

LWrite(t) = (1r(t)) ∗ LFG(t)

where LFG(t) is the foreground arrival IOPS and r(t) is the
read load ratio at any given time t. Space capacity utilization
is a cumulative function of previous time period.

U(t+ 1) = U(t) + u(t) ∗ LWrite(t) +D(t)

where U(t+1) is the capacity utilization at future time t+1
and u is the ratio of unique blocks, and D(t) is deferred debt
blocks at time t.
Each of the deferred debt types can be derived from foreground
arrival rate using a unique formula2 :

DOverwrite(t) = (1u(t)) ∗ LWrite(t)

DUnmap(t) =
Len(t)

BSize
∗ (1 +DMD Ratio)

DSnap Delete(t) = LWrite(t) ∗ Snap Retention T ime

Hardware can be modeled as a tuple of
< socket, core,memory >. Each core is confined to
either a foreground processing domain or background
processing domain at any given time t. However, we will
relax the memory element from the isolated domain for the
following reasons:

• Most of todays storage server memory is merely a big
read cache.

• We assume that cache eviction rate is low due to back-
ground processing mainly working on metadata.

• A good prefetch algorithm already deployed.
• Metadata is a tiny fraction (2-5%) when compared to

data. We assume that all metadata will fit in cache.
The forecaster is used to predict the foreground arrival

intensity rate LFG(t) and unique block fraction u(t) of
foreground writes with a different granularity to cover both
the short-term (minute/hour) and long-term (day/week) goals.
These predictions are then used to drive the future debt D(t)
to be accumulated against required data services. For example,
if policy is to create a scheduled snapshot every 1 hour for a
group of 10 LUNs with retention time equivalent for 1 hour,
then the debt accumulated is equivalent to:

DSnap Delete = 10 ∗
t+3600∑

t

Lwrite(t)

We assume, that LWrite(t) targeting the 10 luns, is identical.
The time to service one item of this debt queue is directly
proportional to number of foreground writes:

RTSnap Delete = c ∗DSnap Delete

2BSize is the default block size, Len is the length of unmap, and
DMD Ratio is the data to metadata ratio and is dependent on the namespace
implementation of storage system and the efficiency ratio of its data-path. It
varies but will consider to fix it between 2-5% of total space utilization.

where c is the cost to read and manipulate one block.
Given that we modeled the cost to service the deferred

debt, the capacity tied in the various debt queues, future
forecast and future debt, we use multi-server queuing the-
ory (M/M/c) to allocate the cores between foreground and
background. However, the optimization is to suppress and
segregate background processing and bias foreground work as
long as capacity is not violated in the near future. The priority
scheduler assigns priority on each of the background queues
based on the expected reclaimed capacity of this queue, data
service / reliability SLA (such as time to rebuild a drive), and
time to service one item off this queue.

Each core can service some given throughput CIOPSFG

(FG Core IOPS) at a preferable latency RTFG. This number
can be quickly obtained when evaluating a new storage server
platform or on a live system by a brief calibration period
where data services are paused. If the total system throughput
demand per current arrival rate and the forecast arrival rate for
the next x seconds is IOPSa, then:

CFG(t) =MIN{N, IOPSa

CIOPSFG
CFF (t)}

CBG(t) = N − CFG(t)

where CFG(t) and CBG(t) is the number of cores allocated
for foreground and background respectively for the next x
seconds. N is the total cores available in system for Datapath.
CFF (t) is the capacity forecast factor. It is the extra cores

we need to steal from the set servicing foreground IOs in
order to guarantee pool never run of free space before the
forecasted long idle phase. This CFF (t) factor indeed impacts
foreground IO and will ultimately lead to generating less
background work. This is a sign of oversubscribed system
where we record as a violation. If said violations increase
dramatically over time, the operator is notified to add a new
disk to pool or reduce/balance application load.

Since we have n number of background queues with a tuple
of < servicingtime, priority > and m number of back-
ground cores (servers), we can use the multi-server queuing
theory (M/M/c) to quantify if we need to add more servers.
We can limit the bucket size of each of the queues based on
its priority (tied capacity) and limit total bucket size of all the
queues based on forecasted free capacity. The scheduler round
robin between the various background queue to pull x items
of each queue based on its priority and push it to each core.

VI. RESULTS AND DISCUSSION

A. Workload characterization and forecasting

Figure 8 shows the ACF and PACF of VDI workload IO
Arrival Intensity. It shows strong correlation at 24-hour lag.
However, the intensity signal is not always stationary due
to multiple seasonality effect such as weekend and holidays.
In order to reach a stationary intensity signal, we group
weekday as a separate cluster from weekend, leading to 2
stationary intensity signals one for weekday and another one
for weekend. However, the signal additive decompose of VDI



workload as shown in Figure 9 shows a stationary trend for
Wednesday through Friday, a lower intensity for weekend, and
higher intensity on Monday. Thus, we suggests to utilize a
stationary trend factor for each cluster of days using a K-
means clustering method with upper bound of

√
n
2 where n

is the number of days in the week in addition to holidays.

Fig. 8. ACF and PACF of VDI Workload IO Arrival Intensity.

Fig. 9. Additive Decompose (trend, season, and residual) of VDI IO Arrival
Intensity.

Initially, we used the standard ARIMA model to train on
a cluster of days that has a stationary trend property, where
the autoregressive factor (p) set to 144 (24 hours @ 10-minute
granularity), the differential factor (d) set to 0, and the moving
average factor (q) set to 2. Figure 10 shows forecast vs actual
of IO arrival intensity and write intensity using ARIMA model.
ARIMA achieves Symmetric mean absolute percentage error
(SMAPE) of 27.8% when comparing prediction to actual.

We then experimented with a triple exponential smoothing
model where season period is set to 144 (24 hour @ 10 minute
granularity) similar to ARIMA and a damped trend option.
Figure 11 shows forecast vs actual of IO arrival intensity
using triple exponential smoothing. SMAPE achieved for triple
exponential smoothing is 19.2%.

Finally, we experimented with our simple but robust fore-
casting model. Figure 12 shows forecast vs actual of IO arrival
intensity and write intensity using our method. We achieve
Symmetric mean absolute percentage error (SMAPE) of 14.8%

prediction to actual which means we cut the error range by
half if compared to ARIMA and few percentage better than
triple exponential smoothing.

Fig. 10. ARIMA forecasting performance on a cluster of 3 days.

Fig. 11. Prediction by Triple Exponential Smoothing.

Fig. 12. Prediction by averaging trend and season of historical week’s data.

Even though the prediction error is still over 10%, MPE
(Mean Percentage Error) is well below 10% as the white
noise effect of over-prediction (positive error) and under-
prediction (negative error) offsets each other out as discussed
in a previous section.

B. Smart Background Scheduler
We compared 2 implementations of the background sched-

uler. Both implementations include replaying the VDI traces



Fig. 13. Performance of BG Scheduler when using fixed debt bucket size.

of 3 LUNs for the 6-day period with a snap creation/retention
time of 1 hour. We fix the number of cores in simulation to 64,
the per core FG processing rate to 50 IOPS, BG processing
rate to 20 ops per second, and a 4K block size. The first
implementation used a fixed debt bucket size. We fix the debt
bucket size to a range between 40 and 50% of total pool size
where the scheduler is less aggressive at burning the debt at
40% and become more aggressive as we reach 50%. Such an
implementation leads to SLO performance violation of 54.6%
where 21.7% of IO was queued due to out of resources as
shown in Figure 13.

The second implementation uses a dynamic bucket size that
utilizes the forecasted information described in section 5. The
debt bucket implementation can grow up to 95% of pool size
as long as the forecasted data allows. The smart scheduler
algorithm utilizes the forecasted data for the upcoming period
(example: week) to replay the forecasted foreground IO,
background IO, free pool capacity, and debt size. The dynamic
bucket algorithm maximizes foreground I/O as long there are
free pool capacity. If a future period is observed where pool
capacity will be 95% depleted, a greedy algorithm evenly
spreads enough background load to a relative prior period.
This is necessary in order not to run out of pool space in the
future as we maximize foreground IO. Several iterations are
needed to replay the forecasted data series and slowly increase
the background processing rate so to find the optimal partition
point between foreground and background cores. With this
scheme we are able to achieve SLO performance violation of
only 6.2% through the 6 days where 2.6% of IO was queued
due to out of resources as shown in Figure 14.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a smart background sched-
uler for storage systems that harvest every ounce of processing
capacity to absorb application bursts and meet SLOs. The
design requires 2 modular pieces to work hand in hand to get
this done. The first module provides the forecast of information
such as IO arrival intensity, data blocks written, and unique
data blocks written. The second module uses the forecasted
data for the upcoming days to partition the resources between

Fig. 14. Performance of BG Scheduler utilizing forecasted information.

foreground and background ops biasing foreground IO as long
as pool capacity is not depleted or reliability SLA is not
violated. Through replaying VDI workload traces, the smart
background scheduler reduced SLO violations from 54.6%
when using a fixed debt bucket to merely a 6.2%.

These items are still in progress and currently constitutes
the future work:

1) Compare the proposed forecasting method to recurrent
neural network method such as LSTM and ensembles
of time series methods.

2) Background ops such as data/metadata flush requires
a more finer time granularity (second/minute) and our
forecasting/scheduling method might need tweaking to
address this kind of environment. Compare to methods
from literature.

3) Implement other background ops such as efficiency ops
(offline deduplication and compression) or reliability ops
(drive rebuild).

4) Provide and demonstrate the priority based scheduler on
multiple op types.

REFERENCES

[1] MIT Genius Stuffs 100 Processors Into Single Chip — WIRED.
[Online]. Available: https://www.wired.com/2012/01/mit-genius-stu/

[2] Dell EMC PowerStore Released For Midrange - StorageRe-
view.com. [Online]. Available: https://www.storagereview.com/news/
dell-emc-powerstore-released-for-midrange

[3] Z. Qiao, S. Fu, H. B. Chen, and B. Settlemyer, “Building Reliable High-
Performance Storage Systems: An Empirical and Analytical Study,”
Proceedings - IEEE International Conference on Cluster Computing,
ICCC, vol. 2019-September, 2019.

[4] List of Log Structured File Systems. [Online]. Available: https:
//en.wikipedia.org/wiki/List of log-structured file systems

[5] J. Xue, F. Yan, A. Riska, and E. Smirni, “Storage Workload Isolation via
Tier Warming: How Models Can Help,” 11th International Conference
on Autonomic Computing (ICAC 14), pp. 1–11, 2014.

[6] A. Riska and E. Riedel, “Long-range dependence at the disk drive
level,” Third International Conference on the Quantitative Evaluation
of Systems, QEST 2006, no. July, pp. 41–50, 2006.

[7] F. Yan, A. Riska, and E. Smirni, “Busy bee: How to use traffic
information for better scheduling of background tasks,” ICPE’12 -
Proceedings of the 3rd Joint WOSP/SIPEW International Conference
on Performance Engineering, pp. 145–156, 2012.

[8] L. Eggert and J. D. Touch, “Idletime scheduling with preemption
intervals,” Proceedings of the 20th ACM Symposium on Operating
Systems Principles, SOSP 2005, pp. 249–262, 2005.

https://www.wired.com/2012/01/mit-genius-stu/
https://www.storagereview.com/news/dell-emc-powerstore-released-for-midrange
https://www.storagereview.com/news/dell-emc-powerstore-released-for-midrange
https://en.wikipedia.org/wiki/List_of_log-structured_file_systems
https://en.wikipedia.org/wiki/List_of_log-structured_file_systems


[9] M. Stokely, A. Mehrabian, C. Albrecht, F. Labelle, and A. Merchant,
“Projecting disk usage based on historical trends in a cloud environ-
ment,” ScienceCloud ’12 - 3rd Workshop on Scientific Cloud Computing,
pp. 63–70, 2012.

[10] N. Mi, G. Casale, and E. Smirni, “ASIdE: Using autocorrelation-based
size estimation for scheduling bursty workloads,” IEEE Transactions on
Network and Service Management, vol. 9, no. 2, pp. 198–212, 2012.

[11] S. J. Taylor and B. Letham, “Business Time Series Forecasting at Scale,”
PeerJ Preprints 5:e3190v2, vol. 35, no. 8, pp. 48–90, 2017.

[12] M. Alshawabkeh, A. Riska, A. Sahin, and M. Awwad, “Automated
storage tiering using markov chain correlation based clustering,” Pro-
ceedings - 2012 11th International Conference on Machine Learning
and Applications, ICMLA 2012, vol. 1, pp. 392–397, 2012.

[13] B. Ravandi, I. Papapanagiotou, and B. Yang, “A Black-Box Self-
Learning Scheduler for Cloud Block Storage Systems,” 2016 IEEE 9th
International Conference on Cloud Computing (CLOUD), pp. 820–825,
2017.

[14] B. Ravandi and I. Papapanagiotou, “A Self-Learning Scheduling in
Cloud Software Defined Block Storage,” IEEE International Conference
on Cloud Computing, CLOUD, vol. 2017-June, pp. 415–422, 2017.

[15] J. Xue, F. Yan, A. Riska, and E. Smirni, “Scheduling data analytics work
with performance guarantees: queuing and machine learning models in
synergy,” Cluster Computing, 2016.

[16] Q. Zhang, A. Riska, N. Mi, E. Riedel, and E. Smirni, “Evaluating the
performability of systems with background jobs,” Proceedings of the
International Conference on Dependable Systems and Networks, vol.
2006, pp. 495–504, 2006.

[17] FIO Benchmark. [Online]. Available: http://www.freecode.com/projects/
fio

[18] SNIA traces. [Online]. Available: http://iotta.snia.org/tracetypes/3
[19] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis

for decentralized hosting,” Computer Networks, 2009.
[20] C. Chatfield and H. Xing, The analysis of time series: an introduction

with R. CRC press, 2019.
[21] P. Goodwin, “The holt-winters approach to exponential smoothing:

50 years old and going strong,” Foresight: The International Journal
of Applied Forecasting, no. 19, pp. 30–33, 2010. [Online]. Available:
https://EconPapers.repec.org/RePEc:for:ijafaa:y:2010:i:19:p:30-33

http://www.freecode.com/projects/fio
http://www.freecode.com/projects/fio
http://iotta.snia.org/tracetypes/3
https://EconPapers.repec.org/RePEc:for:ijafaa:y:2010:i:19:p:30-33

	I Introduction
	II Related Work
	III Experimental Setup
	IV Trace Generation
	V Methodology
	V-A Forecasting Model
	V-B Background Scheduler Model

	VI Results and Discussion
	VI-A Workload characterization and forecasting
	VI-B Smart Background Scheduler

	VII Conclusion and Future Work
	References

